

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION OF GRANULOVIRUS AND NUCLEOPOLYHEDROVIRUS ISOLATED FROM SPODOPTERA LITURA

LAU WEI HONG

FSAS 2002 17

CHARACTERIZATION OF GRANULOVIRUS AND NUCLEOPOLYHEDROVIRUS ISOLATED FROM SPODOPTERA LITURA

By

LAU WEI HONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2002

Specially to my husband, my mother, my brothers and sister

4

4. 3

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION OF GRANULOVIRUS AND NUCLEOPOLYHEDROVIRUS ISOLATED FROM SPODOPTERA LITURA

By

LAU WEI HONG

March 2002

Chairman: Professor Norani Abdul Samad, Ph.D.

Faculty: Science and Environmental Studies

Two baculoviruses were isolated and identified from *Spodoptera litura*; S. litura nucleopolyhedrovirus (SpltNPV) and S. litura granulovirus (SpltGV). The polyhedra of SpltNPV were about 0.9-1.83 μ m in diameter containing multiple virions measuring about 100-280 nm wide and 320-410 nm long. The SpltNPV virions contained nucleocapsids (47-60 nm wide and 300-350 nm long) within an envelope, and the size of capsids measured about 58-60 nm wide and 300-330 nm long.

The capsules of SpltGV were about 0.2-0.3 μ m wide and 0.45-0.55 μ m long containing single virion (60-73 nm wide and 245-267 nm long). The SpltGV nucleocapsids measured approximately 54-60 nm wide and 287-410 nm long, and found singly enclosed within an envelope. The SpltGV capsids measured about 36-58 nm wide and 175-277 nm long.

The restriction endonuclease analyses (REN) revealed that these two baculoviruses did not show any identical restriction pattern. The DNA size of the SpltNPV and the

SpltGV was estimated to be 132 kb and 124 kb, respectively. The nucleotide sequence analysis of the polyhedrin gene of SpltNPV had 98% sequence identity to the known SpltNPV (accession number: AF037262); while the granulin gene of SpltGV had 81% sequence identity to the granulin gene of Xestia c-nigrum granulovirus (accession number: U70069). Based on the sequence analysis, the SpltNPV and the SpltGV are placed as a taxon of Group II NPV and Group GV, respectively.

Both viruses exhibited general symptoms of polyhedrosis and granulosis. The SpltNPV-infected larvae showed pinkish yellow at the dorsal and lateral sides, while the SpltGV-infected larvae exhibited whitish ventral. The SpltNPV caused a reduction in the larval size while the SpltGV-infected larvae increased in size with bloated integument when lower viral dosages were given. Both viruses infected fat bodies, Malphigian tubules, tracheal matrices, hypodermis, muscles and midguts. The SpltNPV replicated in the nucleus and spread the disease to susceptible tissues within 24-h postinoculation (p.i). The SpltGV was found replicating in both nucleus and cytoplasm, and the disease spread gradually after 48-h p.i. The LD₅₀ of both viruses in neonate larvae of *S. litura* were 9.04×10^2 polyhedra for SpltNPV and 1.26×10^4 capsules for SpltGV. The LT₅₀ of both viruses were similar when neonate larvae were fed with similar ranges of viral dosages. The SpltNPV showed a higher virulence in *S. litura* larvae than the SpltGV. The characterization of these baculoviruses is of particular interest in view of its possible use in biological or integrated control.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN GRANULOVIRUS AND NUCLEOPOLYHEDROVIRUS DARI SPODOPTERA LITURA

Oleh

LAU WEI HONG

Mac 2002

Pengerusi: Profesor Norani Abdul Samad, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Dua jenis bakulovirus telah dipencilkan and dicirikan dari *Spodoptera litura*, iaitu S. litura nukleopolihedrovirus (SpltNPV) dan S. litura granulovirus (SpltGV). Saiz polibedra SpltNPV adalab lebih kurang 0.9-1.83 µm diameter dan mengandungi virion berganda yang berukuran 100-280 nm lebar and 320-410 nm panjang. Virion SpltNPV mengandungi nukleokapsid (47-60 nm lebar dan 300-350 nm panjang) dalam satu sampul dan kapsid berukuran 58-60 nm lebar dan 300-330 nm panjang.

Kapsul SpltGV adalah lebih kurang 0.2-0.3 µm lebar dan 0.45-0.55 µm panjang dan mengandungi satu virion (60-73 nm lebar dan 245-267 nm panjang). Saiz nukleokapsid SpltGV lebih kurang 54-60 nm lebar dan 287-410 nm panjang dan satu nukleokapsid terdapat terkurung dalam satu sampul. Kapsid SpltGV adalah berukuran 36-58 nm lebar dan 175-277 nm panjang.

Analysis Pembatasan Endonuklease (REN) menunjukkan kedua-dua bakulovirus tersebut tidak mempunyai corak pembatasan yang sama. Saiz DNA SpltNPV dan SpltGV telah dianggarkan sebesar 132 kb dan 124 kb, masing-masing. Analysis jujukan nukleotida menunjukkan gen polihedrin SpltNPV mempunyai 98% homologi dengan SpltNPV yang dikenali (nornbor asesi: AF037262), manakala gen granulin SpltGV mempunyai 81% jujukan sama dengan gen granulin XcGV (nombor asesi: U70069). Berdasarkan analysis jujukan tersebut, SpltNPV dan SpltGV masing-masing diletakkan sebagai satu takson dalam Kumpulan NPV II dan Kumpulan GV.

Kedua-dua virus menghasilkan simtom penyakit polihedrosis dan granulosis yang umum. Larva yang dijangkiti oleh SpltNPV menunjukkan warna kuning kemerahmudaan pada sisi-sisi tepi dan belakang, manakala larva yang dijangkit oleh SpltGV menunjukkan warna putih pada sisi ventral. SpltNPV menyebabkan pengurangan saiz larva, manakala larva yang dijangkiti oleh SpltGV bertambah saiz badan dengan integumen yang mengembang apabila sukatan virus yang rendah diberikan. Keduadua virus menjangkiti tisu lemak, tubul Malfigian, matriks trakea, hipodermis, otot dan usus tengah. SpltNPV membiak dalam nukleus dan penyakit merebak ke tisutisu yang mudah dijangkiti dalam masa 24 jam selepas jangkitan (p.i.). SpltGV didapati membiak dalam kedua-dua nukleus dan sitoplasma dan penyakit merebak secara perlahan-lahan selepas 48 jam jangkitan (p.i.). LD₅₀ untuk kedua-dua virus dalam larva *S. litura* yang baru lahir adalah 9.04x10² polihedra untuk SpltNPV dan 1.26x10⁴ kapsul untuk SpltGV. LT₅₀ adalah sama untuk kedua-dua virus bila larva yang baru lahir diberi julat sukatan virus yang serupa. SpltNPV menunjukkan kevirulenan yang lebih tinggi daripada SpltGV terhadap larva *S. litura*. Pencirian

kedua-dua baculovirus tersebut adalah diminati khas disebabkan penggunaannya dalam pengawalan biologi atau bersepadu.

ACKNOWLEDGEMENTS

The author wishes to express her sincere gratitude and appreciation to her project main supervisor Professor Dr. Norani Abdul Samad for her valuable advice, guidance and willingness to share her expertise throughout the course of this study. The author would like to convey her greatest appreciation to her project cosupervisors Associate Professor Dr. Ahmad Said Sajap, Datin Professor Dr. Khatijah Mohd. Yusoff and Professor Dr. Abdul Manaf Ali for their generous guidance and advice throughout the study. The author also would like to express her special thanks to the external examiner, Professor Dr. Mohd. Sanusi B Jangi of Universiti Kebangsaan Malaysia for his advice and guidance. Not forgetting Dr. Tan Siang Hee of Universiti Putra Malaysia for his kind assistance. Last but not least, Professor Dr. Mohd Yusof Hussein of Universiti Putra Malaysia for his constructive advice. The suggestions and advice had indeed contributed a lot and enhanced the author's scope of knowledge in this field.

The author would also like to express her gratitude to Dr. Ong Ching Ang, Mr. Lim and Puan Mazidah of the Virology Lab at MARDI Serdang for their help and encouragement throughout these years. Special appreciation goes to Mr. Hussan from Insectrory Lab at MARDI Serdang for providing the *Spodoptera litura* larvae for this study. Special thanks to all the members of Electron Microscopy Unit, UPM, and also not forgetting Dr. Roni, Mr. Ganesan, Mr. Arifen Kamarudzaman, Mr.

Hussain Jirangon and Mr. Yaakob Abdul Wahab of UPM for their assistance and cooperation.

The author wishes to acknowledge the contributions of all her labmates of Virology Lab at Department of Biochemistry and Microbiology, UPM, and friends for their support and friendship.

The author wishes to express her special thanks and appreciation to her beloved father, who passed away in the middle of the study, mother and siblings for their supports and good cheer. Last but not least, the author must gratefully remember the patient support and encouragement from her husband, Dr. Wong Shaw Voon, throughout this long process.

I certify that an Examination Committee met on 11th March 2002 to conduct the final examination of Lau Wei Hong on her Doctor of Philosophy thesis entitled "Characterization of Granulovirus and Nucleopolyhedrovirus Isolated from *Spodoptera litura*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

NOR ARIPIN SHAMAAN, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

NORANI ABDUL SAMAD, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

AHMAD SAID SAJAP, Ph.D.

Associate Professor Faculty of Forestry Universiti Putra Malaysia (Member)

KHATIJAH MOHAMMED YUSOFF, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Małaysia (Member)

ABDUL MANAF ALI, Ph.D. Professor Faculty of Biotechnology and Food Studies Universiti Putra Malaysia (Member)

MOHD SANUSI JANGI, Ph.D.

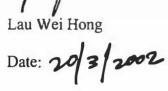
Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (Independent Examiner)

SHAMSHER MOHAMAD RAMADILI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 0 MAR 2002

The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

eifi -


AINI IDERIS, Ph.D. Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: 09 MAY 2002

DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

TABLE OF CONTENTS

				Page
	DICA			2
ABSTRACT			3	
ABSTRAK			6	
			EMENTS	8
	PROV			10
		ATION		12
		TABLES		16
		FIGURE		17
LIS	T OF	ABBRE	VIATIONS	19
Сн	APTE	CR		
1	INT	RODUC	CTION	22
2	ITT		RE REVIEW	25
2	2.1		ptera litura (Fabricius)	25
	2.1	2.1.1		25
			Geographical Distribution	25
			Life Cycle	26
			Host Range	26
	2.2		oviruses	20
	2.2	2.2.1		27
			Classification	28
			Nomenclature	29
		2.2.3		31
		2.2.5	1	32
	2.3		sion Body	32
	2.5	2.3.1		33
		2.3.2		34
			Surface Structure	34
			Dissolution of Occlusion Bodies	34
		2.3.5	Mutants of Occlusion Body	35
	2.4	Virion		36
		2.4.1	Size and Shape	36
		2.4.2	Phenotypes of Virion	37
	2.5			38
	2.6			39
	2.7		iques Used in DNA Analysis	41
		2.7.1	Restriction Endonuclease Analyses	41
		2.7.2		42
	2.8	Pathol	ogy Studies	44

Route of Infection 2.8.1 44 Symptomatology Development of Baculoviruses in Diseased Larvae 2.8.2 44 45 2.8.3

		2.8.4	Histopathology	49
		2.8.5		50
		2.8.6		52
3	GEN	ERAL N	MATERIALS AND METHODS	57
	3.1		of Larvae	57
			of Virus	57
			of Chemicals and Biochemicals	57
			Propagation of S. litura NPV and GV	57
			Propagation of AcMNPV	58
			ation of S. litura NPV and GV from Infected Larvae	58
			ation of AcMNPV from Insect Cell Line	59
			n Microscopy Negative Staining	60
			ng of Occlusion Bodies Extraction	60 61
			photometry	61
			tion Endonucleases Analysis	62
			ure PCR Product Purification Kit	62
		-	TA Cloning	63
			ure Plasmid Isolation Kit	65
		Sequen		65
4	ISOLATION AND IDENTIFICATION OF GV AND NPV FROM			
	SPO.	DOPTE	RA LITURA	68
	4.1	Introdu	ction	68
			als and Methods	68
	4.3	Results		69
			Isolation of Baculoviruses	69
			Identification of Baculoviruses	69
	4.4	Discuss	sion	72
5			AR STUDIES OF GV AND NPV ISOLATED FROM	0.1
	5.1		RA LITURA	81
	5.2		als and Methods	81 81
	J.2	5.2.1	Restriction Endonucleases Analysis	81
		5.2.2	Polymerase Chain Reaction	82
	5.3	Results		84
		5.3.1	Comparison of Baculoviruses DNA	84
		5.3.2		85
		5.3.3	Nucleotides Sequence Analysis	86
		5.3.4	Phylogenetic Analysis	87
	5.4	Discuss	sion	87
6	SYMPTOMATOLOGY OF GRANULOSIS AND POLYHEDROSIS IN			
			RA LITURA LARVAE	103
	6.1	Introdu	ction	103

	6.2 6.3		
	0.5	6.3.1 Symptoms of Larvae Infected with Mixed Baculoviruses	104
		6.3.2 Symptoms in Larvae Infected with Purified GV	104
		6.3.3 Symptoms of Larvae Infected with NPV	105
	6.4	Discussion	106
7		HT AND ELECTRON MICROSCOPE HISTOPATHOLOGY	
		DIES OF GV AND NPV	110
		Introduction	110
	7.2	Materials and Methods	110
		7.2.1 Light Microscopy	110
	7.2	7.2.2 Electron Microscopy	111
	7.3	Results	112
		7.3.1 Histopathology Study7.3.2 Granulosis	112 112
		7.3.3 Polyhedrosis	112
		7.3.4 Mixed Infection	117
	7.4	Discussion	118
8	DOS	AGE AND TIME-MORTALITY STUDIES ON GV AND NPV	141
0	8.1		141
		Materials and Methods	141
	8.3		142
		8.3.1 Bioassay with SpltNPV ^M	142
		8.3.2 Bioassay with SpltGV ^M	143
	8.4	Discussion	144
9	GEN	IERAL DISCUSSION	150
10	CON	ICLUSION	154
REF	EREN	ICES	157
			168
VITA 178			178

.

LIST OF TABLES

Table	J	Page
2.1	Size of polyhedra from different species of insect virus	53
2.2	Shape of polyhedra from different species of insect virus	53
2.3	Size of capsules from different species of insect virus	54
2.4	Size and number of virions per polyhedra of NPVs	55
2.5	Size of virion per capsule of GVs	55
2.6	Average size of NPV nucleocapsid	56
2.7	Average size of GV nucleocapsid	56
3.1	List of chemicals and biochemicals	67
5.1	List of restriction endonucleases used in this study	91
5.2	List of primers used in this study	91
5.3	Amplification program used in this study	92
5.4	Estimated size (in bp) of SpltGV ^M DNA fragments following restriction with <i>Bam</i> HI, <i>Eco</i> RI and <i>Hind</i> III	92
5.5	Estimated size (in bp) of SpltNPV ^{M} DNA fragments following	12
010	restriction with BamHI, HindIII and KpnI	93
5.6	Nucleotide sequence identities (%) of NPV polyhedrin gene	93
7.1	Sequence of infection of tissues of S. litura larvae with local isolates of	
	baculovirus	123

LIST OF FIGURES

Figure		Page
4.1	Sucrose gradient of occlusion bodies (OBs) originally isolated from	76
	diseased larvae of S. litura	75
4.2	Electron micrograph of occlusion bodies of mixed baculoviruses	76
1.0	negatively-stained with 2% MAT	75
4.3	Gradient purification of occlusion bodies after a few generations of	
	dilution and propagation in larvae. B1 and B2 were bands composed of	
	occlusion bodies with different density gradients	76
4.4	Purification of polyhedral-shaped occlusion bodies	76
4.5	Purification of ovocylindrical-shaped occlusion bodies	77
4.6	Purification of virion of ovocylindrical-shaped occlusion body	78
4.7	Dissolution of virion of polyhedral-shaped occlusion body	79
4.8	Purification of virion of polyhedral-shaped occlusion body	79
4.9	Electron micrograph showing nucleocapsid of ovocylindrical-shaped	00
4.10	occlusion bodies and polyhedral-shaped occlusion bodies	80
4.10	Electron micrograph showing capsid of ovocylindrical-shaped and	00
5 1	polyhedral-shaped occlusion bodies	80 94
5.1	Fragments of SpltGV ^M isolate DNA produced by RENs	94 95
5.2	Restriction enzyme fragment patterns of SpltNPV ^M isolate	
5.3	Agarose gel electropheresis of SpltGV ^M , SpltNPV ^M , and AcMNPV	96 97
5.4	PCR amplification of the polyhedrin gene coding region of SpltNPV ^M	
5.5	PCR amplification of the granulin gene coding region of SpltGV ^M	97
5.6	Nucleotide sequence of npv2.	98
5.7	Nucleotide sequences of gvl, gv2, and gv3	99
5.8	Alignment of the nucleotide sequences of the polyhedrin and granulin	100
5.0	genes from SpltNPV ^M and SpltGV ^M	100
5.9	DNA distance matrix	101
5.10	Phylogenetic analysis of occlusion gene nucleotide sequences of	102
61	Baculoviruses	102
6.1 6.2	Baculoviral symptoms produced in <i>S. litura</i> larvae	108
6.3	Healthy larvae of S. litura	108
6.4	SpltGV ^M symptoms produced in S. litura larvae SpltNPV ^M symptoms produced in S. litura.	108 109
7.1	Midgut lumen shows the presence of ingested castor oil leaves	109
7.2	Longitudinal sections of healthy <i>S. litura</i> larval	124
7.3	Invasion of SpltGV ^M into midgut cells of S. litura larva	124
7.4	Section of larval malphigian tubule and trachea matrix of S. litura	125
/	infected with SpltGV ^M	126
7.5	Sections of nucleocapsids and budded viruses in larval tissue	120
7.6	Formation of capsules in fat body and malphigian tubule	120
7.7	Section of larval hypodermis of S. litura infected with SpltGV ^M	127
7.8	Section of larval mypodernins of S . <i>litura</i> infected with SpltGV ^M	128
7.9	Disease progression of SpltGV ^{M} in tissues of S. <i>litura</i>	120
7.10	Sections of rupture tissue of <i>S. litura</i> after 288-h p.i. with SpltGV ^M	130

7.11	Sections of mature capsules in the cytoplasm and haemolypmh	131
7.12	Section of abnormal capsules in SpltGV ^M -infected fat cells	131
7.13	Section of larval tissue of S. litura infected with SpltNPV ^M after 24-h	
	p.i.	132
7.14	Infected tissues of S. litura after 48-h p.i. with SpltNPV ^M	132
7.15	Section of larval tissue of S. litura after 72-h p.i. with SpltNPV ^M	133
7.16	Sections of larval fat body and trachea matrix of S. litura after 120-h	
	p.i. with SpltNPV ^M	133
7.17	Sections of infected tissue of S. litura after 144-h p.i. with SpltNPV ^M	134
7.18	Infection of SpltNPV ^M in larval tissue	135
7.19	Formation of SpltNPV ^M nucleocapsids within the virogenic stroma	136
7.20	Formation of SpltNPV ^M virions	137
7.21	Formation of SpltNPV ^M polyhedra	138
7.22	Section of fat cells with abundant of mature SpltNPV ^M polyhedra	
	formed in the hypertrophied nuclei	138
7.23	Polyhedra stained in two different forms	139
7.24	Abnormal polyhedra lacking of nucleocapsids enclosed within the	
	virions	139
7.25	Infection in fat body and hypodermis	140
7.26	Mixed infection in fat body	140
7.27	Sections of infected malphigian tubules	140
8.1	Cumulative percentage mortality of 1-day old S. litura larvae inoculated	ł
	with five different SpltNPV ^M dosages after 3 days p.i.	147
8.2	Probit mortality plot of SpltNPV ^M on S. litura larvae	147
8.3	Cumulative percentage mortality of 1-day old S. litura larvae	
	bioassayed against SpltGV ^M after 3 days p.i.	148
8.4	Dosage-mortality response of 1-day old S. litura larvae to SpltGV ^M	148
8.5	Cumulative percentage mortality of 1-day old S. litura larvae infected	
	with SpltGV ^M	149
8.6	Cumulative percentage mortality of 4-day old S. litura larvae infected	
	by SpltGV ^M	149

LIST OF ABBREVIATIONS

1.0.00	
A260	absorption at 260 nm
AcfeMNPV	Actebia fennica MNPV
AcMNPV	Autographa californica MNPV
AcMNPV	Autographa californica MNPV
AgMNPV	Anticarsia gemmatalis MNPV
AgNPV	Anticarsia gemmatalis NPV
AgurSNPV	Aglais urticae SNPV
AjGV	Achaea janata GV
AnfaMNPV	Anagrapha falcifera MNPV
AnpeNPV	Antheraea pernyi NPV
ArceMNPV	Archips cerasivoranus MNPV
ArceNPV	Archips cerasivoranus NPV
ArveGV	Argyrotaenia velutinana GV
BmMNPV	Bombyx mori MNPV
BmNPV	Bombyx mori NPV
bp	base pairs
BusuNPV	Buzura suppressaria NPV
BusuSNPV	Buzura suppressaria SNPV
CfNPV	Choristoneura fumiferana NPV
ChfuGV	Choristoneura fumiferana GV
ChmuGV	
	Choristoneura murinana GV
ChroMNPV	Choristoneura rosaceana MNPV
CpGV	Cydia pomonella GV
CrleGV	Cryptophlebia leucotreta GV
DiheSNPV	Diprion hercyniae SNPV
DNA	deoxyribonucleic acid
dNTP	deoxynucleoside triphosphate
EcobSNPV	Ectropis obliqua SNPV
EDTA	ethylenediamine tetraacetic acid
EppoMNPV	Epiphyas postvittana MNPV
EppoNPV	Epiphyas postvittana NPV
ErtiSNPV	Erannis tiliaria NPV
EsacGV	Estigmene acrea GV
EuocGV	Euxoa ochrogaster GV
ExapGV	Exartema appendiceum GV
GlbiGV	Glena bisula GV
GV	Granulovirus
h	hour
HabrGV	Harrisina brillians GV
HearNPV	Helicoverpa armisgera NPV
HycuGV	Hyphantria cunea GV
HycuNPV	Hyphantria cunea NPV
HzNPV	Helicoverpa zea NPV
HzSNPV	Helicoverpa zea SNPV
HzSNPV	Helicoverpa zea SNPV

JucoGV	Junonia coenia GV
kb	kilobase pairs
LD ₅₀	lethal dose 50
LdNPV	Lymantria dispar NPV
LeseNPV	Leucania seperata NPV
LT ₅₀	lethal time 50
LymoNPV	Lymantria monacha NPV
M	micromolar
MaamMNPV	Malacosoma americanum MNPV
MacoNPV	Malacosoma constrictum NPV
MadiMNPV	Malacosoma disstria MNPV
MARDI	Malaysian Agricultural Research and Development Institute
MbMNPV	Manaysian Agricultural Research and Development districte Mamestra brassicae MNPV
MbNPV	Mamestra brassicae NPV
MepeGV	
mm	Melanchra persicariae GV minute
MNPV	multiple nucleocapsid polyhedrosis virus
NanaGV	Natada nararia GV
Nese SNPV	
Nesw SNPV	Neodiprion sertifer SNPV Neodiprion swainei NPV
Nevi SNPV	-
	Neodiprion virginiana SNPV nanometer
nm NPV	
	Nucleopolyhedrovirus nucleotide
nt	
OpMNPV	Orgyia pseudosugata MNPV
OpNPV	Orgyia pseudosugata NPV
OranNPV Orat SNPV	Orgyia anartoides NPV
	Orgyia antiqua SNPV
Orle SNPV	Orgyia leucostigma NPV
p.i.	post-inoculation
PadoNPV	Panaxia dominula NPV
PafIMNPV	Panolis flammea NPV
PalaMNPV	Pandemis lamprosana NPV
PbGV	Pieris brassicae GV
PCR	polymerase chain reaction
PenuNPV	Perina nuda NPV
PhopGV PIB	Phthorimaea operculella GV
PiraGV	Polyhedral Inclusion Body Dieris range GV
PlorNPV	Pieris rapae GV Plusia orichalcoa NPV
PlscGV	
Probit	Plathypena scabra GV probability unit
PsunGV	· · · · ·
PyanGV	Pseudaletia unipuncta GV Pygaera anastomosis GV
RoMNPV	Rachiplusia ou MNPV
S	second
SacaGV	Sabulodes caberata GV

SDS	sodium dodecyl sulfate
SeMNPV	Spodoptera exigua MNPV
SeNPV	Spodoptera exigua NPV
SIMNPV	Spodoptera frugiperda MNPV
SfNPV	Spodoptera frugiperda NPV
SNPV	single nucleocapsid polyhedrosis virus
SpliMNPV	Spodoptera littoralis MNPV
SpltNPV	Spodoptera litura NPV
TAE	Tris-acetate-EDTA buffer
Taq	Thermos aquaticus
ThliSNPV	Thymelicus lineola SNPV
ThorSNPV	Thysanoplusia orchalcea SNPV
TipaNPV	Tipula paludosa NPV
TnGV	Trichoplusia ni GV
TnSNPV	Trichoplusia ni SNPV
TrvmSNPV	Trichiocampus viminalis SNPV
V	volt
v/v	volume per volume
w/v	weight per volume
WisiNPV	Wiseana signata NPV
WisiSNPV	Wiseana signata SNPV
XcGV	Xestia c-nigrum GV

CHAPTER 1

INTRODUCTION

An insect is considered a pest when its presence causes an economically important loss. Various types of chemicals have been used for controlling pests. They are fast in action and can be used for a broad range of pests. The excessive use of chemical insecticides, however, can result in building up of pest resistance, side effects on beneficial and non-targeted insects, and pollution to the environment that indirectly harm public health. Chemical control has worsened the pest problem.

Integrated pest management (IPM) promotes an alternative to chemical pest control which includes the use of pest-resistant plants, cultural methods, and biological control, and recommends the application of combined methods to minimize the chance of the target insects adapting to any single factic (Zechendorf, 1995). Biological control utilizes natural living organisms to control a particular pest. These natural enemies can be a predator or parasite (macrobial control), or pathogen (microbial control) (Burges and Hussey, 1971). They normally occur under the conditions of pest outbreaks and are important factors in reducing the density of pest under natural population (Weiser, 1977). These biological control agents neither accumulate in the food chain nor harm the environment, but only make contact with particular targets. According to Debach and Rosen (1991), only 15% of these organisms have been discovered and identified.

The use of microbial control in insect pest is not a new concept. Microbial insecticides mainly refer to bacteria, fungi, viruses, nematodes, protozoa and rickettsiae. *Bacillus thuringiensis* toxin (Bts) is the most successful bioinsecticide and commercially available. However, resistance of pest against the Bt has been reported (Zechendorf, 1995). Fungi, protozoa and nematodes are slow in action and only effective under favorable conditions. Rickettsiae have low specificity to its host and are also pathogenic to warm-blooded animals (Burges and Hussey, 1971). Therefore, viruses are promising biological control agents since they attack the target insects and reprogram the host cells for virus production. Death is the final stage for insect with viral disease.

Baculoviruses are the most commonly and widely studied double-stranded DNA viruses that infect insects. They are divided into *Nucleopolyhedrovirus* (NPV) and *Granulovirus* (GV) based on their morphology. The baculoviruses have been found in over 600 species of arthropods (Blissard and Rohrmann, 1990) and can be as effective as chemical pesticides in controlling specific pests. They are environmentally attractive because they are highly host-specific and, in general, only infect insect species within a limited host range. They have no impact on plants, mammals, fishes, birds or even non-target insects and do not accumulate in food chains. The occluded viruses are very stable and transmitted horizontally among their host. They are ingested by the susceptible larvae, replicate in the host and finally the host dies releasing large quantities of the occlusion bodies into the environment that maximize the chance of other insects to come in contact with the virus and in turn become infected. Vertical transmission, however, occurs through contamination of

female ovipositor during egg laying. The newly hatched larvae will be infected after consuming the virus from the eggshell.

The development of baculoviruses as an ideal IPM candidate is very promising in the near future. Since people are very concerned on the impact of using chemical control, many baculoviruses have been discovered and studied. Miller and Dawes (1978) reported that HzNPV and OpNPV were registered as pesticides by the U.S. Environmental Protection Agency.

In Malaysia, NPV and GV have been found naturally in the diseased larvae of *Spodoptera litura*. A pathogenicity test of SpltNPV to *S. litura* larvae was carried out by Sajap *et al.* (2000) who reported that the larval mortality was dependent on the viral doses. The properties of NPV and GV found in *S. litura* larvae have not been fully characterized yet. The fundamental studies of these viruses are important to commercial production. Furthermore, these studies are crucial in managing and manipulating the viruses. Since insect virus classification is based on the intrinsic properties of the virus, this thesis concentrates on the basic characterization of both viruses in order to develop a better biopesticide that is environmentally friendly and highly effective for convolling *S. litura*. Therefore, the objectives to this study are to:

1) Isolate and characterise GV and NPV from Spodoptera litura.

2) Analyse the DNA of GV and NPV from S. litura.

3) Study the pathology of GV and NPV in S. litura.