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This work is an initial response to the demand for miniaturisation of
electronic circuits and the shift to higher operating frequencies which has led to the
development of high-density low-loss ferrites. In order to meet this demand, a
number of necessities, such as fine-grained and homogeneous microstructure, low
power loss, weak temperature dependencies of losses and of course reasonable cost
of production are required. The first part of the work was to develop the required
material by manipulation of composition. NiZn-based ferrites with various additives
such as MgO, CuO, TiO,, CoO and CaO were chosen and the low loss property
was attained. Subsequently, a systematic crucial approach was started to further
minimise the losses and to extend the operating frequency range. Green compacts

with a particle size average (PSA) of ~ 1.2um, a sintering temperature of about

Xiv



1140°C and only air atmosphere were needed to reach the research targets. In
conclusion, a composition-microstructure design technique has been successfully

developed, which is capable of producing ferrite materials with the desired

magnetic properties.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi
memenuhi keperluan Ijazah Master Sains.

PENGHASILAN BAHAN-BAHAN FERIT NiZn DENGAN KEHILANGAN
TENAGA RENDAH UNTUK KEGUNAAN FREKUENSI TINGGI
Oleh
NOORHANA YAHYA
Disember, 1997
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Penyelidikan ini adalah suatu respons awal terhadap desakan ke arah
pengecilan litar elektronik dan anjakan ke frekuensi operasi yang lebih tinggi yang
telah menghalatujukan penghasilan ferit dengan ketumpatan tinggi dan kehilangan
tenaga rendah Untuk memenuhi desakan ini, beberapa keperluan seperti
mikrostruktur butir-seni dan homogen , kehilangan tenaga yang rendah,
pergantungan lemah kehilangan tenaga terhadap suhu dan semestinya kos
pengeluaran yang berpatutan, harus dipenuhi. Penyelidikan untuk menghasilkan
bahan sedemikian dimulakan dengan melakukan manipulasi terhadap komposisi
Ferit berasaskan NiZn dengan pelbagai bahan tambah seperti MgO, CuO, TiO, ,

Co0, dan CaO telah dipilih dan ciri-ciri kehilangan tenaga rendah telah dicapai.
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Seterusnya, suatu pendekatan yang lebih sistematik telah dijalankan untuk
mengurangkan lagi kehilangan tenaga dan menambahkan lagi julat frekuensi operasi.
Penyelidikan ini telah mencapai matlamatnya melalui “kompak hijau” yang purata
saiz zarahnya (PSZ) ~ 1.2 pum, suhu pensinteran sekitar 1140°C dan dengan hanya
atmosfera udara. Kesimpulannya, suatu teknik rekabentuk “komposisi-
mikrostruktur” yang berupaya menelurkan bahan ferit dengan ciri-ciri magnet yang

diperlukan telah berjaya dihasilkan.
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CHAPTERI

GENERAL INTRODUCTION

Soft Magnetic Ferrites

A ferrite is a metal oxide which contains magnetic ions arranged in a
manner which produces spontaneous magnetisation (Gerald,1975;
Standley,1972; Crangle,1991). Soft magnetic materials become magnetised by
relatively low-strength magnetic field. When the applied field is removed, they
return to a state of relatively low residual magnetism. The converse, the need
for high magnetising field and high remnant magnetism, is true for hard magnetic
materials . Ferrites have three distinct crystal structures: The hexagonal
magnetoplumbite, dodecahedral garnet and the spinel structure (Crangle, 1991;
Standley,1972). The first structure is that of hard ferrites, the later two being

those of soft ferrites.



The remarkable capacity of these materials to survive in the intense competition
from the growing technologies and their ability to enter into newer areas of
applications have promoted them to many disciplines. Consequently, the
growing information-oriented society and the expanding roles of ferrites in
electronic gadgets and other industrial pursuits have, in return, motivated this

study.

The general concern and direction of this study is guided by the push
for miniaturisation and the fact that many electronic devices are moving towards
higher operating frequencies . In order to comply with these demands , ferrite
materials with homogeneous and fine-grained microstructure , high density,
narrow property tolerances, weak temperature dependencies of losses, high
saturation induction and reasonable cost of production are essentially required

(Suresh et al., 1989).

Magnetic Parameters

It is recognised that the response of magnetic moments to oscillating
magnetic field excitations is the dominant phenomenological basis on which
most science-driven and application-driven soft ferrite research rests. Hence, the
following very early ,though brief, introduction to the main response parameters

is thought to be helpful and appropriate. The centrally important properties in



non-microwave non-rectangular ferrite applications are the permeability and it’s
frequency spectrum (Wolfarth, 1980). The initial permeability, L, simply called
the permeability of a material is defined as the limit of change of the induction B
with respect to the applied field H in the demagnetised state as H approaches

zero and is represented as

Wi = (1/uo) lim (B/H) (1]
H—-> 0
where L, = magnetic constant = permeability of free space

= 41 X 10 7 Henries/meter

B and H are in Weber/m? [10°G] and A/m [0.0126 Oe] respectively.

Strictly speaking, if part of the energy carried by H is lost in producing B, the ;
in equation [1] should be written p;* , a complex number. The permeability
concept can be extended to include the losses. For time harmonic fields,

H = H, exp (jot) (2]
where o is the angular frequency and t is the time; the dissipation can be
described by the phase difference , 3, between H and B. In the complex notation,
the frequency dependency of permeability becomes

M(w) = Bexp j(ot+d)
H exp (jot) [3]

=W -J K= Ho(He- k") [4]

where r signifies a relative, dimensionless quantity.

For vanishing H fields, as used exclusively in this work,



o) = pop* = po(w' - jw") giving ' =y and W' = p

The real part , W', describes the stored energy expressing the component of B in

phase with H and the imaginary part , p", describes the energy dissipated (lost)
expressing the component of B out of phase with H. p' or p;' relates to the
inductance L (see Appendix A ). 1" can be obtained from the relation (for series

L-R circuit)

wl = ' = wl=tand [5]
W e W

In normal practice, p., W, Wi' and p;" are written as ,, u", Wi or W' or p, and p"
respectively; however they remain the same dimensionless and relative
quantities. It is carefully noted that the p' and p" of equation [S] are
proportionality parameters with a dimension or unit.

The change of magnetisation vector is generally brought about by
rotation of magnetisation or domain wall displacement (Ishino et al. 1987).
These motions lag behind the change of magnetic field and cause the increase
of u". Moreover , the resonance-relaxation phenomenon will be induced when
the frequency increases and approaches the characteristic frequency of the
rotation of the magnetisation or the domain wall displacement. The frequency

at which pu" maximises (loss resonance) is nearly inversely proportional to the



low-frequency permeability according to the equation given by Snoek
(Goldman, 1991 ;Wolfarth, 1980)
fi(pn-1) =437y M [6]
where  f; is the loss resonance frequency, y is the gyromagnetic ratio and

M, is the saturation magnetisation.

Basis of Work

The advances in technology have undoubtedly led to studies in modem
ferrites being undertaken extensively. Fortunately, in dealing with interactions
involving intrinsic and structural features which affect the permeability, energy
losses, coercivities, resistivities, etc., it becomes apparent that many of the
contributing factors are common to ferrites generally. However, special attention
should be drawn to the magnetic losses, which are the most important factors
that govern the properties of any ferrite materials (Tebble and Craik, 1976).
Ultimately, a work of this nature attempts to obtain a magnetic material with low
loss properties. It is notable that applications at high frequencies frequently
involve small-amplitude and weak signals. Hence the receiving antennae must
not lose/dissipate much of the signal energy. Besides the low loss properties, this
research work also hopes to produce a material that can be used over a wide
operating frequency range. This would allow a single ferrite component to have

a flenible use at various frequencies with the highest upper limit possible.



Hence, detailed investigations of the factors that cause energy losses are
essential for a proper perspective understanding of the physics involved. This
knowledge could then be tapped for the fabrication of high-quality low-loss
ferrite materials. In particular, preparation techniques aimed at achieving desired
loss properties are satisfactory only when their uses can be unambiguously
related to meet the specific requirements of a certain application, for example,

as antenna cores.

Thus this research work has been designed to have the following four
main premises of effort concentration:
a) The first premise concerns the preparation of samples with a fine-
grained, very dense and homogeneous microstructure which has been
convincingly proven to confer low loss properties (Goldman, 1991). These
properties are associated with high electrical resistivity (Standley, 1972) and
restrained domain wall movement resulting from such a microstructure.
In single phase ferrites, the microstructure is characterised by the structure of
pores, surfaces and the grain boundaries which are determined not only by the
surface energy, but also by the initial state before sintering (Okamoto et al.,

1984).

b) The second premise focuses on the exploitation of the large positive
anisotropy value (Pyun et al., 1985) of the Co’* ion in order to produce excellent

frequency extension. However, the skin depth into which alternating magnetic



flux can penetrate becomes thinner as the frequency rises. Beyond this depth,
the eddy current effect becomes prominent. Consequently, this reduces the
effectiveness of the material to support the frequency increase. As such, the
contradiction between achieving the low loss properties and the high operating
frequencies is acknowledged.

The importance of this effort derives from the keen interest in new
wireless digital technology which has led to a kind of modem day gold rush for
more portions of the radio spectrum. However there is a limiting amount of
‘space’ within the radio spectrum. So these wireless gadgets and services must

compete with increasingly narrow bands and unused or reassigned ‘space’.

c) The third premise focuses on the measurement of frequency-
dependent complex impedance used to analyse the electrical response of the
polycrystalline ferrite sample. An experimental equivalent circuit is to be
proposed to explain the observed resistance-reactance (R-X) dispersion. To
enable meaningful analysis of the samples, separation of the grain and the grain
boundary effects on the sample’s electrical properties must be carried out.

In general, a single phase ceramic material can be mathematically
described as a material with complex conductivity .The crystal grain and grain
boundary are the two main components that determine the microstructure. The
bulk conductivity of the ferrite material is significantly higher than that at the
grain boundary phase. Since the resistivity of the grain boundary phase is

usually much higher than that of the crystallite material, most of the applied



