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The tumor microenvironment (TME) is an ecosystem that contains various cell types,
including cancer cells, immune cells, stromal cells, and many others. In the TME, cancer
cells aggressively proliferate, evolve, transmigrate to the circulation system and other
organs, and frequently communicate with adjacent immune cells to suppress local tumor
immunity. It is essential to delineate this ecosystem’s complex cellular compositions and
their dynamic intercellular interactions to understand cancer biology and tumor
immunology and to benefit tumor immunotherapy. But technically, this is extremely
challenging due to the high complexities of the TME. The rapid developments of single-
cell techniques provide us powerful means to systemically profile the multiple omics status
of the TME at a single-cell resolution, shedding light on the pathogenic mechanisms of
cancers and dysfunctions of tumor immunity in an unprecedently resolution. Furthermore,
more advanced techniques have been developed to simultaneously characterize multi-
omics and even spatial information at the single-cell level, helping us reveal the
phenotypes and functional it ies of disease-specific cell populat ions more
comprehensively. Meanwhile, the connections between single-cell data and clinical
characteristics are also intensively interrogated to achieve better clinical diagnosis and
prognosis. In this review, we summarize recent progress in single-cell techniques, discuss
their technical advantages, limitations, and applications, particularly in tumor biology and
immunology, aiming to promote the research of cancer pathogenesis, clinically relevant
cancer diagnosis, prognosis, and immunotherapy design with the help of single-
cell techniques.
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INTRODUCTION

The tumor microenvironment (TME) is a complex ecosystem that consists of many different cell
types, including tumor cells, immune cells, and many others. All these cells are tightly inter-
associated and interact with each other. The heterogeneous milieu of TME induces various
progression patterns of different cancers and leads to distinct treatment responses across
org June 2021 | Volume 12 | Article 6974121
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different patients (1). Among that, the levels of T cell infiltration,
the polarization of tumor-associated macrophages (TAM) can be
varied, thereby affecting the prognosis of patients differently, the
expression of PD-1 and PD-L1 in TME, the mutational
landscapes, and the drug responses of malignant cells can also
be distinct in different patients, relating to different efficacies of
immune checkpoint blockade (ICB) therapies (2–4).

The previous genomic, transcriptomic, and proteomic cancer
studies have helped develop multiple mutational- or molecular-
target therapies and elevate treatment responses across different
patients (5). However, the clinical benefits of these target-
directed therapies are still limited. Only a small subset of
patients is treatable, leading to emergent demand of using
more precise methods to dissect characteristics of individual
patients for developing better cancer treatments especially
personalized tumor immunotherapy.

In this review, we introduce the state-of-art technological
advances of single-cell omics and discuss corresponding
computational methods for single-cell data analysis and their
applications in cancer research. All of these further inspire and
guide the design of and applications of single-cell techniques in
basic and translational clinical cancer research.
THE DEVELOPMENT OF SINGLE-
CELL TECHNOLOGIES

The development of methods in single-cell isolation, indexing,
and sequencing allows in-depth profiling of the tumor milieu
from different cellular scales with extremely high dimensions (6).
Based on single omics, methods for integrated omics have also
been developed for simultaneous detection of different omics,
including genomic, transcriptomic, proteomic, and spatial
information of single cells (7). Despite multiple challenges that
remain to be addressed, these methods have been very powerful
in uncovering the cellular basis of the heterogeneous tumor
microenvironment and greatly expanded our understanding of
cancers and tumor immunology in many aspects. In this session,
we introduce the technical details of single-cell methods applied
in understanding the tumor microenvironment (Figure 1).

Mass Cytometry and Imaging
Mass Cytometry
Flow cytometry, as a widely used single-cell labeling and sorting
technique, has facilitated the understanding of cellular
composition and diversity in various tissues (8), but its spectral
overlap between nearby channels limits the number of detected
markers and unable to unveil many functionally important cell
subsets (9). To overcome this problem, mass cytometry, also
named cytometry by time of flight mass spectrometry (CyTOF),
was developed with a more specific channel signal (10, 11).
CyTOF uses rare element isotopes to replace the commonly used
fluorochrome to conjugate monoclonal antibodies (mAbs) in
flow cytometry. These isotopes usually do not exist in cells, and
the purity of rare element isotopes and their accurate detection
by mass spectrometry significantly increase the detectable
Frontiers in Immunology | www.frontiersin.org 2
dimension of a single cell to over 100 markers theoretically,
and due to the technical limits of isotope labeling onto mAbs, the
marker number on single cells to date can only reach 45 (10–12).
Meanwhile, CyTOF has already demonstrated its power and
accuracy over flow cytometry in cell profiling when applied to
analyze fresh and frozen PBMC or tumor tissues at the single-cell
level (13). Unfortunately, CyTOF cannot be used for cell sorting,
and its throughput is 25~50 times lower than flow cytometry due
to extra time expense for isotope quantification (8).

Beyond profiling the homogenously stained single cells
isolated from tissue samples, imaging CyTOF was developed to
profile the cells’ spatial information in the target tissue (14).
Similar to the multicolor immunofluorescence staining, imaging
CyTOF can simultaneously detect over 30 types of rare element
isotopes conjugated on antibodies to stain tissue sections. A
high-resolution laser is used to ablate the target tissue section
point by point, and the ionized elements were streamed into the
ICP-MS for isotope measurement. Finally, a high-dimensional
tissue imaging is reconstructed by integrating the subcellular
spatial information of each point on the tissue sample (14).

Moreover, CyTOF can also be used in the quantification of
epigenetic modification (e.g., phosphorylation, histone
modification) (15), transcripts (16), and antigen-specific T cells
(17) at the single-cell level by designated mAbs that target
chromatin marks, ligation assay for RNA, and multiplexed
peptide-major-histocompatibility-complex (pMHC)-tetramer
staining for antigen-specific T cells, respectively, allowing an
integrated inspection of cellular functionality in a multi-
omics manner.

Single-Cell RNA Sequencing
Methods for profiling single-cell transcriptome have been
developed and rapidly evolved to overcome limited markers
detected on individual cells by CyTOF, improve the single-cell
resolution of traditional bulk RNA sequencing (RNA-seq), and
identify rare cell populations and their functional dynamics at
the transcriptomic level (18). The first published single-cell RNA
sequencing (scRNA-seq) method successfully detected 5,270
more genes in one blastomere compared to the microarray
assay using hundreds of blastomeres, allowing the precise
whole-transcriptome characterization at a single-cell level (19).
And integrating the ‘cell-specific barcodes’ into the synthesized
cDNA sequences (20, 21), the throughput of scRNA-seq
improved from a few hundreds of cells to thousands of cells.

Multiple scRNA-seq or sc-nucleus RNA-seq protocols were
developed to enhance the scale, the sensitivity, or the accuracy of
single-cell transcriptome quantification (22). These methods can
be categorized into plate-based or microfluidic-based platforms.
For the plate-based platform, the representative method is
Smart-seq, which is currently upgraded into a third-generation,
Smart-seq3 (23). In Smart-seq3, a 5’ unique molecular identifier
(UMI) is integrated into the full-length cDNA for counting
transcripts, achieving the precise quantification of transcript
isoforms. Other plate-based platforms, such as cell expression
by linear amplification and sequencing (CEL-seq2) and
massively parallel single-cell RNA sequencing (MARS-seq2),
integrate the Fluidigm C1 system or liquid-handling robot to
June 2021 | Volume 12 | Article 697412
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improve the data quality and reduce labor cost, respectively (24,
25). Applying a bead-based microfluidic system has dramatically
pushed the field into a real high-throughput area for the
microfluidic platform. In a single experiment, the microfluidic
system can capture 3,000~10,000 droplets, each of which
encapsulates a single-cell and a single-bead carrying specific
DNA-barcoded primers (26–28). The transcripts in single
droplets are then captured, reversely transcribed, and barcoded
with cell barcodes and UMIs. These procedures well replace the
single-well-based cell sorting and library construction steps in
the plate-based platform and dramatically increase the detection
number of single cells in each sample. Other strategies have also
been used to profile the transcripts in single cells, such as the
split-pool-based cell barcoding strategy (29–31) and the
integration of beads with the microwell-based platform (32).
Although there are still challenges in different aspects, such as
cost, sequencing depth, and gene coverages, these scRNA-seq
methods have enabled the profiling of single cells with more than
Frontiers in Immunology | www.frontiersin.org 3
thousands of genes per cell. The data dimension is significantly
higher than the cytometry-based systems.

Single-Cell Multi-Omics Technologies
The interconnections and relations of genome, epigenome,
transcriptome, and proteome determine the function of single
cells, which requires a comprehensive understanding of the
biology process across multi-omics simultaneously at the
single-cell level (33). In the following session, we will focus on
reviewing single-cell multi-omics technologies, that could
simultaneously measure at least two of different omics
including genomics, transcriptomics, epigenomics, proteomics,
and spatial information at the single-cell level.

Yin et al. introduced the sci-L3-RNA/DNA co-assay to
simultaneously measure the genomics and transcriptomics in
single cells (34). In sci-L3-RNA-/DNA co-assay, single cellular
DNA and mRNA were respectively barcoded by Tn5 transposon
intersection and by poly-T primer, both of them carrying
June 2021 | Volume 12 | Article 697412
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FIGURE 1 | The overview of single-cell omics techniques. (A) The overview of single-cell cytometry systems, including flow cytometry with fluorescence-labeled
antibodies for single isolated cells (left), mass cytometry with metal isotope-conjugated antibodies isolated single cells (middle), and imaging mass cytometry with
metal isotope-conjugated antibodies labeled on tissues (right). (B) The overview of two canonical scRNA-seq platforms, including plate-based scRNA-seq methods
with sorted cells barcoded within each well (left), and droplet-based scRNA-seq method, single cells were barcoded within individual droplets (right). (C) The
overview of single-cell multi-omics techniques, including library preparing for genomic, epigenomic, proteomic, and spatial indexing with transcriptomic of single
cells simultaneously.
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barcoding sequences and UMIs. Both libraries were prepared
with three-level split-pool indexing and linear amplification for
downstream analysis. Another strategy is to physically separate
the nucleus and cytosol of a single cell and construct the library
for each component individually. Following this strategy, direct
nuclear tagmentation and RNA sequencing (DNTR-seq) (35)
separately obtained the whole-genome sequencing and full-
length cDNA sequencing from single cells with ultra-high
resolutions. Besides directly obtaining the whole genome of
single cells, the cDNA sequences from mRNA could also be
used to detect the mutation status of single cells (36, 37),
especially for identifying tumor-specific mutations across
different tumor cell populations.

Open chromatin regions are also important functional
characteristics for revealing cellular genomic regulations. With
the assay development for transposase-accessible chromatin
using sequencing (ATAC-seq), exploring open chromatin in
single cells becomes possible. ATAC-seq enables fast and
precise epigenomic profiling by integrating the sequencing
adaptors into the accessible chromatin by prokaryotic Tn5
enzyme (38). Combining ATAC-seq with single-cell isolation
and barcoding techniques enables access to open chromatin in
single cells (39). Moreover, as both the transposed chromatin
fragments and the synthesized cDNA fragments of cellular
transcripts can be adapted into the same cell barcoding ID,
Cao et al. and Chen et al. successfully detected chromatin
accessibility and transcriptome simultaneously at the single-cell
level (40, 41). Simultaneous high-throughput ATAC and RNA
expression with sequencing (SHARE-seq) is another method to
evaluate the relationship between chromatin accessibility and
gene expression in single cells and identify the priming role of
chrome accessibility in transcriptomic regulation, which is
helpful to infer cell differentiation (42). Meanwhile, multiple in
silico algorithms, such as model-based analyses of transcriptome
and regulome (MAESTRO) and Signac (43, 44), have been
correspondingly developed to integrated analyze scRNA-seq
and scATAC-seq data in single cells.

The protein expression can directly reflect the functionality
and biological states of cells. As a result, flow cytometry and
CyTOF have been broadly used in biological researches for
protein expression quantification despite their limited
dimensions compared to scRNA-seq. To overcome this
limitation, Stoeckius et al. came up with the idea of using
specifically designed DNA sequences to label and barcode the
protein-specific mAbs (45). The detection number of antibody-
labeled proteins is significantly increased to more than 200 (46),
which is five times more than the detection number in CyTOF.
CITE-seq uses a poly-A tail in the antibodies-conjugated
oligonucleotides to achieve compatibility with the mRNA
capturing system (45). And in the commercial platform (e.g.,
Feature Barcoding by 10X Genomics), the barcoding strategy is
further improved so that the transcriptomic and proteomic
libraries are barcoded with poly-A capture sequences and
antibody-specific capture sequences separately (47). Besides,
Zhang et al. used DNA-barcoded pMHC tetramers to
specifically label and sequence antigen-specific T cells (48). A
Frontiers in Immunology | www.frontiersin.org 4
similar strategy was also used to remove experimental and
amplification bias by staining oligo-labeled surface proteins
ubiquitously expressed on cells from different samples (49).

The in-situ cellular spatial information is essential to
accurately capture the biological functions of cells in their
physiological context. It is particularly important to investigate
the spatial information in the tumor microenvironment (TME),
such as tissue-specific T cell infiltration, the spatial distribution,
and interaction of cellular ligands and receptors, and the
distribution of malignant cells, to improve our understanding
of tumorigenesis and tumor-specific immune escape in TME
(50). The spatial transcriptome methods can be mainly classified
into fluorescence or sequencing-based methods, which have also
been comprehensively reviewed by Asp et al. (51). Based on the
technique of fluorescence in situ hybridization (FISH) (52),
seqFISH+ enables visualization transcripts at local sites and
can image more than 10,000 genes at subcellular resolution
with upgraded optical resolution and barcoding strategy (53).
Despite the high spatial resolution, the applications of
fluorescence-based platforms are usually hampered by the
intensive experiment procedures and the design of the
transcript probe. In contrast, the application of cellular
barcoding strategies in scRNA-seq enables in-situ barcoding of
local cells in tissues. The most challenging for this strategy is to
demultiplex the physical locations with the detected barcoding
sequences. In Slide-seq and high-definition spatial
transcriptomics (HDST) assays (54–56), arrayed barcoding
beads are used to capture spatial whole-transcriptomes, and
the resolution of the reconstructed spatial map depends on the
designed bead arrays. In another microfluidic-based method
(57), the tissue slide was separately barcoded by parallel
microfluidic channels within different directions, and the
different combinations of barcodes can recover the
spatial information.

Innovative Computational Methods for
Single-Cell Analysis
Accompanied by the increased capability of generating high-
dimensional and high-throughput single-cell data in one
experiment, interpreting the biological functions of cells and
functional alterations in disease status becomes even more
challenging (58). Hie et al. summarized the typical
computational workflow for single-cell RNA-seq data analysis,
including data preprocessing, batch correction, clustering, and
functional annotation of single cells (59). Among that, the
methods for inferring cell lineage trajectories under different
stimuli are broadly applied to understand cellular dynamics and
interactions. Besides, with the development of single-cell multi-
omics techniques, integrating multi-omics single-cell data is also
computationally challenging (7).

Saelens et al. comprehensively benchmarked the performance
of 45 trajectory inference methods (60), highlighting that the
preset trajectory topology of computational methods can affect
the inference results and that the performance of different
methods can vary with different datasets. The most limitation
of these methods, including Monocle3 (61), partition-based
June 2021 | Volume 12 | Article 697412
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graph abstraction (PAGA) (62), and Slingshot (63), is that the
cell trajectory estimation calculated by the cell-cell distance
ignores the inherited cellular information. Instead, the
innovative method RNA Velocity (64, 65) addresses this issue
by quantifying the spliced and unspliced transcripts of single
cells and connecting cells with similar transcripts splicing states.
Another method, CytoTRACE, leverages the number of detected
genes to reflect the developmental potential of single cells,
providing a robust performance to delineate cellular
trajectories (66). Furthermore, the DNA sequencing
information, including T cell receptor sequencing, can also be
used as cellular labels for inferring cellular dynamics and lineage
tracing (67, 68).

The integrative analyses of single-cell multi-omics data
consider the status of single cells from different scales of
biological features and delineate cell types based on cell
similarities in higher feature space, which are challenged by the
different characteristics of single omic data and batch effects
across multiple data samples. Ma et al. comprehensively
summarized the data integration methods for analyzing single-
cell multi-omics data (7). One strategy is to estimate the cellular
distances within individual omics and then calculate the
“weighted-nearest neighbor “ distance for integrated analysis of
multiple-omics data (46). Another one exploits a modified
statistic framework to identify low-dimensional variations
across data modalities for data integration (69). In other
methods, multi-view machine learning (70), canonical
correlation (71), and deep generative model (72) have also
been used for multi-omic single-cell data integration.
APPLICATION OF SINGLE-CELL OMICS IN
TUMOR IMMUNOLOGY

With the aid of single-cell methods, the heterogeneity of tumor
cells and their interaction in the local microenvironment have
been deeply and comprehensively interrogated. The single-cell
data has been extensively used for identifying biomarkers for
cancer diagnosis, prognosis prediction, and new treatable targets
Frontiers in Immunology | www.frontiersin.org 5
in designated clinical cohorts. The Human Tumor Atlas Network
(HTAN) project (73) has put forward a framework of mapping
tumor atlases in molecular, cellular, anatomical, and clinical
fields, aiming to interrogate the single-cell data for clinical
transitions thoroughly. In the following session, we mainly
focus on applying different single-cell multi-omics techniques
in establishing the cellular atlas of tumor ecosystem, T cell
dynamics, and their interactions contributing to tumor
diagnosis, treatment, and prognosis. The typical applications
are correspondingly listed (Figure 2 and Table 1).

Dissecting Tumor Microenvironments at
the Single-Cell Level
Taking advantage of high throughput and high dimensional
proteomic single-cell analysis, CyTOF has been used to dissect
the immune composition of TME in different types of tumors. In
the study of early lung adenocarcinoma (74), Lavin et al. profiled
the immune atlas in paired tumor lesions, normal lung tissues,
and peripheral blood. They revealed a tumor-specific depletion
of CD8+ T effector cells and the tumor-enriched macrophages
with the expression of PPARg potentially contributing to
immune suppression in TME. This study provides potential
immunotherapies for targeting macrophages in lung cancer. By
comparing the immune atlas of clear cell renal cell carcinoma
(ccRCC) and normal renal tissues (82), Chevrier et al. identified
the polymorphic expressions of exhausted markers and CD38 on
PD-1+ exhausted T cells in tumors and a special subset of CD38+

tumor-associated macrophages (TAM) highly associated with
the immunosuppressed T cell subsets. Further integrating the
tumor-infiltrating frequencies of immune cell subsets with
clinical outcomes, they identified the abundance of several
TAM subsets that can predict the progression-free survival of
patients. Additionally, CyTOF and imaging CyTOF have also
been combined with profiling the ecosystem of malignant cells
and immune cells in breast cancer. Wagner et al. simultaneously
compared the immune and malignant cell components of breast
tumor, juxta-tumor, and mammoplasty tissue samples. The
phenotypic abnormality of tumor cells and dynamics of
immune cells suggests the tumor-immune combined
FIGURE 2 | Applications of single-cell techniques in clinical cancer research. The schematic diagram of cancer research with single-cell techniques, blood or tissue
samples of the designated patient cohort was collected and performed single-cell profiling. The collected data were integrated for downstream analysis and
visualization. With in-depth integration with clinical characteristics, biomarkers for clinical decisions, disease prognosis, and tumor immunotherapy.
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phenotypes of breast tumor patients independent of the clinical
grade and subtypes, suggesting the local interactions could be
more critical for prognosis treatment efficacy (83). Using
imaging CyTOF, Jackson et al. established the highly
multiplexed molecular spatial maps of breast tumor
microenvironments with different clinical subtypes and grades.
Interrogating the single-cell pathology features, they further
proposed that the subgroups of patients by pathology features
in the tumor microenvironment could better predict patients’
overall survival and provide new strategies for clinical
subtyping (75).

With higher dimension capability, scRNA-seq provides an
opportunity to more broadly and systematically profile TME
and its associated immune atlas with many more critical
functional aspects (84). For example, with scRNA-seq, Azizi
et al. identified the continuous cellular states of T cells and
myeloid cells in breast cancers (85). They proposed that both
TCR signals and environmental stimuli could module T cell
functionality to combine TCR clonotypes with T cell
phenotypes. scRNA-seq also enables more comprehensive
lineage analyses to reflect the dynamic immune cell responses
during tumorigenesis. With RNA Velocity analysis (64) and
mitochondrial-based lineage tracing (86), Zhang et al. revealed
that a subset of LAMP3+ dendritic cells could migrate from
tumors to hepatic lymph nodes to trigger systematic adaptive
immune responses (76).

Integrating the genotyping and single-cell transcriptomic data
of myeloproliferative neoplasm cells, Nam et al. comprehensively
delineated the contributions of CALR mutation in the
differentiation of hematopoietic stem and progenitor cells
(HSPCs). They also revealed that the CALR mutation more
affected the cellular gene expressions at a later differentiation
stage and further identified the mutation-specific activation of
Frontiers in Immunology | www.frontiersin.org 6
the IRE1-XBP1 pathway in HSPCs as a potential therapeutic
target (77). With single-cell sequencing the genomics and
transcriptomics of acute myeloid leukemia (AML) malignant
cells, van Galen et al. identified six subsets of malignant AML
cells across developmental hierarchies. They revealed the
determination role of genotype in the compositions of AML
cells in patients and further determined that the differentiated
AML cells could suppress the function of T cells. The genotype-
specific phenotype of AML cells and the immunosuppressive
functionality of differentiated AML cells could further guide the
genotype-specific immunotherapies in AML (87). Single-cell
triple omics sequencing (scTrio-seq), a platform that
s imultaneous ly profi l e s genomic , epigenomic , and
transcriptomic on individual cells, is able to delineate the more
complex insights of the coordinated regulations of copy number
variations, DNA methylation, and gene expressions in malignant
cells of hepatocellular carcinomas and colorectal cancer (88, 89).
Moreover, comparing the epigenomic regulatory networks of
bone marrow and peripheral blood mononuclear cells between
healthy and mixed-phenotype acute leukemia (MPAL) patients,
Granja et al. uncovered the common regulation factors and
revealed RUNX1 as an oncogene to upregulate CD69 in MPAL
(47). Integrating scRNA-seq and spatial transcriptomic data in
pancreatic ductal adenocarcinoma, Moncada et al. intersected
the region-specific gene expression with cell type-specific gene
expression. They revealed that the stress-response cancer cells
were colocalized with IL-6 releasing inflammatory fibroblasts,
supporting the IL-6 induced stress-response mechanism in
cancers (78). Thus, the integration of single-cell multi-omics
allows a more comprehensive exploration of cancer evolution,
local cellular interactions, and immune regulations in the tumor
microenvironment, strengthening our understanding of cancer
pathogenesis and immune suppression (90, 91).
TABLE 1 | Selected cancer research with Single-Cell omic technologies.

Cancer type Single-cell
methods

Highlights Ref

Early lung
adenocarcinoma

CyTOF, scRNA-
seq

Comparing the paired immune signatures across tumor lesion, normal lung tissue, and blood, Lavin et al. Identified the
tumor lesion-specific immune regulations, especially the modifications of innate immune cells

(74)

Breast cancer Imaging mass
cytometry

The high-dimensional pathology images of breast cancers characterized the disease-related spatial resolved cellular
signatures.

(77)

Hepatocellular
carcinoma

scRNA-seq In-depth integration of single-cell data with bioinformatic methods, Zhang et al. identified the migration of immune cells,
especially the LAMP3+ dendritic cells, potentially contributing to lymphocyte activation.

(87)

Myeloproliferative
neoplasms

scRNA-seq +
genotyping

Integrating the cellular mutation genotypes and transcriptomic data, Nam et al. revealed the upregulation of NF-kB and
IRE1-XBP1 pathways in mutated cells. And the modifications of mutations in transcriptomic outputs.

(82)

Mixed-phenotype
acute leukemias

scRNA-seq +
protein,
scATAC-seq

By comparing the transcriptomic and epigenetic blood development maps between healthy and MPAL patients, Granja
et al. uncovered the patient-specific regulatory networks, such as the RUNX1 regulation of CD69 in tumor patients.

(47)

Primary
pancreatic tumors

scRNA-seq,
spatial
transcriptomics

With intersection analyses of scRNA-seq data and spatial transcriptomic data, Moncada et al. revealed the interactions
of different cells in tumor microenvironments, especially the colocalization of inflammatory fibroblasts and cancer cells.

(86)

Basal or
squamous cell
carcinoma

scRNA-seq +
TCR

Comparisons between the tissue TCR repertoires before and after immunotherapies, Yost et al. uncovered the new
entered T cell clonotypes rather than the exhausted T cell clonotypes that may respond to immunotherapy.

(105)

Hepatocellular
carcinoma

scRNA-seq By comparing the immune landscape between primary and early-relapse HCC patients, Sun et al. indicated the innate-
like CD8 T cells might contribute to an early relapse of HCC.

(119)

Pancreatic ductal
adenocarcinoma

snRNA-seq,
spatial
transcriptomics

Comparisons of the PDAC samples before and after chemoradiotherapy, Hwang et al. revealed the basal rather than
the classical phenotype of malignant cells might benefit the therapy efficiency with single-cell and spatial transcriptomic
inspections.

(121)
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Evolution of Cancer Cells in
Tumorigenesis and Drug Resistance
In-depth single-cell characterization of cancer cells in the TME,
and their dynamic regulations in tumorigenesis, metastasis, and
drug responses can uncover the heterogeneity of cancer cells and
their causality with clinical outcomes (90, 92). The scRNA-seq
profiling of diverse cancer cells in oligodendroglioma patients
revealed a subset of undifferentiated malignant cells with stem
cell phenotypes and proliferating potentials, suggesting the
primary roles of cancer stem cells (CSCs) in cancer evolution
(93). Integrating the genetically engineered mouse models
(GEMMs) and scRNA-seq, Marjanovic et al. mimicked and
profiled the progression of human lung adenoma and
adenocarcinoma. They identified a subset of TIGIT+ cells with
the high-plasticity cell state (HPCS) and annotated these cells as
transitioning tumor cells that contributed to tumor progression
and chemoresistance (94). Neftel et al. also characterized four
malignant cell subsets of glioblastoma using scRNA-seq with
specific molecular features, and that the cellular transitions
demonstrated the plasticity of malignant cells across distinct
malignant cell subsets with additional cell barcoding and lineage
tracing (95). All of these findings highlighted the impact of high-
resolution single-cell profiling in understanding tumorigenesis
and the evolution of cancer cells.

Metastasis is the dominant cause of the deaths of cancer
patients, and its process is stochastic and dynamic (96). scRNA-
seq study in human metastatic lung adenocarcinoma (LUAD)
revealed a subset of cancer cells with distinct differentiation
trajectory and gene signature of aggressive cell movement,
proliferation, and apoptosis. And the gene signature of this
cancer cell subset is enriched in later and metastatic tumor
tissues and associated with a worse prognosis (97). Meanwhile,
the applications of scRNA-seq and Cas9-enabled high-resolution
lineage tracing of the xenograft model of LUAD cell line
delineated comprehensive disseminate routes of metastatic
cancer cells. And combining the phenotypical inspection of
scRNA-seq data, Quinn et al. uncovered the characteristics of
cancer cells with different metastatic ability and quantified their
specific transcriptomic regulation in modulating metastasis (98).

The drug resistance of cancer cells severely limits the efficacy
of chemotherapy or molecularly targeted therapies, and the
cellular states and responses during treatments can determine
further disease progression (4). In breast cancer, the single-cell
profiling of docetaxel-resistant MCF7 breast cancer cells revealed
a subset of cells with a stem-like phenotype and identified LEF1
as the critical molecule regulator in drug resistance (99). In
melanoma, an immune evasion-specific malignant cell program
identified by scRNA-seq can predict the clinical responses of
immune checkpoint inhibitors (ICIs). Targeting the signal
activation of CDK4/6 in this program can repress the drug
resistance program and enhance the ICI efficacy (100).
Meanwhile, a multimodal method (Perturb-CITE-seq) was
applied to characterize the mechanisms of resistance of ICIs.
Integrating the simultaneously RNA and protein profiling with
Cas9 genomic knockout screens, Frangieh et al. validated the
known mechanisms of resistance to ICIs, and further revealed a
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novel CD58 related resistance mechanism. Specifically, they
found that downregulating the expression of CD58 could
induce the expression of PD-L1 on malignant cells and reduce
the co-stimulatory signal of the CD58-CD2 axis on CD8+ T cells
(101). Overall, the comprehensive interrogating of the cellular
responses and drug resistances in malignant cells could uncover
the new treatable targets and guide the combined therapies for
cancer treatments.

T Cell Responses and TCR Repertoire in
Tumor Immunity
T cells are essential adaptive immune cells that mediate tumor
immunity. The promising immune checkpoint blockade (ICB)
therapies mainly target T cells and recover T cell immunity
through disrupting PD-1/PD-L1 and CTLA-4/CD80 or CD86
interactions or specifically activating tumor-antigen-specific T
cell clones (102, 103). Unfortunately, only a small part of patients
has beneficial responses with recovered anti-tumor T cell
responses. Improving the ICB efficacy requires a more
comprehensive understanding of dynamical T cell responses in
patients during tumorigenesis and ICB treatments (104).

Platforms that integrate scRNA-seq data and scTCR-seq in
individual T cells, such as Smart-seq3 and 10X Genomics single-
cell immune profiling, enable a more precise delineation of
immune responses and lineage tracking of T cells in
tumorigenesis or under immunotherapy treatments (105).
Smart-seq3, a representative of full-length sequencing platform,
could read full-length CDR3 sequences of TCRab chains in
single cells but with limited throughput (23). 10X single-cell
immune profiling, a commercial droplet-based platform that
integrates TCR enrichment procedures, enables more efficient
immune profiling of T cells (68).

Every T cell owns a unique TCR, which provides a valuable
lineage tracking marker to investigate the dynamics of T cells,
including T cell clonal expansion, functional changes of a TCR
clonotype, and T cell migration across different tissues. The T cell
landscape with the information of paired TCR a and b chains in
liver cancers comprehensively discloses the transition route of
exhausted CD8+ T cells in HCC and highlights that a subset of
CD8+ T cells with intermediate levels of PDCD1 and TIGIT can
be the target cells for immunotherapies (106). In another work,
Zhang et al. developed an analysis algorithm (STRATRAC) to
quantify the T cell expansion, migration, and transition with
paired TCR repertoires (107). With the T cell transition analysis
of exhausted CD8+ T cells in colorectal tumors, Zhang et al.
revealed a tight association of these cells with effector memory
CD8+ T cells but independence of the development trajectory of
effector memory and recently activated effector memory CD8+ T
cells , suggesting a TCR-dependent fate decision in
tumorigenesis. These works strengthen our understanding of
the dynamics of T cell exhaustion in tumorigenesis.
Furthermore, in-depth profiling of T cell dynamics before and
after anti-PD-1 therapy in basal or squamous cell carcinoma
suggests the newly entered T cell clonotypes, rather than the
exhausted T cell c lonotypes, respond to anti-PD-1
immunotherapy (79).
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T cells are the dominant targets of immunotherapies, and
their responses after immunotherapy treatments are critical to
evaluate the clinical efficacy (108). Thereby, the clonal
expansions and the accordant changes of TCR repertoires in
tumors, normal adjacent tissue, and peripheral blood can be used
for predicting the clinical responses to immunotherapies (109).
Meanwhile, multiple computational methods have been
developed to connect the similarities of TCR sequences with T
cell functionalities, which would expand the applications of TCR
repertoires in cancer research (110–112). Besides, the
comprehensive inspection of T cells in tumors also directs
adoptive T cell transfer (ACT) in cancer therapies to identify
tumor-responsive T cells (104).

The Molecular Biomarkers for Tumor
Diagnosis and Prognosis
The heterogeneities of the tumor microenvironment and
strikingly different clinical outcomes in tumor patients require
comprehensive molecular profiling to guide the personalized
therapies. Multiple initiatives have been founded to identify
tumor-specific biomarkers to facilitate better clinical decisions
using integrative single-cell omics data analyses (73, 113, 114).

Several groups focused on seeking potential disease or
prognosis-related biomarkers using CyTOF. Comparing the
peripheral immune atlas of 20 melanoma patients before and
after anti-PD-1 immunotherapy, Krieg et al. found that the
frequency of CD14+CD16-HLA-DR+ monocytes in peripheral
blood before treatment was highly correlated to the response of
anti-PD-1 immunotherapy and thus could help to stratify
patients before anti-PD-1 immunotherapy treatment (115). In
a similar study of dissecting immune profiling in classical
Hodgkin lymphoma (116), the peripheral TCR diversities in
CD4+ T cells at baseline and during PD-1 blockade therapy were
related to the clinical responses. Meanwhile, comparing the
development of B cells in B cell precursor acute lymphoblastic
leukemia patients and healthy controls, Good et al. revealed that
the abnormal expansions of specific B cell subsets during
development could predict disease relapse at the time of
diagnosis (117). Although implemented in a small patient
cohort, all of these strongly suggest the predictive capability of
cellular composition changes in prognosis prediction and disease
monitoring. Besides, the spatial inspection by imaging CyTOF in
molecular colocalization of metastatic melanoma highlighted the
association between the prior expression of b2m in TME and
clinical outcomes of immunotherapy (118). Profiling the
subcellular molecular maps of 483 breast tumor samples using
imaging CyTOF in the METABRIC cohort, Ali et al. uncovered
the genomic regulation of local tumor ecosystems, including
cellular compositions and cellular neighborhoods. They
intensively examined their clinical predictive roles in the
prognosis of breast cancer (119). All these studies demonstrate
the power of the single-cell CyTOF system in finding potential
molecular biomarkers for cancer prognosis and predicting
treatment efficacy.

scRNA-seq data has also been used in seeking molecular and
cellular basis of TME. The distinct transcriptional signatures of
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malignant cells with different genomic backgrounds help classify
tumor subtypes and the design of targeted treatments in a higher
resolution (120). Comparing the ecosystems of primary and
early-relapse HCC tissues, Sun et al. indicated and validated
the enrichment of innate-like CD161+CD8+ T cells with limited
cytotoxic ability in relapsed HCC tissues and may have poor
response to the subclonal neoantigens in early-relapsed tumor
cells, providing new targets to restrain HCC relapse (80). With
the single-cell inspection of tumor-infiltrating lymphocytes in
breast cancers, Savas et al. revealed a gene signature of tissue-
resident memory CD8+ T cells rather than the CD8 alone could
better predict the patient’s survival, suggesting these cells are
potential regulatory targets of immunotherapy in breast cancer
(121). More recently, Hwang et al. delineated the molecular
taxonomy changes of TME in pancreatic ductal adenocarcinoma
patients treated with or without neoadjuvant chemotherapy and
radiotherapy by using the integrated single-nucleus RNA
sequencing and spatially resolved transcriptomics analyses
(81). They found that the basal-like or classical-like
reprogramming of malignant cells was associated with distinct
immune infiltration in tumors and further affected the treatment
outcomes and clinical decisions.

Despite the durable clinical responses of chimeric antigen
receptor T cell (CAR-T) therapy in treating hematological
malignancies, the response rate, adverse events, and
neurotoxicity during CAR-T treatment can vary across patients
(122, 123). Single-cell omics have been applied to uncover the
molecular biomarkers of clinical responses and monitor CAR-T
cells’ functional changes for better clinical application (124, 125).
Using scRNA-seq, Deng et al. intensively interrogated the
transcriptomic phenotypes of CAR-T cells in infusion products
(IPs) with their consequent clinical outcomes on large B cell
lymphoma patients (124). They revealed that the enrichment of
the memory phenotype of CAR-T cells within IPs lead to positive
clinical responses but that the enrichment of exhaustion
phenotype of CAR-T cells associated with disease progression.
Moreover, they also identified a subset of monocyte-like cells in
IPs significantly related to high-grade immune effector cell-
associated neurotoxicity syndrome (ICANS). Furthermore,
Sheih et al. comprehensively profiled the temporal changes of
CD8+ CAR-T cells within IPs, peripheral blood early after
infusion and after the peak of CAR-T cell expansion (125).
Using the paired scRNA-seq and scTCR-seq, they identified
the CD8+ CAR-T cells, within timely increased relative
frequency (IRF) clonotypes, highly expressed the gene
signatures of T cell cytotoxicity and proliferation, suggesting
their effective roles in anti-tumor responses. These studies guide
the further applications of single-cell omics to deeper understand
the mechanistic insights of effective CAR-T therapy, which
would shed light on optimizing CAR-T therapy and
uncovering the molecular biomarkers for predicting
clinical outcomes.

Furthermore, a new concept of a three-dimensional cell atlas
during tumor evolutions has been introduced by Human Tumor
Atlas Network (HTAN) project (73), indicating the molecular,
spatial, and clinical inspections of human tumors, which would
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help uncover the fundamental mechanisms of tumorigenesis and
new biomarkers for cancer screening, tumor metastasis, cancer
immunotherapy, and drug responses in the future.
PERSPECTIVES

In this review, we comprehensively summarize the development
of multiple single-cell omics techniques and their applications in
cancer biology and cancer immunology. These innovative
methods have extensively enhanced our understanding of
tumorigenesis, the mechanisms of tumor-induced immune
escape, and the dynamic responses to different tumor
treatments. Although significant progress has been made,
multiple challenges still exist, which could limit current studies
and need to be further solved. In the CyTOF system, the preset
and limited number of designated markers hinders the
identification of novel or rare cell populations. Additional rare
elements to increase the detectable number of channels are
required to further assist their applications in the clinical field.
In the scRNA-seq system, as the number of detected genes, the
transcript-length coverage, and the measurement throughput
varied across different platforms and assays, it is challenging to
integrate and compare single-cell data from different systems.
Meanwhile, the limited transcript capture efficiency of scRNA-
seq methods leads to a high dropout of scRNA-seq data, resulting
in a higher noise level than bulk RNA-seq (126). The common
usage of 3’ end transcript capture in scRNA-seq methods
involves many non-informative transcripts, making the specific
examination of interested transcripts infeasible and wasting the
sequencing cost (127). Thus, an optimized system that is able to
economically and efficiently generate scRNA-seq data with high
data quality and uniform data format is emergently desired to
achieve robust analysis of larger sample cohorts. Meanwhile, a
more prospective direction in the future is to profile single cells
with integrated multi-omics to enable better and deeper profiling
of the complicated tumor ecosystem. Moreover, new
computational tools to improve the integrated data quality,
facilitate the biological interpretation, and speed up the
analysis procedures are valuable to be developed.

Single-cell data-driven clinical translation is important and
promising in cancer diagnosis and treatment. Due to the
Frontiers in Immunology | www.frontiersin.org 9
expensive cost of single-cell methods, the enrolled patient
cohort in current cancer research is very small, leading to
inconsistent and non-repeatable biological findings. How to
interrogate enormous single-cell features with clinical
outcomes is computationally challenging and requires more
external validations. Moreover, the tissue sites, sample status,
isolation methods, and timepoint for sample resections can be
varied across different clinical studies, leading to unstable and
non-repeatable single-cell biomarkers found in the clinical field.
Thus, a more feasible single-cell framework for performing large-
scale clinical studies and the resources for sharing and exploiting
the published single-cell data mainly in the cancer field, are
urgently needed for better clinical translation in the future.

In summary, single-cell omics techniques will be
indispensable for investigating both basic and clinical problems
in tumor biology , tumor immunology, and tumor
immunotherapy in the future, as they provide broader and
deeper insights in large patient cohort to inspire more precise
and personalized medicine in cancer treatments.
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