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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of requirement for the degree of Master of Science. 
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By 

TOH SING POH 

January 2002 

Chairman Assoc. Prof. Dr. Hishamuddin Zainuddin 

Faculty Science and Environmental Studies 

The universe is assumed to have negative spatial curvature with 3-dimensional 

hyperbolic Thurston manifold as the fundamental domain. The universal covering space 

of the universe is tessellated by fundamental domain through holonomy group. 

Collecting correlated pair method (CCP-method) is implemented to this model to 

compute CCP-index which indicates the multi-connectedness of the universe. 
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Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains. 
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Oleh 

TOH SING POH 

Januari 2002 

Pengerusi Prof. Madya. Dr. Hishamuddin Zainuddin 

FakuIti Sains dan Pengajian Alam Sekitar 

Alam semesta dianggap mempunyai kelengkungan ruang negatif dan manifold 

hiperbolik Thurston diambil sebagai domain asasnya. Dengan menggunakan kumpulan 

holonomi, ruang liputan umum alam semesta diteselasi oleh domain asasnya. Kaedah 

himpunan pasangan berkorelasi (CCP) kemudian digunakan ke atas model sedemikian 

untuk menghitung indeks CCP bagi manifold Thurston yang menunjukkan kaitan 

berganda alam semasta. 
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1.1 What is Topology? 

CHAPTER 1 

INTRODUCTION 

Any subset of the plane (2 dimension) or the space (3 dimension) is called a 

figure. Two figures are said to be congruent if they are identical except for position in 

space. The common properties occupied by the congruent figures are called geometrical 

properties. Geometry is the study of common geometric properties of congruent figures. 

In geometry, the movements allowed are translation, rotation and reflections. These 

movements are referred as rigid motions, in which the distance between any two points 

of the figure is not changed. Under the rigid motions, the geometric properties are 

invariant. 

In topology, contrasted in geometry, the movements allowed is elastic motion, in 

which the distance between two points could be changed. In moving a figure, we can 

stretch, shrink, twist, pull and bend the figure. We can even cut the figure, but then sew 

the cut exactly as it was before, to make sure the points close together before cut is still 

close together after the cut is sewed up. At this point, it is worth to point out that there is 

a way to define topology as a study of continuity. The elastic motions that preserve the 

continuity of the figure are referred as continuous deformation. On the contrary, it is 

forbidden in topology to force two different points to coalesce into just one point. Two 

figures are topologically equivalent or homeomorphism if and only if one figure can be 

transformed into the other by a continuous deformation. For instance, it is easily 



imagined that a circle shaped rubber band can be continuously stretched to become it's 

topological equivalent unfilled square shape. On the other hand, a disc with a hole in the. 

center is topologically different from a filled square because one cannot create or destroy 

holes by continuous deformations. The topological properties of a figure are those that 

are invariant under elastic motions and so enjoyed by all topologically equivalent 

figures. In the previous rubber band example, a red spot on the rubber band before 

stretched will remain on the rubber band after the geometrical shape of the rubber band 

is changed, so "a spot on the rubber band" is a topological property here. 

Any topological property of a figure is also a geometric property of that figure, 

but many geometric properties are not topological properties. Thus, topology can be 

thought of as a kind of generalization of geometry. Although by using topological 

methods one does not expect to be able to identify a geometrical figure as being a 

doughnut or a coffee cup, one does expect to be able to detect the presence of gross 

features such as holes etc. [1] 

1.2 A Brief History of Cosmological Modeling 

One of the fundamental tasks of cosmologist is to determine the structure or the 

shape of the universe. Regarding to the physical extension of space, there is an oldest 

question about it: is the space finite or infinite? 
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Newtonian physical space was constructed in an absolute reference frame and is 

mathematically identified with the infinite Euclidean space R3. In his gedanken 

experiment of a bucket containing water to show the existence of absolute reference 

frame, Newton reasoned that both the rest bucket and the fixed stars make the water 

surface flat. In the other case, the fixed stars will cause the concave shape of water 

surface. According to Newton, the latter case shows the absolute rotation of the bucket 

with respect to the absolute reference frame. Mach challenged the reasoning from 

Newton and stated that a rotating body in a non-rotating universe or a non-rotating body 

in a rotating universe should give the same result: the concave shape of the water 

surface. By inference of Mach, the concave shape of the water surface is not due to the 

absolute rotation of the bucket, but is a consequence of the interaction from the mass of 

universe upon the bucket, which is rotating with respect to them. Thus, Mach concluded 

that the inertial mass of a body should result from the contributions of all the masses in 

the universe. In a homogeneous Newtonian universe with non-zero density, these masses 

summed to infinity, this gives rise to the inertial problem and thus Mach supported the 

idea of a finite universe in order for it to have a finite local inertia. 

To solve the inertia problem, Einstein (1917) assumed in his static cosmological 

solution that space was a positively curved hypersphere without boundary. Einstein was 

convinced that the hypersphere provided not only the metric of cosmic space, but also its 

global structure. Indeed Einstein's general relativity deals only with local geometrical 

properties of the universe, such as its spacetime curvature (which is determined by the 

density of matter-energy), but not with its global characteristics, namely its topology. 

The global shape of space is not merely dependent on the metric. On the other hand, de 

3 



Sitter noticed that the Einstein's solution admitted a different space, the three 

dimensional projective space, constructed by identifying antipodal points of the 

hypersphere. While Einstein proved that elliptical space is the only variant of spherical 

space, he preferred --- based on aesthetical consideration rather than physical reasoning -

-- the latter due to its property of simply connectedness. Indeed Einstein's conclusion is 

true only in the case of dimension two; In dimension three, there are an infinite number 

closed topological variants of the spherical space, not known by anyone in 1920. 

Friedmann and Lemaitre are generally considered as the discoverers of the big 

bang concept that serves as non-static solutions for relativistic cosmology. They stated 

that the homogeneous isotropic universe models (FL models) admit spherical, Euclidean 

or hyperbolic spacelike section according to the sign of their constant curvature. Even in 

that time, Friedmann had already pointed out that several topological spaces could be 

used to describe the same solution of Einstein's equations and he also predicted the 

possible existence of "ghost" images of astronomical sources arising from the multi­

connectedness property of the space. While the cosmological solution derived by 

Einstein, de Sitter and Friedmann has a positive spatial curvature and thus obviously has 

a finite volume, Friedmann with the lack of knowledge about the hyperbolic space, 

emphasized the possibility of compactifying space by suitable identifications of points. 

On the other hand, Lemaitre assumed positive space curvature, and he preferred 

the projective space. He also noticed the possibility of hyperbolic and Euclidean spaces 

with finite volumes for describing the physical universe. 
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It is frequently implied that the (closed) spherical ( S3 ) model has a finite volume 

whereas the (open) Euclidean (R3) and hyperbolic (<J{3) models have infinite volumes. 

These correspondences between space curvatme radius and the volume is true only in 

the very special case of a simply connected topology and zero cosmological constant. 

According to Friedmann, in order to know if a space is finite or infmite, it is not 

sufficient to determine the sign of its spatial curvature, additional consideration arising 

from topology is necessary. 

While the possibility of the multiply connected model seems to disobey the 

Occam's razor principle, quantum cosmology provided another context of "simple 

model" by suggesting that the smallest closed hyperbolic manifolds are favored. On the 

other hand, astrophysical observations (e.g. [25]) suggest that we live in a negatively 

curved F-L universe (unless the cosmological constant is positive and large enough). 

Combining these two suggestions imply the hyperbolic space have a finite volume, and 

in that case it must be multi-connected. [2] 

Following the topological consideration, the fundamental question of cosmology 

regarding to the structure of the universe is then extended to: Is space finite or infinite, 

oriented or not, made of one piece or not, has it holes or handles, what is its global 

shape? 
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1.3 On the Consideration of Multiply Connected Model (MCM) 

1.3.1 Direct Implications of the MCM 

There exist many multiply connected three-dimensional spaces of constant 

curvature (k = -1,0, or 1) that can each be represented by a fundamental polyhedron 

(FP) with the faces of the polyhedron be identified in pairs in some way [see section 

3.1]. The FP is embedded in the simply connected space of the same curvature (1{3, 

R3 or S3). The simply connected space is then the covering space, which is tiled by 

copies of the fundamental polyhedron. If the fundamental polyhedron of the 

Universe was smaller than the sphere with horizon radius in the universal covering 

space, then the apparent observable Universe as a part of the covering space would 

contain multiple apparent copies of the single physical Universe. A single object 

located in the physical Universe could then be seen as multiple images in different 

sky directions and at different distances. The existence of these topological images, 

caned ghost images is the key evidence of the multi-connectedness of the Universe. 

1.3.2 Compatibility between Multiply Connected Model and Simply 
Connected Model (SCM) 

(a) The Friedmann-Lemaitre model (the hot big bang model) with constant 

curvature is previously confined to the simply connected cases with compact 

spatial volume for hypersphere and infinite for both Euclidean and 

hyperbolic cases. In multiply connected model, Euclidean manifolds with flat 
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curvature and the hyperbolic manifolds with negative curvature could be 

finite or infinite, while the model with positive curvature is still spatially 

compact. For instance, among 18 Euclidean space-forms with different 

topologies [see section 3.1], six of them are compact. 

(b) Cosmological principle stated that at any given cosmic time, the universe is 

homogeneous and isotropic. Cosmological principle is assumed in deriving 

Robertson-Walker metric [Appendix H] and it implies the constancy of the 

space curvature and the space is spherically symmetric about each point.. 

However, as the space curvature is a local property, local homogeneity and 

isotropy of the Universe does not necessarily imply global homogeneity and 

isotropy and in fact only locally homogeneity and isotropy are required by 

Friedmann-Lemaitre model. It has been shown that [3], in the 2-dimensional 

simulated universe (i) locally homogeneous and isotropic 2-torus model 

appears to be globally homogeneous but anisotropic, (ii) locally 

homogeneous and isotropic 2 dimensional Klein bottle model is globally both 

inhomogeneous and anisotropic. These results can be extrapolated to the 

three-dimensional cases. Only projective space is locally and globally both 

homogeneous and isotropic, even though it is multiply connected. All of 

these show the richness of the possibilities and we have to recheck the 

assumption of cosmological principle whenever adopting a particular model. 

However, it is stated [4] that globally anisotropy models do not contradict 

observations, since the homogeneity of space and the local isotropy ensure 

the complete isotropy of the Cosmic Microwave Background. However, the 
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global anisotropy can influence the spectrum of density fluctuations. On 

switching from SCM to MCM, we have to re-examine every single result 

hold previously. 

(c) In the twin paradox, the best-known thought experiment of special relativity, 

the twin departs from a point and turns back to the point will be younger than 

the sedentary twin. That is because of the asymmetry of the reference frame 

arising from the local acceleration unavoidable by the traveler twin for him to 

turn back. This version of standard twin paradox is however considered in the 

context of simply connected space where any two points within the space has 

only single geodesic to connect them. In multiply connected space, there are 

more than one geodesic connecting any two points, and so the traveler twin 

could return to the departing point without encountering any acceleration or 

direction change. In this case, the traveler twin avoided jumping from one 

inertial frame into another, the twin paradox thus seems to reemerge at first 

glance. To solve the paradox, the asymmetry due to a non-trivial topology 

(that is multiply connected topology) has to be considered and here we have 

to use the homotopy theory [see section 3.2]. Two loops (a loop is a path with 

starting point and ending point coincide) are said to be homotopic if they can 

be continuously deformed into one another. Any loops that can be 

continuously deformed into one another are said in the same homotopy class. 

In addition, any loops continuously deformed into a point is said to be 

homotopic to class {O}. To solve the twin paradox in non-trivial topology, 
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