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In selective RNA processing and stabilization (SRPS) operons, stem–loops (SLs) located
at the 3′-UTR region of selected genes can control the stability of the corresponding
transcripts and determine the stoichiometry of the operon. Here, for such operons,
we developed a computational approach named SLOFE (stem–loop free energy) that
identifies the SRPS operons and predicts their transcript- and protein-level stoichiometry
at the whole-genome scale using only the genome sequence via the minimum free
energy (1G) of specific SLs in the intergenic regions within operons. As validated
by the experimental approach of differential RNA-Seq, SLOFE identifies genome-
wide SRPS operons in Clostridium cellulolyticum with 80% accuracy and reveals
that the SRPS mechanism contributes to diverse cellular activities. Moreover, in the
identified SRPS operons, SLOFE predicts the transcript- and protein-level stoichiometry,
including those encoding cellulosome complexes, ATP synthases, ABC transporter
family proteins, and ribosomal proteins. Its accuracy exceeds those of existing in silico
approaches in C. cellulolyticum, Clostridium acetobutylicum, Clostridium thermocellum,
and Bacillus subtilis. The ability to identify genome-wide SRPS operons and predict
their stoichiometry via DNA sequence in silico should facilitate studying the function and
evolution of SRPS operons in bacteria.

Keywords: transcriptional start sites, posttranscriptional processed sites, stem-loop structure, stoichiometry of
protein complexes, cellulosome

INTRODUCTION

In bacterial genomes, functionally related genes (e.g., those of a multi-subunit protein complex
or from a metabolic pathway) are frequently organized as an operon, i.e., co-transcribed as a
polycistronic messenger RNA (mRNA) sequence. To ensure proper regulation of these component
genes in operons, one mechanism employed by the cell is selective RNA processing and stabilization
(SRPS). In SRPS-regulated operons, the RNA molecules are often cleaved into smaller fragments by
RNA processing and formed into oligonucleotides monomers due to RNA degradation. However,
under some context and with the involvement of specific cis-elements, RNA processing stabilizes
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the mature transcript and crucially controls the gene expression
(Arraiano et al., 2010; Caron et al., 2010). The cis-elements,
which are the non-coding DNA sequences in the vicinity of the
structural portion of a gene, are required for gene expression
and often work as the binding sites for the transcription factors
(Balleza et al., 2009). These elements mostly contain short
consensus sequences and can be located in the promoter or
act as an enhancer, such as transcription start sites (TSs), post-
transcription start sites (PSs), and stem–loop structures.

Stem–loops are considered vital for transcript stability and
are often found at the 5′- and 3′-ends of mRNAs (Emory et al.,
1992; Abe and Aiba, 1996; Cisneros et al., 1996). Most prokaryotic
mRNAs end in a 3′-terminal stem–loop structure, which serves
as a protective barrier against degradation by 3′-exoribonuclease
(Coburn and Mackie, 1998). These RNA secondary structures
are a functional component of enzyme RNase P (Waters and
Storz, 2009) or contribute to the formation of regulatory cis-
acting regions such as riboswitch (Mandal and Breaker, 2004),
thermosensors (Khalil and Collins, 2010), and transcriptional
attenuators and terminators (Bernstein et al., 2002; Kuehner et al.,
2011). However, although the stability of stem–loops can be
modeled via their free energy (1G), few computational methods
are available to functionally classify these stable stem–loops
at a large scale.

In the mesophilic cellulolytic anaerobe Ruminiclostridium
cellulolyticum [previously Clostridium cellulolyticum (Ccel)], we
discovered that the stoichiometry of the 12-gene, cellulosome-
encoding cip-cel operon is regulated by SRPS (Xu et al., 2015).
Specifically, for the cip-cel operon, we showed that the stem–
loops (SLs) located at the 3′-UTR region of selected genes control
the stability of the corresponding transcripts and determine the
stoichiometry of the operon. Despite these initial clues from the
cip-cel operon of Ccel that suggest a link between regulatory
DNA sequences and the expression levels of encoded proteins,
it is not clear whether, and to what degree, genome sequence-
based prediction of transcript or protein stoichiometry for SRPS
operons is possible.

Here, we hypothesize that the 3′-UTR SLs can (i) identify
the SRPS-regulated operons genome wide and (ii) be used to
predict the transcript- or protein-level stoichiometric ratios of
these operons. To address these questions, we developed a
computational approach named SLOFE (stem–loop free energy)
that predicts the transcript- and protein-level stoichiometry at
the whole-genome scale using only the genome sequence via
the minimum 1G of specific SLs in the intergenic regions
within operons. As validated by the experimental approach
of differential RNA sequencing (RNA-Seq), SLOFE identifies
genome-wide SRPS operons in C. cellulolyticum with 80%
accuracy and reveals that the SRPS mechanism contributes
to diverse cellular activities. Moreover, in the identified SRPS
operons, SLOFE predicts the transcript- and protein-level
stoichiometry, including those encoding cellulosome complexes,
ATP synthases, ABC transporter family proteins, and ribosomal
proteins. Its accuracy exceeds those of existing in silico
approaches in C. cellulolyticum, Clostridium acetobutylicum,
Clostridium thermocellum, and Bacillus subtilis. The ability
to identify genome-wide SRPS operons and predict their

stoichiometry via DNA sequence in silico should facilitate
studying the function and evolution of SRPS operons in bacteria.

MATERIALS AND METHODS

Strains and Growth Conditions
Escherichia coli was used as the host strain for routine cloning
and was incubated at 37◦C in Luria–Bertani (LB) medium.
C. cellulolyticum ATCC 35319 (H10) was anaerobically cultured
at 35◦C in modified GS-2 medium (1.5 g KH2PO4, 3.8 g
K2HPO4.3H2O, 2.1 g urea, 1.0 g MgCl2.6H2O, 150 mg
CaCl2.2H2O, 1.25 mg FeSO4.6H2O, 1.0 g cysteine-HCl, 10 g
MOPS-Na, 6.0 g yeast extract, 3.0 g trisodium citrate◦2H2O,
and 0.1 mg L−1 resazurin, pH 7.4) (Johnson et al., 1981)
supplemented with 5.0 g L−1 cellobiose as the carbon source.
Erythromycin (20 µg ml−1 for C. cellulolyticum) or ampicillin
(100 µg ml−1 for E. coli) was added into the medium as required.

Prediction of SLs
The genome sequences (Supplementary Table 1) of Ccel
(NC_011898.1), C. thermocellum (Cthe; NC_009012.1),
C. acetobutylicum (Cace; NC_003030.1), B. subtilis (Bsub;
NC_000964.3), and E. coli (Ecoli; NC_000913.3) were used
for the prediction of RNA secondary structure. Firstly, the
RNAMotif (Macke et al., 2001) algorithm (which searches an
RNA structure motif from a nucleotide sequence) was used
for motif discovery based on the parameters/constraints in the
“descriptor” file (which specifies the minimum and maximum
lengths of the stem and loop parts in stem–loop). The minimal
and maximal stem lengths were 6 and 40 bp, respectively. The
loop length varied from 3 to 30 nt, no restriction on bulged
or mispaired base was placed in the stem, and GU pairing
was allowed in the stem (thus, RNAMotif predicted the motif
sequences on both strands). The secondary structure (stem–loop)
and folding 1G for the predicted motifs were calculated using
RNAfold, one of the core programs of the Vienna RNA package
(Hofacker, 2003). Specifically, (i) single motif sequences from
the RNAMotif were input to RNAfold with the default runtime
parameters, producing patterns where dotted positions are
unpaired, whereas base pairing is represented by complementary
parentheses; (ii) to remove the extended noise nucleotides from
the stem–loops, dots before and after parentheses were discarded;
(iii) the poly(U) tail and the uridine (U) content of a SL were
calculated by counting the number of continuous U residues and
of all the U residues, respectively, present in the 10-nt window
(downstream of the SL).

Preprocessing of the SLs
Mapping Stem–Loops to the Genome
The SLs were mapped to the genome based on the Ccel genome
annotation (RefSeq: NC_011898.1) (Figure 1). It starts with
a series of quality control steps (which removed redundancy
among sequences) that include four constraints: (i) discarding
completely overlapped sequences; (ii) removal of sequences
with identical secondary structure; (iii) in the case of partially
overlapped sequences (>75% similarity or <3 nt in mismatches),
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sequences with higher 1G (those closer to 0) were discarded; and
iv) sequences were required to have 1G less than –5 kcal/mol.
After quality check, the SLs were mapped to the genome and
categorized into five distinct categories: (i) intragenic SLs; (ii)
intergenic SLs; (iii) overlapped on 3′ SLs; (iv) overlapped on 5′
SLs; and (v) overlapped with two genes SLs.

Extraction of Stable SLs
Stem–loops with lower 1G are generally considered stable;
however, several evidence have shown that the 1G alone is
unable to accurately define stability, while studies have employed
the length and nucleotide content of SLs to calculate stability
measures (Trotta, 2014). Thus, a new stability factor (S4) was
formulated to extract stable SLs from all the predicted SLs.
A graph was plotted to compare the S4 with the three other
stability factors (Supplementary Figure 1). These stability factors
are defined as follows:

S1 = 4G

S2 =
4G
L

S3 = 4G× sl

S4 =
4G× sl

L

where 1G is the minimal free energy, L is the stem–loop length,
and sl represents the stem length (number of nucleotides in a
stem). Stable SLs were selected based on the number of intergenic
stem–loops per 100 SLs; to retrieve the higher number of stable
SLs, the threshold was set to ≥60%.

Operon Mapping of Stable SLs
The experimentally determined operon map of Ccel from a
previous cellulosome complex study was used to annotate the
stable SLs (Xu et al., 2015). The operon structures for the
other bacterial species were taken from the Genome2D web
server (Baerends et al., 2004) (for Cthe and Cace) and the
Prokaryotic Operon DataBase (Taboada et al., 2011) (for Bsub
and Ecoli). Operon mapping categorized the stem–loops into two
types: (i) intra-operonic: intergenic stem–loops located inside an
operon, and (ii) inter-operonic: intergenic stem–loops located
between two operons.

Classification of Stable SLs
Operon-mapped stem–loops were further classified into three
types based on their functions: (i) stabilizers (SSLs): truly
protecting and stabilizing the gene; (ii) stabilizers and terminators
(STSLs): stabilizing and slightly terminating the gene; and
(iii) terminators (TSLs): fully terminating the gene expression.
The classification rules were derived based on the sequence
information obtained from previous studies (Petrillo et al., 2006;
Xu et al., 2015), and these rules classify SLs into functional
categories, which are known to participate in SRPS mechanism.
The rules are as follows:

Stabilizers: (1) U content ≤ 5
(2) No poly(U) tails or poly(U) tail ≤ 3

Stabilizers and terminators: (1) Discontinuous poly(U) tail
(2) Upstream poly(U) tail
(3) U content > 5

Terminators: (1) Poly(U) tail ≥ 4
(2) U content ≥ 7
(3) Downstream poly(U) tail

Identification of SRPS Operons
In SRPS operons, stable SLs protect the degradation of
transcripts; thus, to find these operons, the intergenic yet intra-
operonic SLs were identified out of those predicted stable SLs.
These extracted SLs were then classified using the described
classification rules, and SSLs and STSLs were identified. The
operons, which are harboring these SLs, were termed as
the SRPS operons.

To globally annotate the genes encoded by SRPS operons,
Clusters of Orthologous Groups (COG) annotation was
performed using the eggNOG-mapper v1 (Huerta-Cepas
et al., 2017). The protein sequences of the genes from these
polycistronic operons were fed to the eggNOG-mapper with the
HMMER mapping mode and default parameters.

Experimental Validation of the Stable SLs
and Classification Rules
To probe the functional roles of the four different SL structures
(Figure 2A), a dual-fluorescence reporter system was constructed
using the Ccel–Ecoli shuttle vector pMTC6, which harbors two
reporter genes: (i) fbfp (encoding green fluorescence protein)
coupled with the pthl promoter (Cui et al., 2012) and (ii)
mCherry (encoding red fluorescence protein), which was inserted
using EcoRI and BamHI after the fbfp gene. The resulting
plasmid consisting of the green fluorescence-encoding fbfp and
the red fluorescence-encodingmCherry were expressed in a single
operon, with a BglII restriction site between the two genes, for the
introduction of the SLs (Figure 2C). The recombinant plasmids
were methylated in vitro with MspI methyltransferase before the
electro-transformation of Ccel (Tardif et al., 2001). The mutants
were validated by colony PCRs. Positive colonies were inoculated
into fresh medium supplemented with erythromycin.

The derived classification rules were experimentally validated
using quantitative reverse transcription PCR (qRT-PCR) analysis
of the four different kinds of SLs (with the primer sets listed in
Supplementary Data 1A). qRT-PCR was performed using SYBR
Green I on LightCycler 480 II using the FastStart Universal SYBR
Green Master. The protein expression was extracted from the
wild type of Ccel in cellobiose medium using SDS-PAGE and LC-
MS/MS.

Stoichiometry Prediction in the Form of
Ratio
Ratios were calculated in the SRPS operons using the 1G
(free energy) of the SLs present in and flanking the operon
(Figure 3A). It was hypothesized that the expression level of a
gene in the SRPS operon is controlled/represented by the 1G of
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FIGURE 1 | Genome-wide identification of the stem–loops (SLs) in Clostridium cellulolyticum. (A) Typical SL structure in the prokaryotes, which usually consists of a
GC stem of 5–10 nucleotides (nts), a loop of 4–8 nts, and a poly(U) tail of 8–10 nts. Here, we further divided the 3′ side of the GC stem into two portions: (i) upstream
stem: generally upper (near the loop) 60% of the stem region, it mostly harbors less U content; (ii) downstream stem: lower [near the poly(U) tail] 40% of the stem
region. (B) Workflow of the ratio prediction. (C) Scheme for SL mapping in genes and operons, which includes the mapping locations of the SLs around genes and
operons. SL mapping categorized the SLs into five sets: intragenic, intergenic, overlapped on 5′, overlapped on 3′, and overlapped with two genes. (D) Two kinds of
intergenic SLs in operons: first, the intergenic SLs located inside an operon are defined as intra-operonic SLs (598) and generally participate in the regulation of gene
expression in SRPS operons; second, the inter-operonic SLs (909), which are located between two operons and typically work as terminator SLs. (E) Distribution of
U content and poly(U) tails in the three categories of SLs, which suggests that inter-operonic SLs harbor higher U content and longer poly(U) tails. Bar plot: mean
values; error bars: the standard deviations. (F) Classification rules for the SLs, which are based on the U content and poly(U) tails, categorize the SLs into three
distinct functional characteristics: (i) SSLs (stabilizer SLs), (ii) STSLs (stabilizer and terminator SLs), and (iii) TSLs (terminator SLs).

the 3′-UTR-flanking SL. Moreover, if a gene does not trail a 3′-
UTR SL, its successor gene’s SL represents the expression level
of that gene; if no SLs are present after a gene until the end of
the whole operon, the expression level of the gene is predicted
to be zero. Thus, the computed ratio for a four-gene operon
(with SLs after the first two genes and at the end of the operon)
“Gene-1 (1G1):Gene-2 (G2):Gene-3:Gene-4 (1G4)” would be
“1G1:1G2:1G4:1G4.” To simplify their representation, the
ratios were further normalized via dividing the whole ratio by
the first 1G, i.e., 1G1. For example, the values for 1G1, 1G2,
and 1G4 are –22.0, –20.0, and –17.0, respectively; then, the
ratio is –22.0:-20.0:-17.0:-17.0, and the normalized ratio will
be 1.0:0.9:0.77:0.77 (where each number is divided by –22.0)
(Figure 3A). These predicted ratios were validated using the
experimentally determined transcript abundance of the genes.

Validation of SLOFE
Validation of SRPS Operon Prediction by dRNA-Seq
Data
The identified SRPS operons were validated using the differential
RNA-Seq (dRNA-Seq) data from our previous study (Gene
Expression Omnibus: GSE57652) (Xu et al., 2015). The SRPS
operons were mapped with the read depth of the transcripts in
the cellulose, cellobiose, and glucose carbon substrates, where the

total read depth was estimated for each gene. Normalized read
depth difference (NRD) was calculated at each SL location, which
is defined as follows:

NRD =
Rd5− Rd3

max(Rd5, Rd3)
(1)

where Rd5 and Rd3 represent the read depth of the 5′-end
flanking gene and the 3′-end flanking gene, respectively.

Ratio Validation Using Experimentally Measured
Abundance of Transcripts and Proteins
The predicted ratios of the SRPS operons were validated using
mRNA sequencing (mRNA-Seq) gene expression and mass
spectrometry protein expression data. The gene expression data
used from our cellulosome complex stoichiometry study (Xu
et al., 2015) and two protein expression data were used to
validate the predicted ratio: (i) the LC/MS data in this study
(Supplementary Data 1B) and (ii) the LC/MS data from the
cellulosome composition analysis of the Ccel study (Blouzard
et al., 2010). The gene expressions for the other bacteria were
downloaded from the Gene Expression Omnibus (GEO) (Edgar
et al., 2002; Clough and Barrett, 2016) using the following
dataset series: GSE22426, GSE18471, and GSE80786 (for Cthe,
Cace, and Bsub, respectively). The raw datasets were downloaded
and normalized using log(base 10). Pearson’s correlation was
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FIGURE 2 | Functional classification and experimental validation of the stem–loops (SLs) in Clostridium cellulolyticum. (A) Structures of the four in silico predicted
SLs used in the functional analysis, which were inserted into the artificial operon (in vitro). The uridines (U) are highlighted in green, showing the poly(U) tail and the U
content of the SLs. Based on the poly(U) tail/U content information, the SLs were classified into stabilizer (SSL), stabilizer and terminator (STSL), and terminator (TSL)
categories. (B) In vivo, i.e., four different operons with the location of the SLs used in functional analysis. The mountain plots represent the actual gene expression of
each gene in operons. (C) In vitro, i.e., the relative transcription level of fbfp and mCherry as measured by qPCR. The relative abundances for SL_RS07520 (SSL),
SL_RS03710 (STSL), SL_RS05015 (STSL), and SL_RS01365 (TSL) are 231.25, 42.52, 69.39, and 53.45, respectively. Error bars: standard deviations of three
replicate experiments. The inset represents the dual-fluorescent artificial operon for the functional analysis of the SL structures. (D) Correlations between the relative
transcript levels of fbfp to mCherry and the transcript abundance of the gene upstream to the SL (p = 0.08, one-tailed Student’s t-test) and between the relative
transcript levels of fbfp to mCherry and 1G of the inserted SLs in each of the four operons.

calculated between the predicted ratio and the actual operon ratio
from the log of expression data.

Performance Comparison With Five Existing
Ratio-Predicting Methods
The ratios for the SRPS operons were also calculated using the
five different sequence-based gene expression level prediction
methods: (i) codon adaptation index (CAI), (ii) relative codon
usage bias (RCBS), (iii) relative codon adaptation (RCA),
(iv) measure independent of length and composition (MILC)-
based expression level predictor (MELP), and (v) gene order—
the preceding genes exhibit higher expression levels than the
downstream genes, i.e., successive decrease in gene expression
from 5′ to 3′ in the operon (Wells et al., 2016). The ratios
for SRPS operons were calculated using these five methods

with their default parameters. A correlation matrix was formed
by calculating the Pearson’s correlation coefficient for the
ratio predicted by the different methods and the actual
gene expression.

RESULTS

Predicting Stable SLs in Intergenic
Regions of the Ccel Genome
We started by identifying SRPS operons in silico. In SRPS
operons, after RNA processing cleaves the primary transcript,
specific cis-elements such as SLs protect the individual post-
cleavage transcripts from degradation (Rochat et al., 2013). We
first located such SLs genome-wide in Ccel (Figures 1A,B; see
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FIGURE 3 | Identifying selective RNA processing and stabilization (SRPS) operons and predicting their ratios based on the predicted stem–loops (SLs) in Clostridium
cellulolyticum. (A) Illustration of the ratio prediction mechanism in a single SRPS operon. The shown SRPS operon here harbors three types of control SLs, which
were classified using the derived classification rules, i.e., stabilizer SLs (SSL), stabilizer and terminator SLs (STSL), and terminator SLs (TSL). The upstream control
unit (UCU) represents the genes upstream to the control SL. (B) Depiction of the normalized read depth difference (NRD) [based on the differential RNA sequencing
(dRNA-Seq) data of Ccel grown under cellulose, cellobiose, or glucose] of the flanking genes for each of the predicted SRPS-related SLs. NRD is calculated as the
difference in read depth between the 5′-end and 3′-end flanking genes divided by the read depth of the 5′-end flanking gene. The threshold of NRD was set at >0.5.
(C) Stem–loop free energy (SLOFE) offers much higher sensitivity and equivalent accuracy as compared to the dRNA-Seq-based experimental approach. The
number of SRPS-related SLs revealed (bar plot) and the accuracy of prediction (points) are shown. (D) The number of predicted SRPS operons with two, three, and
four or more genes. (E) Genome-wide landscape of the predicted SRPS operons. Tracks from outside to inside are: (i) 53 predicted SRPS operons, (ii)
forward-strand genes, (iii) reverse-strand genes, and (iv) rRNAs and tRNAs. Selected SRPS operons were highlighted on the circular map, together with their
functional role. (F) Regulation of the 12-gene cip-cel operon by SRPS. All the SLs were successfully predicted by our method (with a newly predicted SL) and shown
here with their respective function (red: SSL; orange: STSL; black: TSL). The minimal free energy (1G) is shown under the SLs and the 1G-based ratio of the operon
is represented above the genes (UCU) using rectangles of varying sizes that carry the color of their respective control SL. (G) Comparison between the predicted
ratio and the experimentally determined (normalized) transcript- and protein-level stoichiometry for the cip-cel operon. The expression level was the log(base 10) of
the actual gene expression. Inset shows the Pearson’s correlation coefficients between the predicted ratio and transcript level (0.75) and protein level (0.78) for the
cip-cel operon.
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section “Materials and Methods”). SLs were predicted across the
Ccel genome using RNAMotif (Macke et al., 2001), which resulted
in 432,564 unique SL sequences. The secondary structure and
the corresponding minimal folding 1G (i.e., representing the
stability of SLs) were determined by RNAfold (Hofacker, 2003).
The 1G ranged from –49.00 to –0.10 kcal/mol. Since stable
SLs have low 1G, –5.00 kcal/mol was used as a threshold to
remove the least stable SLs, which resulted in 124,077 SLs. To
eliminate redundant SLs, overlapping sequences were discarded
(see section “Materials and Methods”). After these pre-processing
steps, 87,285 non-overlapping SLs remained.

The 87,285 predicted SLs in the Ccel genome were grouped
into five categories based on the relative position to the
corresponding gene (Figure 1C): (i) 77,551 intragenic SLs, i.e.,
located interior to a gene; (ii) 7,163 intergenic SLs, i.e., flanked
by two genes; (iii) 676 “overlapped_on_3′_end” SLs, i.e., located
on the 3′ terminal of a gene; (iv) 1,905 “overlapped_on_5′_end”
SLs, i.e., located on the 5′ terminal of a gene; and (v) 270
“overlapped_with_two_genes” SLs, i.e., either trailing one gene
at the 3′-end and leading another gene at the 5′-end (when the
two flanking genes are on the same strand) or trailing both
flanking genes at the 3′-end (when the two genes are on the
opposite strands).

To extract as many stable SLs as possible from these
predicted SLs, a new SL stability factor (termed “S4”) was
formulated based on the observation that the stability of a
SL is also affected by the sequence and length of the stem
(Supplementary Figure 1; details in section “Materials and
Methods”). S4, which considers not just the 1G but also the
length and sequence of the stem, deduced a higher number of
intergenic SLs per 100 SLs (with the 60% threshold; details in
section “Materials and Methods”) than those of the previously
reported stability factors (Supplementary Figure 1; Trotta,
2014). Using S4, 1,441 stable SLs genome-wide were now derived
(Figure 1C; see section “Materials and Methods”), including: (i)
610 intragenic, (ii) 726 intergenic, (iii) 87 overlapped_on_3′, (iv)
seven overlapped_on_5′, and (v) 11 overlapped_with_two_genes.
These 1,441 predicted stable SLs were further annotated based
on the experimentally determined operon map of Ccel (Xu et al.,
2015), which consists of 1,780 operons that harbor 3,507 genes
(1,051 or 59.04% of these operons were monocistronic and 729
or 40.96% were polycistronic). Using this operon map, 1,441
stable SLs were mapped to 944 operons, where 716 and 725 SLs
are intra-operonic and inter-operonic, respectively (Figure 1D).
Interestingly, the number of stable SLs is greater in the intergenic
regions (57.68%) than that in the intragenic regions (42.32%;
Figure 1C).

Defining Functional Roles of the SLs via
Experimentally Validated Classification
Rules
To probe their functional roles [i.e., to stabilize (Emory et al.,
1992) or to terminate (Cheng et al., 1991)], the 1,441 stable SLs
were scrutinized for poly(U) tails and U content (see section
“Materials and Methods”), which indicate the potential role to
either stabilize or terminate transcription (Petrillo et al., 2006;

Otaka et al., 2011). Three categories of stable SLs thus
emerged (Figure 1E; see section “Materials and Methods”): (i)
stabilizer SLs (SSLs), i.e., highly stable SLs that likely protect
transcripts from exonuclease degradation and stabilize transcript
level; (ii) stabilizer and terminator SLs (STSLs), which may
protect transcripts from exonucleases but also terminate the
transcription of the gene; and (iii) terminator SLs (TSLs), which
likely intrinsically terminate transcription. We hypothesize that
these classification rules can be used to predict whether a stable
SL is involved in the SRPS mechanism (Figure 1F).

To validate this hypothesis, four of these stable SLs, each
29–38 bp long and located in one of the four genomic regions
below, were selected based on the classification scheme above
(Figure 2A): (i) SL_RS03710 (1G = –13.5 kcal/mol), from the
intergenic region between Ccel_RS03710 and Ccel_RS03715 in
operon 376; (ii) SL_RS07520 (1G = –24.0 kcal/mol), from the
intergenic region between Ccel_RS07520 and Ccel_RS07525 in
operon 746; (iii) SL_RS05015 (1G = –20.0 kcal/mol), from the
intergenic region between Ccel_RS05015 and Ccel_RS05020 in
operon 495; and (iv) SL_RS01365 (1G = –14.6 kcal/mol), from
the 3′-UTR region of Ccel_RS01365 at operon 142 (Figure 2B).
Based on the classification rules, these four SLs are from three
distinct categories: SL_RS07520 is a SSL due to the lack of a
poly(U) tail and the lower U content (≤4); SL_RS03710 and
SL_RS05015 are STSLs, which harbor a poly(U) tail of 3 nt
(U content = 5) and a discontinuous poly(U) tail of 4 nt (U
content = 4), respectively; and SL_RS01365 is a TSL due to a
poly(U) tail of 6 nt (U content = 7).

To probe their in vivo role, each of these four SLs was
inserted between the reporter genes of fbfp (encoding a green
fluorescence protein) and mCherry (encoding a red fluorescence
protein) (Figure 2C). The resulting four artificial operons, plus
an operon where no SLs were inserted as the control, were
then transformed into Ccel. Inside the bacterium, the relative
transcript abundance (TA) of SL_RS07520 is over 200% higher
than those of SL_RS03710 and SL_RS05015 (i.e., the qPCR-
determined transcript ratio of fbfp to mCherry) (Figure 2C; see
Supplementary Data 1C). Moreover, the qPCR-based TA of the
fbfp genes is strongly correlated (r = 0.88) with the 1G of their
corresponding 3′-end inserted SLs (and with the mRNA-Seq-
based TA of the genes upstream of the SLs in the Ccel genome;
r = 0.97, p = 0.08, one-tailed Student’s t-test) (Figure 2D),
suggesting that these SLs can proportionally model the TA of
their associated genes.

Interestingly, the TA of SL_RS07520 (as indicated by the
transcript ratio between its upstream fbfp and its downstream
mCherry), located at the 3′-UTR region of the Ccel_RS07520 gene
in operon 746, is remarkably higher than those of the other three
SLs (200% higher; Figure 2C) and consistent with the mRNA-
Seq-determined TA of Ccel_RS07520 (Figure 2B), which suggests
the stabilizing effect of SL_RS07520. SL_RS03710 (operon 376)
and SL_RS05015 (operon 495) exhibit a similar TA as measured
by qPCR, consistent with the experimentally determined TA in
their respective operons (Figure 2B). In contrast, SL_RS01365,
which is located at the 3′-UTR of operon 142, exhibits lower
TA than SL_RS05015 and terminates the expression of the
whole operon (Figure 2B). This is consistent with the in silico
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classification of SL_RS01365 as a TSL. Together, these results
verified our proposed rules for predicting the functional roles of
SLs in SRPS operons.

Identifying SRPS Operons Genome-Wide
Based on SSLs and STSLs
To test the hypothesis that the stable SLs predicted and
validated above can be exploited to identify the SRPS operons
(Figure 3A), the 108 intergenic yet intra-operonic stable SLs
(harbored in 87 operons) among the 1,441 stable SLs (harbored
in 944 operons) genome-wide were categorized using the
aforementioned classification rules into 31 SSLs (in 27 operons),
35 STSLs (in 32 operons), and 42 TSLs (in 28 operons). These
31 SSLs and 35 STSLs (total of 66 SLs), which are found in 53
operons, should stabilize transcripts in SRPS operons.

To probe whether these 66 SSLs and STSLs are indeed
SRPS-related, each of these candidates was compared to our
experimental data of dRNA-Seq (Xu et al., 2015), which
discriminates between primary and processed transcripts
(Sharma et al., 2010). The read depth (number of reads associated
with the gene) of the genes flanking the SLs was compared, and a
strong stabilization effect of the SL would be indicated by a high
normalized read depth difference (NRD: the difference in read
depth between the 5′-end and the 3′-end flanking genes divided
by the read depth of the 5′-end flanking gene). The NRD ranged
from –1 to 1, where a positive value indicates the SRPS-related
SL; thus, NRD > 0.5 was set as the threshold to minimize the
risk of over-identification of SRPS SLs (Figure 3B; see section
“Materials and Methods”). Notably, only the stabilizer types of
SLs were considered so as to exclude the effect of terminators
(Figure 2A; see section “Materials and Methods”).

In total, 44 out of the 59 active candidates (out of 66 SLs;
for the other seven, the read depth of the flanking genes is
unavailable) showed NRD over 50%. For example, in operon
42, SL_RS00440 (1G = –18.4) shows 97% NRD between its
two flanking genes of Ccel_RS00440 (at the 5′ region; read
depth = 3,094) and Ccel_RS00445 (at the 3′ region; read
depth = 74). In operon 1000, SL_RS10060 (1G = –16.7)
shows 87% NRD between Ccel_RS10060 (at the 5′ region; read
depth = 18,300) and Ccel_RS10055 (at the 3′ region; read
depth = 2,367) (Supplementary Table 2).

In addition, three of these 59 SLs (SL_RS03710, SL_RS10675,
and SL_RS17245) showed NRD <50% (as they are flanked at
3′ region by a highly stable gene that is associated with a low-
1G SL), yet the read depth of the genes is correlated with the
1G of the associated SLs. For example (operon 376, i.e., cip-
cel), SL_RS03710 (1G = –14.5) and SL_RS03715 (1G = –26.2)
protect Ccel_RS03710 (read depth = 550) and Ccel_RS03715
(read depth = 4,232), respectively, where the read depth is in
correspondence with the 1G of the associated SLs, i.e., a higher
read depth of a gene is linked to the lower 1G of an SL. Similarly,
in operon 1052, for SL_RS10675 (1G = –16.8) and SL_RS10670
(1G = –28.30), which protect Ccel_RS10675 (read depth = 8,982)
and Ccel_RS10670 (read depth = 17,873), respectively, the read
depth of the genes and the 1G of the SLs are also correlated
(Supplementary Table 2). Collectively, 80% (i.e., 47) of the 59

candidates carry the features of SRPS SLs by stabilizing their
associated genes.

Moreover, of those remaining 20% (i.e., 12) candidate SRPS
SLs, six (SL_RS00075, SL_RS05655, SL_RS00005, SL_RS13485,
SL_RS12610, and SL_RS02395) actually feature NRD >30%,
which is also consistent with a SRPS mechanism. In addition,
for SL_RS13720 (in operon 1382), except for its immediate 5′-
end flanking gene, all its upstream genes have much higher read
depths than its downstream genes, indicative of a protective effect
of the SL (Supplementary Table 2). Hence, in the end, all except
only five of the 59 candidate SRPS SLs show the characteristic
pattern of SRPS, suggesting that our method is of high accuracy
in identifying SRPS operons.

These 54 validated SRPS-related SLs are harbored in 43 SRPS
operons, i.e., 81% accuracy (out of the 53 in silico predicted
operons) in SRPS operon identification. This performance is
equivalent to our past report of 33 SLs in 26 SRPS operons, which,
however, was based on experimentally identified transcriptional
start sites and posttranscriptional processed sites (Xu et al., 2015)
and represents 80% accuracy when compared to the dRNA-
Seq data (21 SRPS operons validated; Figure 3C). Therefore,
our in silico approach provides an extended list of SRPS
operons genome-wide with similar accuracy in prediction as the
experimental approach.

Altogether, the 53 in silico predicted SRPS operons (out of 729
polycistronic ones) in Ccel carry these features (Figures 3D,E).
(i) They spread widely across the genome, with ∼60 and ∼40%
on sense (5′–3′) and antisense (3′–5′) strands, respectively; (ii)
they tend to harbor more genes, i.e., 73 and 50% operons with
three or more and with four or more genes, respectively, and
(iii) 14 out of the 53 predicted SRPS operons (27%) harbor two
genes, i.e., bicistronic operons. These SRPS operons are involved
in various functions such as cellulose degradation, membrane
transport, energy production, and flagellar biosynthesis. For
example, operons 80, 495, 511, 569, 617, 622, and 693 encode
ABC transporters and sugar-binding families; operons 42,
142 (ATPase), and 716 represent phosphotransferase families;
operons 376 (cip-cel) and 746 are involved in cellulose
degradation and binding function; and operons 391 and 1018
are related to ribosomal protein and flagellar biosynthesis,
respectively. Thus, SRPS operons contribute to diverse functions
in Ccel.

In SRPS Operons, the 1G of the
Harbored SLs Are Correlated With
Protein Stoichiometry
For these 53 identified SRPS operons, to estimate each of the
stoichiometric ratios, all the SRPS SLs were used, including the
stable SLs that are located inter-operonically and positioned as
terminators for the SRPS operons. The ratio of an SRPS operon,
i.e., relative abundance of the genes in the operon at the transcript
or the protein level, was thus calculated via the ratio of the 1G of
all the harbored stable SLs (including the 3′ flanking terminator
SL of the operon) in the SRPS operon.

Firstly, the cip-cel cluster (operon 376) ratio was calculated
via the 1G of the six predicted SLs (five of which were reported
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previously, with the sixth at Ccel_RS03740 newly predicted
here) (Figure 3F; see section “Materials and Methods”) as
“1.00:1.14:0.62:0.62:1.11:0.69:0.69:0.69:0.69:0.69:0.88:0.88”
(operon 376; Supplementary Table 3). This highly skewed
ratio showed a strong correlation with the mRNA-Seq-based
transcriptome (r = 0.75) (Xu et al., 2015) and the LC-MS-based
proteome (r = 0.78) from Ccel (Blouzard et al., 2010; Figure 3G).
Similarly, such ratios were calculated for the remaining 52
SRPS operons identified in Ccel (Figure 4 and Supplementary
Tables 4, 5A), and the calculated ratios were compared to the
transcriptomic (Supplementary Table 6A) and proteomic data
in this model cellulolytic bacterium (Supplementary Table 6B).
Operon 391 harbors the highest number of genes (24), which
exhibited correlation (r = 0.57) between the predicted ratio and
the actual transcript abundance (Figure 4), and the smallest
operons are two-gene clusters (correlation not calculated;
Supplementary Table 5A).

Collectively, for 11 of the 31 SRPS operons (that consist of at
least three genes), the predicted ratio showed strong correlation
with the actual ratio of transcript abundance (r > 0.80; Figure 4
and Supplementary Table 6A). At the protein level, for 10 of the
23 operons (for which protein data are available), the predicted
ratio also showed such a high degree of correlation with the
actual ratio of protein abundance (r > 0.80; Supplementary
Table 6B). Among the 42 SRPS operons that are transcriptionally
active (see section “Materials and Methods”), 11 are regulated
bicistronically, i.e., the two-gene operons (correlation not
calculated). Therefore, the transcript and protein levels can be
predicted using the 1G-based ratio of the SRPS operons in Ccel.
This method, which locates stable SLs genome-wide via the 1G
of SLs to identify SRPS operons and predict their transcript-
and protein-level stoichiometry, is thus termed “stem–loop free
energy,” or “SLOFE.”

SLOFE Is Applicable in a Wider Range of
Gram-Positive Bacteria
To test its general applicability, SLOFE was expanded to
a phylogenetically broader range of bacterial genomes
(Supplementary Table 1). In total, 1,065, 2,217, 1,883, and
177 stable SLs were predicted in the Gram-positive Cthe, Cace,
and Bsub, plus the Gram-negative Ecoli, respectively. The
number of stable SLs found appears linked to the phylogenetic
distance, as closely related species have a similar number of
stable SLs, e.g., Cthe (1,065 SLs) and Ccel (1,441 SLs), or in the
case of Cace (2,217 SLs) and Bsub (1,883 SLs). In contrast, for
Ecoli, only 177 stable SLs were predicted (including merely three
inter-operonic stable SLs and six SRPS SLs) despite its relatively
large genome size (Supplementary Table 1). Thus, at present,
SLOFE appears not applicable to Ecoli.

To identify the SRPS operons in Cthe, Cace, and Bsub, 74 (69
operons), 166 (133 operons), and 108 (95 operons) intergenic
yet intra-operonic stable SLs, respectively, were extracted from
the predicted stable SLs and categorized in a similar manner
to Ccel. SLOFE revealed in Cthe, Cace, and Bsub 35 (24 SSLs
and 11 STSLs, 34 operons), 52 (22 SSLs and 30 STSLs, 48
operons), and 47 (28 SSLs and 19 STSLs, 45 operons) SRPS SLs,

respectively, which correspond to 34, 48, and 45 SRPS operons
(Supplementary Tables 5B–D).

For SRPS Operons, SLOFE Outperforms
Five Existing Methods That Model
Stoichiometry
Since the concept of SRPS mechanism is relatively new, no
specific methods are available yet for predicting the relative
abundance of genes for SRPS operons, either at the transcript
or the protein level. Thus, the performance of SLOFE was
compared with five specifically genome sequence-based methods
for gene expression level prediction (Figure 5), i.e., CAI, RCBS,
RCA, MELP, and gene order. In addition to SLOFE, each of
these five existing programs was then applied on the SRPS
operons of the Ccel, Cthe, Cace, and Bsub to derive the in silico
predicted ratios of these SRPS operons (see section “Materials and
Methods”). Then, the predicted ratios were validated by assessing
the degree of correlation with the experimentally determined
transcriptomes (Table 1 and Supplementary Tables 6A, 7, 8, 9A)
and proteomes1 (Table 1 and Supplementary Tables 6B, 9B).
These experimentally determined values were normalized via
log(base 10) before calculating the correlation.

In Ccel, the Pearson’s correlation coefficients between the
in silico predicted ratios and the experimental data (normalized)
for CAI, RCBS, RCA, MELP, and gene order fluctuate from –
0.90 to 0.90, and the average correlations are all rather low
(r < 0.40; Figures 5A,B and Supplementary Tables 6A,B). In
contrast, SLOFE consistently shows positive correlations with
both gene (Supplementary Table 6A) and protein abundance
(Supplementary Table 6B) in all the SRPS operons. Moreover,
the average correlation of the SLOFE method with the normalized
experimental measurements is 40% higher than those of the other
methods (Table 1). For example, for the cip-cel cluster (operon
376), the correlation coefficients between the predicted ratios
and protein level are 0.49, 0.48, 0.64, 0.25, 0.50, and 0.78 for
CAI, RCBS, RCA, MELP, gene order, and SLOFE, respectively,
with SLOFE outperforming all others (Supplementary Table 6B).
Thus, the predicted 1G ratios of the SLs are strongly correlated
with the transcript and protein abundance of the SRPS operons
of Ccel, i.e., representing the stoichiometry of the encoded
protein complex.

In Cthe, for the 20 transcriptionally active polycistronic
operons (out of 34 predicted SRPS operons), SLOFE offers
superior performance. Among the programs, SLOFE produces
an in silico predicted ratio that is positively correlated with the
actual transcript-level ratio (normalized) for the highest number
of such operons (14; Supplementary Table 7). On the other hand,
for 11, 9, 8, 11, 7, and 6 of these operons, CAI, RCBS, RCA, MELP,
gene order, and SLOFE actually produce predicted ratios that
are negatively correlated with the actual transcript-level ratios,
respectively, suggesting that SLOFE makes the fewest errors
(Figure 5B). Remarkably, the average correlation between SLOFE
and transcript level is ∼70% higher than the top performer
method (i.e., RCA; Table 1).

1http://pax-db.org
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FIGURE 4 | Genome-wide maps of selective RNA processing and stabilization (SRPS) operons and their predicted stoichiometry for Clostridium cellulolyticum. For
each predicted polycistronic SRPS operons, the number of genes, the harbored stem–loops (SLs), mRNA-Seq-based transcript ratio (inside the genes), and the
predicted ratio (above the operons) were shown. The single-line arrow above the genes shows the upstream control unit (UCU) of the SL; the 1G is represented
under the SLs. Ratios are calculated using the 1G of SLs, such that in an operon, the 1G of all the harbored SLs were divided by the 1G of the first SL from the
5′-UTR of the operon. Genes in the operons are colored based on COGs (mapped using the eggNOG database) (Huerta-Cepas et al., 2017). Pearson’s correlation
coefficients between the predicted ratio and the experimentally determined transcript abundance (TA) and protein abundance (PA) are represented as (TA/PA) beside
the operon number; a dash indicates that the data is not available.

In Cace, for the 30 transcriptionally active polycistronic
operons (out of 48 predicted SRPS operons), CAI, RCBS, RCA,
MELP, gene order, and SLOFE produce predicted ratios that are
positively correlated with the actual ratios for 21, 15, 15, 12, 12,

and 23 operons and generate one that is negatively correlated
for 9, 15, 15, 18, 18, and 7 operons, respectively (Figure 5C). In
particular, SLOFE generates at least ∼40% fewer errors than the
other methods (Supplementary Table 8). Notably, the average
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FIGURE 5 | Performance of stem–loop free energy (SLOFE) as compared with the five existing programs that predict transcript- and protein-level stoichiometry in
selective RNA processing and stabilization (SRPS) operons in four genomes. Codon adaptation index (CAI), relative codon usage bias (RCBS), relative codon
adaptation (RCA), measure independent of length and composition (MILC)-based expression level predictor (MELP), and gene order predict the ratio based on the
codon usage bias of the gene sequences. Comparison of the methods, for the transcript and protein abundance prediction in Ccel (A,B), Cthe (C), Cace (D), and
Bsub (E,F), is shown using the bean plot, where the small dashes are the correlation coefficient values and the bold bar represents the median of the values. The
dashed line across the bean plot represents the average of all the values. For each method, a bar plot shows the number of SRPS operons carrying ratios that are
positively (blue) or negatively (green) correlated with the experimentally determined ratios (normalized).

correlation between SLOFE and the transcript level of Cace is
∼25% higher (Table 1 and Supplementary Table 8).

In Bsub, the advantage of SLOFE is even more prominent
(Supplementary Table 9) as operons with their ratios positively

correlated with the transcript levels numbered 15, 12, 18, 9, 15,
and 21 for CAI, RCBS, RCA, MELP, gene order, and SLOFE,
respectively (Figure 5E and Supplementary Table 9A). At the
protein level, for 17, 18, 7, 14, 13, and 23 of the operons, the
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TABLE 1 | Average Pearson’s correlation coefficients of the six methods for transcript- and protein-level prediction among the SRPS operons of Clostridium
cellulolyticum, Clostridium thermocellum, Clostridium acetobutylicum, and Bacillus subtilis.

Bacterial species CAI MELP RCBS RCA Gene order SLOFE

C. cellulolyticum Transcript level 0.364 −0.074 −0.004 0.333 0.414 0.587

Protein level 0.383 −0.029 −0.075 0.324 0.408 0.621

C. thermocellum Transcript level −0.034 −0.148 0.032 0.106 0.044 0.342

C. acetobutylicum Transcript level 0.230 −0.136 −0.062 0.016 −0.125 0.293

B. subtilis Transcript level 0.082 −0.284 −0.084 0.095 0.147 0.464

Protein level 0.298 0.055 0.301 −0.214 0.194 0.435

CAI, codon adaptation index; MELP, measure independent of length and composition (MILC)-based expression level predictor; RCBS, relative codon usage bias; RCA,
relative codon adaptation; SLOFE, stem–loop free energy.

predicted ratios are positively correlated in CAI, RCBS, RCA,
MELP, gene order, and SLOFE, respectively (Figure 5F and
Supplementary Table 9B). Moreover, the average correlation for
SLOFE is at least 30% higher than those of the other methods
(Table 1 and Supplementary Tables 6–9). Therefore, in each of
the four Gram-positive bacteria tested here, SLOFE outperforms
the five existing methods in predicting the stoichiometry
for SRPS operons.

Furthermore, interestingly, in Ccel and Bsub, for genes in
SRPS operons, transcript abundance moderately corresponds
with protein abundance. In Ccel (and also Bsub), Pearson’s
correlation coefficients between the transcript and protein levels
are higher for the SRPS operons than for the non-SRPS ones: the
average correlations (r) are 0.42 in Ccel (30% higher than non-
SRPS operons; Figure 6A) and 0.44 in Bsub (45% higher than
non-SRPS operons; Figure 6B). These results indicate that, in the
SRPS mechanism, the synergy between transcript abundance and
protein abundance is high.

However, for the genes encoded in these SRPS operons, the
correlation between 1G to protein abundance is at least as
good as or even higher than those between the transcript and
protein abundance in Ccel (r = 0.62 vs. 0.42; Figure 6C) and
Bsub (r = 0.435 vs. 0.44; Figure 6D). Moreover, the correlation
coefficients between 1G and protein abundance are generally
higher than those between the transcript and protein abundance
for both Ccel (Figure 6C) and Bsub (Figure 6D). Therefore,
SLOFE can model protein abundance at least as accurately as the
transcript abundance for the SRPS operons.

DISCUSSION

The SRPS mechanism controls key protein complexes and
metabolic pathways such as the glycolysis pathway (gapA)
(Ludwig et al., 2001) in Bsub, the cellulosome complex (cip-
cel) (Xu et al., 2015) in Ccel, photosynthetic apparatus (puf)
(Klug, 1993) in Rhodobacter capsulata, and the maltose transport
system (malEFG) (Newbury et al., 1987) in E. coli. Identification
of the SRPS events, which are present in both Gram-positive
and Gram-negative bacteria (Ludwig et al., 2001; Arraiano et al.,
2010; Luciano et al., 2012), has been generally based on such
experimental techniques. Here, we showed that, in fact, the
global landscape of SRPS operons genome-wide can be in silico
predicted, via the sequence-based properties of specific SLs

encoded on the genome alone, in a sensitive manner yet without
sacrificing accuracy of identification. The landscape revealed
by SLOFE suggests that SRPS operons are involved in vital
pathways in Ccel such as cellulose degradation, ATP synthesis,
and ribosomal protein formation, implying that the cell in
bacteria tends to use an efficient and direct mechanism to mediate
such biological functions. Moreover, our results indicate that
many smaller operons including those two-gene ones are also
under influence of SRPS regulation, although previous notions
suggest that the SRPS operons are longer in length and encode
multigene complexes or pathways.

Moreover, our results reveal that the degree of protection
by 3′-UTR SLs, i.e., 1G, can together determine the protein
stoichiometry of SRPS operons. This underscores the important
functional roles for SLs in the posttranscriptional regulation of
a primary transcript, similar to exoribonucleases. At the operon
resolution, transcript ratios are moderately correlated with
protein abundance, whereas SLOFE-based ratios outperformed
the transcript abundance. This suggests that there is indeed a
distinct streamline regulation of operons in the SRPS mechanism,
where the transcript abundance ratio or the 1G-based ratios
directly correspond to the protein stoichiometry ratio. Typically,
some trans factors are necessary. For example, in E. coli, Hfq (an
RNA-binding protein) (Vogel and Luisi, 2011) has been reported
to mediate both the activation and silencing of expression at
the posttranscriptional level (Wagner, 2009), and it suppresses
protein synthesis by assisting an sRNA to bind to the 5′ region of
the target mRNA. Moreover, some ligands and metabolites bind
to riboswitch to inhibit or induce RNA processing in bacterial
operons, such as the inhibition of threonyl-tRNA synthetase
(thrS) by threonine (Condon et al., 1996) and the induction
of trp operon by tryptophan (Winkler et al., 2004) in Bsub.
However, in the case of the SRPS-regulated cellulosome operon
(cip-cel) in Ccel, the ratio is directed by the harbored intergenic
SLs (genome-encoded), and it is not affected by the change of
carbon sources (Xu et al., 2015). This thus suggests a very efficient
approach to tune the relative transcription levels of genes in an
operon, which is potentially applicable to the rational de novo
design of operons.

Notably, not all predicted SRPS operons based on stable
SLs exhibit a ratio characteristic of SRPS. For example, (i) for
operon 617 (xyl-doc cluster, 14 genes) in Ccel, our approach
identified all the previously reported SLs (Xu et al., 2015);
however, this operon shows no correlation (r = 0.03) between
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FIGURE 6 | Distribution of the correlation coefficients of the 1G-based ratios and the experimentally measured protein correlations for the selective RNA processing
and stabilization (SRPS) and non-SRPS operons. Cumulative distribution of the correlation coefficients between the 1G-based ratio and the protein abundance ratio
for the SRPS and non-SRPS operons. Correlation coefficients plotted over the cumulative distribution function (CDF) for the SRPS and non-SRPS operons in Ccel
(A) and Bsub (B). Inset shows the average correlation values for the two categories of the operon. Correlation coefficients of the 1G-based ratio to protein and of
the transcript to protein were compared in the Ccel (C) and Bsub (D) genomes for SRPS operons (via cumulative distribution function, CDF). Inset: average
correlation values for the two categories of operons.

the SLOFE-predicted ratio and the transcript level. (ii) A few
of the predicted SRPS operons in Ccel, including operons 1
(ratio = 1:0:0, r = 0.48), 42 (ratio = 1:1:1:1:1:1:1:0, r = 0.67),
511 (ratio = 1:0:0:0:0:0:0:0:0, r = 0.90), 1,247 (ratio = 1:0:0,
r = 0.19), and 1,382 (ratio = 1:1:1:1:1:0:0, r = 0.88), do not
carry ratios that are skewed. One possibility is that there
are additional factors regulating these operons. On the other
hand, whether and to what degree SLOFE can be adopted
or adapted for a wider range of bacterial genomes remain to
be tested. Nevertheless, the ability to computationally identify
genome-wide SRPS operons and predict their stoichiometry via

DNA sequence alone underscores the prevalence, as well as
the functional importance, of deterministic, genome-dictated
regulation of gene expression in bacteria and should facilitate
high-throughput investigation of these mechanisms.

In summary, SLOFE can support a wide range of
potential applications, such as: (i) the prediction of stable
stem–loops genome-wide, which can indicate the potential
posttranscriptional sites; (ii) ratios predicted via SLOFE can
provide new insights into the transcript/protein expression
behavior of operons; (iii) the identified posttranscriptional sites
can probably be used by synthetic biologists to develop designer
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operons with a designated ratio of relative abundance among the
encoded transcripts; and (iv) the predicted ratios can likely serve
as a characteristic feature to define or compare the evolution
of operons. Therefore, tests of SLOFE on additional genomes
should facilitate studying the function and evolution of SRPS
operons in bacteria.
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