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ABSTRACT
The use of low-field magnetic resonance imaging (LF-MRI) scanners has increased in
recent years. The low economic cost in comparison to high-field (HF-MRI) scanners
and the ease of maintenance make this type of scanner the best choice for nonmedical
purposes. However, LF-MRI scanners produce low-quality images, which encourages
the identification of optimization procedures to generate the best possible images. In
this paper, optimization of the image acquisition procedure for an LF-MRI scanner
is presented, and predictive models are developed. The MRI acquisition procedure
was optimized to determine the physicochemical characteristics of pork loin in a
nondestructive way using MRI, feature extraction algorithms and data processing
methods. The most critical parameters (relaxation times, repetition time, and echo
time) of the LF-MRI scanner were optimized, presenting a procedure that could be
easily reproduced in other environments or for other purposes. In addition, two feature
extraction algorithms (gray level co-occurrence matrix (GLCM) and one point fractal
texture algorithm (OPFTA)) were evaluated. The optimization procedure was validated
by using several evaluation metrics, achieving reliable and accurate results (r > 0.85;
weighted absolute percentage error (WAPE) lower than 0.1%; root mean square error
of prediction (RMSEP) lower than 0.1%; true standard deviation (TSTD) lower than 2;
and mean absolute error (MAE) lower than 2). These results support the high degree
of feasibility and accuracy of the optimized procedure of LF-MRI acquisition. No
other papers present a procedure to optimize the image acquisition process in LF-MRI.
Eventually, the optimization procedure could be applied to other LF-MRI systems.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Data Mining, Feature extraction, MRI, Predictive models, Optimization, Central
Composite Design

INTRODUCTION
Many scientific studies are based on computer vision algorithms and magnetic resonance
imaging (MRI), mainly focusing on medical (and veterinary) radiology for diagnostic
imaging. For many years, these techniques have also been utilized for food inspection
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and monitoring to guarantee food safety and product quality (Bajd et al., 2016b; Bajd et
al., 2016a; Bertram et al., 2005; Fantazzini et al., 2009; García-García et al., 2019; Hansen
et al., 2008; Pérez-Palacios et al., 2010; Pérez-Palacios et al., 2011; Pérez-Palacios et al.,
2014; Ishiwatari, Fukuoka & Sakai, 2013; Lee et al., 2015; Mahmoud-Ghoneim et al., 2005;
Portanguen et al., 2014; Shaarani, Nott & Hall, 2006). Multidisciplinary teams have been
involved in these scientific studies, from computer vision, MRI, data analysis, and different
areas of knowledge: medicine, veterinary medicine, and food technology. However, the
general procedure for optimizing the MRI acquisition procedure and computer vision
algorithms for a specific purpose has not been revised. This paper presents a generic
procedure to optimize the analysis of a meat product (specifically pork loin) by MRI and
computer vision.

In the case study presented, computer vision techniques and MRI were proposed in
recent years as an alternative methodology to traditional methods of analysis of meat
and meat derivatives (mainly hams and loins) since they are nondestructive, noninvasive,
nonintrusive, nonionizing, and innocuous (Ávila et al., 2018; Ávila et al., 2019; Caballero et
al., 2017d; Caballero et al., 2018b). Feature extraction algorithms were employed to obtain
numerical characteristics from MRI (Ávila et al., 2019; Caballero et al., 2017d; Caballero et
al., 2018b), forming datasets of attributes extracted from the images.

Dataminingmethods were also included in the usual procedure to process data extracted
from MRI, to classify products, to detect anomalies, to study quality parameters, or even
to predict the quality of the products (Ávila et al., 2018; Ávila et al., 2019; Caballero et al.,
2017d; Caballero et al., 2018b; Pérez-Palacios et al., 2017). In general, the general procedure
for the analysis of meat products by MRI consists of three main steps: image acquisition,
feature extraction, and data analysis.

For image acquisition, high-field magnetic resonance imaging (HF-MRI) scanners
have been frequently utilized in meat and meat product research (Bajd et al., 2016b;
Bajd et al., 2016a; Bertram et al., 2005; Fantazzini et al., 2009; García-García et al., 2019;
Hansen et al., 2008; Pérez-Palacios et al., 2010; Pérez-Palacios et al., 2011; Pérez-Palacios
et al., 2014; Ishiwatari, Fukuoka & Sakai, 2013; Lee et al., 2015; Mahmoud-Ghoneim et al.,
2005; Portanguen et al., 2014; Shaarani, Nott & Hall, 2006). However, HF-MRI scanners are
expensive and require highmaintenance costs, such as liquid helium for refrigeration (Ladd
et al., 2018; Feig, 2011). This kind of device is especially suitable formedical (and veterinary)
purposes. In contrast, the use of low-field magnetic resonance imaging (LF-MRI) scanners
has increased in food technology applications for the evaluation of quality parameters of
meat products (Bernau et al., 2015; Manzoco et al., 2013; Monziols et al., 2006; Torres et al.,
2019) in recent years since they are less expensive than HF-MRI scanners and do not have
high maintenance costs (they can be refrigerated simply by air). The LF-MRImagnetic field
varies from 0.15 to 0.50 T (Ladd et al., 2018), and consequently, these scanners produce
lower-quality images (low signal-to-noise ratio) (Ladd et al., 2018). This disadvantage
poses a challenge to obtaining images that can be computationally analyzed and requires
the optimization of procedures for image acquisition (Pérez-Palacios et al., 2017).

From the acquisition sequence point of view, three methods were tested in LF-
MRI studies of meat and meat products (spin echo (SE), gradient echo (GE) and
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turbo 3D (T3D)) (Caballero et al., 2017d; Caballero et al., 2018b; Pérez-Palacios et al.,
2017). In general, SE led to sharper and better-defined images and achieved higher
correlation coefficients than GE and T3D for the prediction of quality parameters of meat
products (Caballero et al., 2018b; Pérez-Palacios et al., 2017).

In relation to relaxation times, MRI can be weighted on T1 and T2 relaxation times.
T1 or spin-lattice relaxation time is the time from longitudinal magnetization until the
equilibrium value of the relaxation times has been exponentially decreased. T2 or spin-spin
relaxation time describes the same process for transverse magnetization. There are also
other critical parameters in addition to the MRI contrast, such as echo time (TE) and
repetition time (TR), that must be established for image acquisition (Pérez-Palacios et al.,
2017). TE is the time from the center of the radio frequency pulse to the center of the
echo and principally controls the amount of T2. TR represents the length of time between
corresponding consecutive series of pulses and echoes and determines the longitudinal
magnetization recovered between each pulse (Hendrick, 2005; Stark & Bradley, 1999).

Regarding feature extraction, algorithms based on textures (gray level co-occurrence
matrix (GLCM), gray level run length matrix (GLRLM) and neighboring gray level
dependence matrix (NGLDM)) and fractals (classical fractal algorithm (CFA), fractal
texture algorithm (FTA) and one point fractal texture algorithm (OPFTA)) have been
principally applied (Caballero et al., 2018b;Caballero et al., 2017c;Galloway, 1975;Haralick,
Shanmugam & Dinstein, 1973; Mandelbrot, 1982; Siew, Hodgson & Wood, 1988). Thus,
texture algorithms measure gray levels and integrate matrices based on second-order
statistics (Sonka, Hlavac & Boyle, 1999), while fractals allow the identification of recurring
patterns (Mandelbrot, 1982). In previous studies (Caballero et al., 2017d; Caballero et al.,
2018b; Pérez-Palacios et al., 2017; Caballero et al., 2017a; Caballero et al., 2018a), GLCM
and OPFTA were identified as the best options.

For the data analysis, common statistical tools, such as Pearson’s correlation coefficients,
analysis of variance (ANOVA) or principal component analysis (PCA) have been applied,
showing promising results (Pérez-Palacios et al., 2010; Bro & Smilde, 2014; Cernadas et al.,
2005). In recent years, data mining techniques have also been employed. Data mining is
a nontrivial process of obtaining knowledge and potentially useful information from data
stored in repositories (Fayyad, Piatetsky-Shapiro & Smyth, 1996). Datamining technologies
present important threats to the security and privacy of data (Xu et al., 2014). Concerns
are raised when analytics deploy artificial intelligence (AI) techniques, including machine-
learning algorithms (Rastogi, Gloria & Hendler, 2015). The preservation of privacy in
data mining is also discussed in Aldeen, Salleh & Razzaque (2015). In addition, privacy-
preserving data mining mechanisms are reviewed in Sangeetha & Sudha Sadasivam (2019).
In this paper, data mining algorithms utilized in the developed system preserve the security
and privacy necessary to guarantee the validity of the results.

Considering data analysis, many papers are based onmachine learning and deep learning
algorithms. For example, a special neural network for cybersecurity purposes is employed
in Sarkar et al. (2021), while machine learning algorithms are applied in Muhammad et al.
(2021), where the correlation coefficient r is applied as the evaluation metric, quite similar
to the metric presented in this paper. In the same way, convolutional neural networks
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(CNNs) have also been employed as deep learning algorithms for multiple purposes, for
example, to detect anomalies in automated vehicles (Javed et al., 2021) or classification
tasks (Gadekallu et al., 2021; Vasan et al., 2020).

There are many published clinical applications of the use of data mining in MRI
studies (Itoni, Lecron & Fortemps, 2019).

Since the MRI-extracted features depend on the image quality, the optimization of
the image acquisition parameters is a key aspect for accurately determining the quality
parameters of the meat products. In this case, different data mining techniques (such as
multiple linear regression (MLR), partial least squares (PLS) or isotopic regression (IR))
have been tested in MRI studies to predict the quality characteristics (Ávila et al., 2019;
Caballero et al., 2017d; Caballero et al., 2018b; Pérez-Palacios et al., 2017; Caballero et al.,
2017a; Caballero et al., 2018a).

In Ávila et al. (2019), many data mining techniques were tested, obtaining different
performances as a function of the quality parameter of loins. Moreover, MLR was applied
to evaluate the quality characteristics of beef (Song, Kim & Lee, 2002) and lamb (Cortez
et al., 2006). As a result, MLR was selected as a data mining technique to optimize the
procedure of the analysis of meat products by using LF-MRI.

Optimizing the MRI acquisition procedure in MRI is not a trivial task, mainly because
it depends on multiple parameters and purposes and on the type of MRI device (HF-MRI
vs. LF-MRI).

HF-MRI scanners have been frequently employed in meat and meat products
based on ham and loins (Bajd et al., 2016b; Bajd et al., 2016a; Bertram et al., 2005;
Fantazzini et al., 2009; García-García et al., 2019; Hansen et al., 2008; Pérez-Palacios et
al., 2010; Pérez-Palacios et al., 2011; Pérez-Palacios et al., 2014), beef (Ishiwatari, Fukuoka
& Sakai, 2013; Lee et al., 2015; Mahmoud-Ghoneim et al., 2005; Portanguen et al., 2014) or
chicken (Shaarani, Nott & Hall, 2006). However, there are very few studies that present
the use of LF-MRI applied to food technology. In previous works, LF-MRI scanners were
used to evaluate the quality parameters of hams and loins (Bernau et al., 2015; Manzoco
et al., 2013; Monziols et al., 2006; Torres et al., 2019). Likewise, few studies have shown any
type of optimization in the image acquisition process of an LF-MRI scanner. For LF-MRI
devices, the acquisition sequence was revised in Pérez-Palacios et al., (2017), whereas
the performance of some feature algorithms was presented in Caballero et al. (2018b);
Pérez-Palacios et al. (2017).

In addition, the type of scanner was compared in Caballero et al. (2021), Antequera et
al. (2021), where the advantages and disadvantages of the HF-MRI and LF-MRI scanners
were presented. In St-Jean et al. (2020), Balsigier et al. (2020), the signal-to-noise ratio was
optimized to create a stable and reproducible reconstruction algorithm.

Other authors focus on different parameters to optimize the MRI acquisition procedure.
In this way, the field of view (FOV) was optimized in Aoyama et al. (2018), Walker et al.
(2014) to reduce the geometric distortion for the configuration of the MRI. Similarly, the
position of the sample was reviewed in Bajd et al. (2016b), Bernau et al. (2015), achieving
the best position as a function of the coil used.
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Table 1 Summary of the optimized parameters. Comparison of different methods.

Procedure step Optimized parameter MRI scanner Ref. Year

Image acquisition Field-of-view (FOV) HF Molano et al. (2012) 2014
Data analysis Data mining methods (MLR and IR) HF Bajd et al. (2016a) 2014
Image acquisition Sample position HF Caballero et al. (2017d) 2015
Image acquisition Sample position HF Aggarwal & Agrawal (2012) 2016
Image acquisition &
Feature extraction

Acquisition sequence (SE, GE and T3D)
Feature extraction methods (GLCM, GLRLM and NGLDM)

LF Caballero et al. (2017c) 2017

Image acquisition Field-of-view (FOV) HF Menéndez et al. (2018) 2018
Feature extraction Feature extraction methods (CFA, FTA, GLCM, GLRLM,

LBP, NGLDM and OPFTA)
LF Caballero et al. (2017b) 2018

Data analysis Data mining methods (LM, Penalized, KrlsRadial, Foba,
avNNet, GRNN, Kelm, Dlkeras, SVR, M5, Cubist,
Earth, BagEarth, GBM, GAMBoost, RF, Boruta, RRF,
CForest, Extratrees, QRF, Rqlasso, BRNN, Bartmachine,
GaussPrPoly, LARS, PPR, ENET)

HF/LF Caballero et al. (2017a) 2019

Image acquisition Signal-to-noise ratio (S/N) HF Mandelbrot (1982) 2020
Image acquisition Signal-to-noise ratio (S/N) HF Manzoco et al. (2013) 2020
Image acquisition Type of scanner (HF and LF) HF/LF Lufkin (1998) 2021
Image acquisition Type of scanner (HF and LF) HF/LF Mahmoud-Ghoneim et al. (2005) 2021
Image acquisition &
Feature extraction

Relaxation times (T1 and T2)
Echo time (TE)
Repetition time (TR)
Feature extraction methods (GLCM and OPFTA)

LF This paper 2021

In this paper, the image acquisition procedure for an LF-MRI scanner was optimized.
The efforts in this paper focused on optimizing the three fundamental parameters in the
image acquisition process, such as relaxation times (T1 and T2), TR, and TE, in a LF-MRI
device. To achieve this optimization, ANOVA was conducted to optimize the relaxation
times T1 and T2. Similarly, the response surface methodology (RSM) was used to adjust
the TE and TR because this method considers the relationships between more than one
measure and the remaining measures of the method (Leardi, 2009). In addition, two
feature extraction algorithms (GLCM and OPFTA) were tested in this paper to select the
best option for the feature extraction phase.

Table 1 shows a summary of the parameters optimized in theMRI procedure, considering
the loin samples in all the experiments. To the best of our knowledge, no studies have been
performed to optimize the image acquisition procedure of an LF-MRI scanner.

The main objective of this study is the optimization of the most critical tunable
parameters (relaxation times (T1 and T2), TR, and TE) of the LF-MRI scanner to provide
a valid and usable optimization procedure for multiple purposes. In particular, in this
study, the optimization procedure is oriented to the prediction of the physicochemical
characteristics of fresh and dry-cured loins.

The main contributions of this paper can be summarized as follows: (i) a procedure
to optimize the image acquisition process in LF-MRI is presented; (ii) the optimization
procedure is adapted for a practical application (nondestructive analysis of loins); (iii) the
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Figure 1 Description of the system developed. Experimental design of the study.
Full-size DOI: 10.7717/peerjcs.583/fig-1

performance of feature extraction algorithms has been tested; (iv) no other papers present
a procedure to optimize the image acquisition process in LF-MRI; and (v) the optimization
procedure presented in this paper can be easily replicated in other environments or for
other purposes.

The paper has been organized as follows: ‘Materials and Methods’ exposes the materials
and methods that have been carried out, including the experimental design of the study;
‘Results and Discussion’ presents and discusses the results of the two experiments, showing
the achievements obtained by the optimization processes; and ‘Conclusions and Future
Works’ exposes the conclusions and future trends.

MATERIAL AND METHODS
This study was carried out on a dataset of 12,528 MRIs of pork loins (half of them as
fresh products and the other half as dry-cured products). The fresh loins were frozen (−18
± 2 ◦C) and thawed the day before they were analyzed. The dry-cured loins were stored at
ambient temperature (20 ± 2 ◦C). Figure 1 shows the experimental design.

Two experiments were carried out with the optimization batch (Fig. 1). In the first
experiment (at the top of Fig. 1), SE-T1-weighted vs. SE-T2-weighted contrasts and
GLCM vs. OPFTA algorithms were compared, selecting the options that produce the best
predictions. Thus, the optimal relaxation time parameter and optimal feature extraction
algorithm could be determined.

The second experiment aimed to optimize TE andTR acquisition parameters by applying
the RSM (at the bottom of Fig. 1).

The general procedure for image acquisition, feature extraction, and physicochemical
analysis was similar in these experiments. First, loins were MRI scanned (Fig. 1, process
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A). Second, images were analyzed (Fig. 1, process B), extracting features by means of
the best computer vision algorithms according to Caballero et al. (2017d), Caballero et
al. (2018b), Pérez-Palacios et al. (2017), Caballero et al. (2017a), Caballero et al., (2018a).
After the image acquisition procedure, the loins were physicochemically analyzed (Fig.
1, process C), determining quality parameters such as water activity, pH, moisture, lipid
and salt content, and instrumental color L∗. All the data obtained were stored in a dataset
repository (Database, in Fig. 1). Finally, predictive techniques of data mining were applied
to the datasets (Fig. 1, process D) to obtain predictive models. Other analyses affected
the obtained models (Fig. 1, processes E and F), which were tested by means of several
validation metrics.

As a result of the first experiment, predictive model 1 allowed the optimization of
SE sequence acquisition (T1-weighted vs. T2-weighted), as well as identification of the
best feature extraction algorithm (GLCM vs. OPFTA). T1 and OPFTA resulted in the
best combination, according to the first experiment and the results of the ‘‘Results and
Discussion’’ section of this paper. This combinationwas employed in the second experiment
to optimize the TE and TR acquisition parameters.

In this way, the relaxation times (T1 and T2), TR, and TE of the LF-MRI scanner were
optimized for the image acquisition process. Tomention some gaps, other parameters could
also be optimized, such as FOV, slice thickness, or number of repetitions. However, for
the practical application proposed in this work, it was enough to optimize the parameters
considered. Regardless, the optimization of any other parameter could be solved by
following the same optimization model proposed in this paper.

To perform the optimization procedure, a computational system was implemented
according to the experimental design. The system complied with the secure software
development guidelines specified in (Sancho, Caro & Rodríguez (2020) and the
considerations on security risk estimations presented in Sancho et al. (2020). They
contributed to the development of a secure system, especially considering the importance
and significance of research related to food technology in relation to food safety.

MRI acquisition
MRI was performed at the University of Extremadura (Cáceres, Spain). A LF-MRI scanner
(ESAOTE VET-MR E-SCAN XQ 0.18 T) with a hand/wrist coil was utilized. SE weighted
on T1 and T2 were selected for sequence acquisition. In the first experiment, standard
acquisition sequence parameters established by the MRI scanner manufacturer were
employed (Pérez-Palacios et al., 2008; ESAOTE SpA., 2007). In the case of the SE-T1-
weighted sequence, the standard acquisition parameters (ESAOTE SpA., 2007) were as
follows: TE: 26 ms; TR: 630 ms; FOV: 150× 150 mm2; slice thickness: four mm; flip angle:
90◦; matrix size: 256×204; phase encode: 204; number of repetitions: five per sample; 29
slices per loin were obtained; and MRI acquisition took 50 min for each loin.

For the SE-T2-weighted sequence, the standard acquisition parameters established by
the MRI scanner manufacturer (Pérez-Palacios et al., 2008; ESAOTE SpA., 2007) were as
follows: TE: 80 ms; TR: 1,800 ms; FOV: 150× 150mm2; slice thickness: four mm; flip angle:
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90◦; matrix size: 256×204; phase encode: 204; number of repetitions: three per sample; 29
slices per loin were obtained and the MRI acquisition took 75 min for each loin.

In the second experiment, TE and TR parameters were optimized in the SE-T1-weighted
acquisition sequence, because this was the best acquisition sequence determined in the first
experiment. The remaining parameters for image acquisition were established according to
standard parameters given by the MRI scanner manufacturer (Pérez-Palacios et al., 2008;
ESAOTE SpA., 2007).

Feature extraction
On the MRI dataset of loins, the best feature extraction algorithms were applied to
extract feature vectors from the images (Caballero et al., 2017d; Caballero et al., 2018b;
Pérez-Palacios et al., 2017; Caballero et al., 2017a; Caballero et al., 2018a). In Caballero
et al. (2018b), different feature extraction algorithms were compared, presenting the
lower computational cost of GLCM and OPFTA (O (n2)). The OPFTA achieved the best
correlation coefficients (r > 0.75) and lower computation times (<50 ms). Therefore,
these two algorithms were selected as feature extraction algorithms for the experiments
presented in this paper: GLCM and OPFTA were utilized in experiment 1, whereas OPFTA
was selected for the second experiment.

Both algorithms required, as a previous step, selection of the largest area rectangles
inscribed on the image closed contour (Caro et al., 2004; Molano et al., 2012), which are
referred to as regions of interest (ROIs). These ROIs must be rectangular for applying the
algorithms (Pan, Li & Wei, 2007). There were no additional previous requirements for the
application of the image analysis algorithms.

GLCM was performed by counting the number of times that each pair of gray levels
(i, j) occurred at a given distance ‘‘d’’ in all directions. In this matrix, each item p(i, j)
indicates the number of times that two neighboring pixels separated by distance d (d =
1 in this case) occur on the image—the first pixel with gray level i and the second pixel
with gray level j—in all 2D directions: 0◦, 45◦, 90◦ and 135◦. These co-occurrences are
accumulated into a single matrix, from which ten statistical features are extracted: energy
(ENE), entropy (ENT), correlation (COR), Haralick’s correlation (HC), inverse difference
moment (IDM), inertia (INE), cluster shade (CS), cluster prominence (CP), contrast
(CON), and dissimilarity (DIS) (Haralick, Shanmugam & Dinstein, 1973).

After ROI selection (Molano et al., 2012), each rectangle was divided into smaller
rectangles of 32×32 pixels: which were called mini-ROI. At this point, the OPFTA fractal
values were obtained from these mini-ROIs by selecting the value for the box size equal
to 8 (Caballero et al., 2017b). Next, these values were gathered to create a matrix, in which
each cell of the matrix represents one mini-ROI from the image. Seven features were
calculated on the matrix by applying second-order statistics: uniformity (UNI), ENT,
COR, homogeneity (HOM), INE, CON and efficiency (EFI) (Aggarwal & Agrawal, 2012;
Peckinpaugh, 1991).

Physicochemical dataset acquisition
The physicochemical analyses carried out on the loins consisted of determining the
following parameters:
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• Water activity was determined by using the Lab Master-aw system (NOVASINA AG,
Lachen, Switzerland) after calibration.
• pH was determined with a glass electrode pH meter model CyberScan pH 510 (Eutech
instruments, Illkirch, France) that tests a 10 ml volume. The pH meter was calibrated
with commercial buffer solutions (Crison, Barcelona, Spain) at pH 4.0, 7.0 and 9.0 prior
to use.
• Moisture content was determined by the official method (Association of Official
Analytical Chemist, 2000) (Ref. 935.29) at 100 ± 2 ◦C.
• The lipid content was determined gravimetrically with chloroform:methanol (2:1, v/v)
according to the method described in Pérez-Palacios et al. (2008).
• Instrumental color was determined by using a Minolta CR-300 (Minolta Camera
Corp., Meter Division, Ramsey, New Jersey, U.S.A.) with illuminant D65 at a 0◦

standard observer and a 2.5 cm2 port/viewing area. The following color coordinates
were determined: lightness (L ∗), redness to green (a ∗) and yellowness to blueness (b
∗). The colorimeter was standardized before use with a white tile that has the following
values: L ∗= 93.5, a ∗= 1.0 and b ∗= 0.8.
• The salt content was determined volumetrically in dry-cured loins by using the official
method (Association of Official Analytical Chemist, 2000) (Ref. 971.19).

All determinations were performed in triplicate.

Data mining predictive models
Predictive techniques of data mining were utilized to create predictive models from
current data using trend analysis (Wu et al., 2008). In this study, MLR was applied to
model the linear relationship between a target variable and more independent prediction
variables (Rencher & Christiansen, 2012). TheM5method of attribute selectionwas applied,
stepping through the attributes, with the smallest standardized coefficient removed until
no improvement was observed in the estimation of the error. A ridge value of 1× 10−4

was also applied, and the remaining parameters were configured with the following values:
batch size = 100; Debug = False; Do Not Check Capabilities = False; Eliminate Colinear
Attributes= False; Minimal= False; Num Decimal Places= 4; Output Additional Stats=
False; and Use QR Decomposition = False).

The computer system has been developed in the programming languages C/C++ and
Java. The machine learning models are based on the algorithms developed in R, Python
and Weka, using their APIs.

The estimation procedure was performed by a 10-fold cross validation method (Diet-
terich, 1998), where the dataset was divided into ten partitions of equal size. One subset
was tested each time, and the remaining data were used to fit the model. This process was
repeated until all subsets were tested. Although this method requires 10 repetition analyses,
it is a robust method (R. Grossman et al., 2010).

Different performance metrics have been used to compare the predicted values and
actual values. In our experiments, the real values were obtained by physicochemical
analysis (process C in Fig. 1, explained in the previous section C), and the predicted values
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Table 2 Metrics used to validate the predictive models. Evaluation metrics.

Equation Formula Values

(1)
r =

√∑n
i=1(fi−y)2∑n
i=1(yi−y)2

fi: predicted value
yi: real value
y : average value
n: number of samples

(2) RMSEP (%)=
√

1
n

∑n
i=1(fi−yi)2x100 fi: predicted value

yi: real value
n: number of samples

(3) MAE = 1
n

∑n
i=1

∣∣fi−yi∣∣ fi: predicted value
yi: real value
n: number of samples

(4) TSTD= 1
N

∑N
i=1

√
1

Mk−1

∑Mj
j=1(dij−di)2 N : number of samples

Mj : number of true measurements
dij : j th true measurement of the sample
i di: mean value of all measurements for sample i

(5) WAPE (%)= 100·
∑n

i=1|fi−yi|∑n
i=1 fi

fi: predicted value
yi: real value
n: number of samples

were obtained using predictive models 1 and 2 (using the data mining algorithms discussed
in this section).

Metrics such as the correlation coefficient, root mean square error of prediction
(RMSEP), mean absolute error (MAE), true standard deviation (TSTD), and weighted
absolute percentage error (WAPE) were applied to evaluate the performance of the
model. Table 2 briefly describes the metrics used in this research and their mathematical
representation.

The correlation coefficient r (Table 2, equation 1), which is one of the most common
metrics in classification and regression, was used to evaluate the goodness of fit of the
prediction of the quality parameters and for its validation, according to the rules given by
Colton (Colton, 1974).

Moreover, the RMSEP (Table 2, equation 2) was also used to evaluate the prediction
results (Ávila et al., 2019; Hyndman & Koehler, 2006). The RMSEP measures the error
between the real values and the predicted values. This measure is commonly used to assess
the predictive ability of the models since it is a constant measure for prediction. Real
and predicted values were also compared by MAE (Table 2, equation 3). TSTD (Table 2,
equation 4) was applied to evaluate the mean dispersion of the true measurements, and
WAPE (Table 2, equation 5) was used to measure the mean dispersion of the computer
prediction values around the attribute (Ávila et al., 2019).

In all the experiments, the correlation coefficient f (Table 2, equation 1) was applied to
validate the predictive models, following Colton’s rules, where correlations greater than
0.75 indicate good to excellent results.
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Table 3 Coded and uncoded of the independent variables and responses obtained for the central composite design to optimize the spin echo
acquisition parameters (Echo Time (TE), Repetition Time (TR)).

Independent variables Responses

RUN Coded Uncoded r

TE (ms) TR (ms) TE (ms) TR (ms) aW pH Moisture Lipids Color L∗

1 1 1 26 910 0.958 0.864 0.881 0.953 0.822
2 0 0 22 770 0.988 0.916 0.972 0.987 0.950
3 0 0 22 770 0.977 0.943 0.970 0.977 0.960
4 0 0 22 770 0.982 0.968 0.969 0.980 0.957
5 0 −1 22 630 0.980 0.962 0.965 0.979 0.958
6 0 1 22 910 0.983 0.967 0.969 0.982 0.962
7 −1 0 18 770 0.982 0.888 0.936 0.979 0.900
8 1 −1 26 630 0.976 0.970 0.966 0.975 0.962
9 −1 1 18 910 0.976 0.965 0.952 0.975 0.945
10 0 0 22 770 0.975 0.958 0.961 0.974 0.954
11 1 0 26 770 0.965 0.945 0.931 0.962 0.920
12 0 0 22 770 0.970 0.963 0.960 0.968 0.956
13 −1 −1 18 630 0.974 0.911 0.942 0.971 0.922

Statistical analysis
The correlation coefficient between extracted features from images acquired by T1-
weighted and T2-weighted MRI contrasts and physicochemical characteristics of loins
was calculated. The effect of the MRI contrast on extracted features from the GLCM and
OPFTA and differences between the results from the MRI analysis and the results from
the physicochemical analysis were analyzed by a one-way ANOVA to compare the mean
values.

Optimization analysis
The RSM was employed to optimize the TE and TR parameters of the LF-MRI acquisition
of fresh and dry-cured loins. A full factorial central composite design (CCD) for each type
of loin was applied. The design consists of a complete 23 factorial design with five center
points and one axial point of the axis of each design variable at a distance of α = 1 from
the design center. Table 3 shows coded (as a function of α) and uncoded (real values)
TE and TR (independent variables), which were adjusted between 18 ms and 26 ms and
between 630 ms and 910 ms, respectively, considering the standard acquisition parameters
established by the MRI scanner manufacturer (ESAOTE SpA., 2007). The complete design
had 13 combinations (runs) of TE and TR, including 5 replicates of the center point (TE
=22 ms, TR =770 ms). At each TE-TR combination, the response evaluated was the
correlation coefficient (r) for the prediction equations of the physicochemical parameters
(water activity, pH, moisture and lipid content, and instrumental color (L*), and in the
case of the dry-cured loins, also the salt content).

This finding is one of the highlights of the paper, because no other papers apply the
RSM to optimize the sequence acquisition of LF-MRI scanners.
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Figure 2 Some examples of LF-MRI images of pork loins.MRI of fresh loins acquired by LF-MRI apply-
ing SE weighted on T1 and T2.

Full-size DOI: 10.7717/peerjcs.583/fig-2

RESULTS AND DISCUSSION
Optimization of the MRI acquisition parameters
The first trial of this study evaluated the influence of MRI contrast (T1-weighted vs.
T2-weighted) and SE as an acquisition sequence for MRI acquisition. Figure 2 shows MRI
images of fresh loins acquired by applying SE weighted on T1 and T2. In addition, this first
experiment also tested the performance of the feature extraction algorithms (GLCM vs.
OPFTA).

Visual differences in MRI can be reached depending on the contrast applied for the
acquisition of the images (T1-weighted and T2-weighted). The gray color representing the
muscle is slightly darker in the T1-weighted images than in T2-weighted images, while
the white color of the fat is darker in the T1-weighted images than in the T2-weighted
images. Thus, the different magnetizations produced by the different acquisition sequences
(T1-weighted and T2-weighted) provide different values for the contrast of the MRI. The
different magnetization of each contrast (Edelstein et al., 1983; Elster, 1988; Young, Burl &
Bydder, 1986), which provides different levels of saturation and gray levels in the images,
produces significant differences in all features from texture and fractals algorithms between
T1-weighted images and T2-weighted images (p< 0.001). Previous studies also showed the
influence of other parameters of the MRI acquisition, specifically the type of acquisition
sequence (SE vs. GE vs. T3D), on the values of the extracted features (Caballero et al.,
2017d; Pérez-Palacios et al., 2017; Caballero et al., 2017a).

Figure 3 shows the correlation coefficients of the physicochemical parameters of fresh
loins predicted by MRI applying T1-weighted and T2-weighted contrast by using GLCM
(Fig. 3A) or OPFTA (Fig. 3B). Higher correlation coefficients were reached with SE-T1-
weighted contrast than with SE-T2-weighted contrast for all physicochemical parameters
when applying both GLCM and OPFTA. In all cases, no significant differences were found
(p> 0.05) between real values (physicochemical analysis) and predicted values from the
different MRI analyses (SE-T1-weighted GLCM, SE-T2-weighted GLCM, SE-T1-weighted
OPFTA and SE-T2-weighted OPFTA). Previous studies on meat applying T1-weighted and
T2-weighted MRI contrasts (García-García et al., 2019; Manzoco et al., 2013; Fantazzini et
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Figure 3 Correlation coefficient (r) for the GLCM and OPFTA feature texture algorithms. Correlation
coefficients of physico-chemical parameters of fresh loins predicted by MRI applying T1-weighted and T2-
weighted contrast, for the image acquisition, and GLCM (A) and OPFTA (B), as feature extraction algo-
rithms.

Full-size DOI: 10.7717/peerjcs.583/fig-3

al., 2005) pointed out that the application of both T1-weighted and T2-weighted contrasts
was suitable for the analysis of meat, achieving better T1-weighted results than T2-weighted
results in all cases. This major accuracy of T1-weighted imaging could be produced by the
higher contrast and gray levels obtained with thisMRI contrast (Elster, 1988). In the present
study, MRI acquisition took less time when using SE-T1-weighted imaging (50 min) than
SE-T2-weighted imaging (75 min), which also suggests the pertinence of SE-T1-weighted
imaging, in concordance with other studies (Caballero et al., 2017d; Caballero et al., 2018b;
Pérez-Palacios et al., 2017; Fantazzini et al., 2009; García-García et al., 2019; Hansen et al.,
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2008; Pérez-Palacios et al., 2010; Pérez-Palacios et al., 2011; Pérez-Palacios et al., 2014; Lee
et al., 2015; Monziols et al., 2006; Hendrick, 2005; Stark & Bradley, 1999; Antequera et al.,
2007; Caballero et al., 2016).

Regarding feature extraction, higher correlation coefficients were achieved with the
OPFTA in comparison with the GLCM for all the physicochemical parameters (Fig. 3).
This result may reveal a better correlation between the physicochemical characteristics of
the loins and the recurring patterns identified by the OPFTA than the correlation between
the gray levels of the image counted by the GLCM. The structure of the muscles could be
related to this hypothesis (Caballero et al., 2017b).

Apart from the correlation coefficient of the prediction results, the OPFTA is also more
efficient from the point of view of computational complexity, mainly because it computes
a lower number of features. Again, the OPFTA is slightly faster than the GLCM (22 vs. 46
ms, computed using a laptop INTEL i7-4510U, 2.6 GHz, and 16 GB RAM) (Caballero et
al., 2018b).

According to this first experiment, where the OPFTA was selected as the best algorithm
of feature extraction and SE-T1-weighted contrast was selected as the best MRI contrast
for image acquisition, the second experiment was designed considering only OPFTA and
SE-T1-weighted imaging. Two variables of LF-MRI sequence acquisition, TE and TR,
were optimized in this second experiment. The objective was to maximize the correlation
coefficient for the prediction of physicochemical parameters of fresh and dry-cured loins.
The two full factorial CCDs involved 13 experiments, including 5 replicates of center points
to verify any change in the estimation procedure and to measure the precision property.
Table 3 presents the results of the 13 experiments in fresh loins, showing the complete CCD
performed for the fresh loins of LF-MRI and the OPFTA as a feature extraction algorithm
by using Design Expert v. 7 (Stat-Ease Inc., Minneapolis, Minnesota, U.S.A.).

Table 4 shows the results of the analysis of the variance by means of Fisher’s F test for
some features of fresh and dry-cured loins. In the case of fresh loins, the F-values indicate
the significance of the model for moisture and instrumental color L ∗, with a low chance
(p-value), 0.003 and 0.007, respectively. Values lower than 0.05 were found for TR, TE ×
TR and TE2 for both parameters, indicating that they are significant terms. The lack of fit
F-values of 7.48 and 64.34 (for moisture and instrumental color L ∗) are satisfactory and
show that the model fits (remarks = S, significant). There is a low chance, p-value for a
lack of fit of 0.041 and 0.001, for moisture and instrumental color L ∗, respectively, that
a very large lack of fit F-value could occur due to noise. Moreover, additional parameters
were checked for moisture and instrumental color L ∗ to verify this previous assumption.
To corroborate the results, the predicted R2 coefficients for moisture and instrumental
color L ∗were also computed, achieving values of 0.820 and 0.8950, whereas the adjusted
R2 coefficients were 0.758 and 0.787, respectively. These results were consistent with the
previous results. Additionally, the ratios for moisture and instrumental color L ∗ (12.159
and 10.280) indicated an adequate signal. Therefore, the response surface quadratic models
for moisture and instrumental color L ∗ were adequate and significant.

Regarding the dry-cured loins, the model F-values of 0.82, 2.85, 1.76, 0.60, 1.30 and 1.43
for water activity, pH, moisture, lipid content, instrumental color L ∗, and salt content,
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Table 4 Analysis of variance for response surface model for the correlation coefficient (r) of the predicted physico-chemical characteristics of
fresh and dry-cured loins (S: Significant/NS: Not significant).

Model TE TR TE x TR TE2 TR2 Lack
of fit

F-value 2.29 4.48 0.65 2.42 3.55 0.02 0.07
p-value 0.155 0.022 0.447 0.164 0.102 0.884 0.606aW
Remarks NS S
F-value 3.40 0.05 0.63 10.63 5.68 0.75 1.77
p-value 0.071 0.828 0.454 0.014 0.049 0.414 0.292pH

Remarks NS NS
F-value 11.93 3.95 7.30 19.75 25.20 0.04 7.48
p-value 0.003 0.087 0.035 0.003 0.001 0.853 0.041

Moisture
Content
(%) Remarks S S

F-value 3.37 5.33 0.98 4.16 5.77 0.04 0.62
p-value 0.072 0.054 0.356 0.081 0.047 0.842 0.637

Lipids Con-
tent (%)

Remarks NS NS
F-value 8.54 1.80 5.67 17.90 15.58 0.61 64.34
p-value 0.007 0.222 0.049 0.004 0.006 0.786 <0.001

Fresh
pork
loins

Color (L ∗)

Remarks S S
F-value 0.82 2.32 0.14 0.93 0.72 0.06 0.93
p-value 0.571 0.171 0.720 0.368 0.425 0.809 0.504aW
Remarks NS NS
F-value 2.85 4.81 0.74 2.68 0.16 5.73 1.29
p-value 0.102 0.064 0.417 0.145 0.700 0.048 0.393pH

Remarks NS NS
F-value 1.76 2.82 0.23 1.63 0.04 3.24 2.56
p-value 0.239 0.137 0.647 0.243 0.852 0.114 0.192

Moisture
Content
(%) Remarks NS NS

F-value 0.60 1.69 0.16 0.01 0.71 0.08 1.71
p-value 0.705 0.235 0.703 0.918 0.428 0.791 0.301

Lipids Con-
tent (%)

Remarks NS NS
F-value 1.30 2.47 2.58 1.22 0.21 0.02 0.70
p-value 0.363 0.160 0.152 0.305 0.661 0.897 0.600Color (L ∗)

Remarks NS NS
F-value 1.43 1.05 4.19 0.57 0.77 1.06 3.25
p-value 0.321 0.341 0.080 0.474 0.410 0.337 0.142

Dry-
cured
loins

Salt Con-
tent (%)

Remarks NS NS

respectively, implied the insignificance of the models for these parameters. This lack of fit
indicates the absence of a functional relationship between TE and TR and the response
variables.

The differences between fresh loins and dry-cured loins and among physicochemical
parameters regarding the significance of the model prediction can be related to the content
of water in the samples. T1-weighted MRI techniques allow the detection of hydrogen,
which lengthens the T1 relaxation time (Lufkin, 1998). Therefore, the decrease in the water
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Figure 4 Response surface plots for (A) moisture and (B) color L∗. Response surface plots on the corre-
lation coefficients (r for the predicted physico-chemical parameters) of fresh pork loins as affected by the
MRI acquisition parameters (Echo Time (TE) and Repetition time (TR)).

Full-size DOI: 10.7717/peerjcs.583/fig-4

content during meat product processing will modify hydrogen detection. Therefore, the
higher percentage of moisture content in fresh hams and the relationship between this
parameter and the luminosity (instrumental color L ∗) of meat samples may explain the
results of this study.

Figure 4 shows the surface and contour plots for each significant response function (r
of moisture and instrumental color L ∗) as affected by two variables (TE and TR) for fresh
loins. It can be observed that the correlation coefficients of moisture and instrumental
color L ∗ increased as the TR rose, and that the highest correlation was obtained with the
lowest TR and medium-to-high TE.

To select the optimum values for these variables, the criteria applied were to be in the
range for TE and TR and to maximize the correlation coefficients for all physicochemical
parameters analyzed. The best solution indicated 22 and 630ms for TE and TR, respectively,
which may achieve very good to excellent correlation coefficients (r = 0.97−0.98) for all
the characteristics.
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Table 5 Values of quality parameters (mean and standard deviation) of fresh and dry-cured loins de-
termined by physico-chemical analyses and predicted by applying the optimizedMRI parameters.

Feature FRESH DRY-CURED

Physico-Chemical Predicted Physico-Chemical Predicted

Water activity (aW) 0.97± 0.01 0.97± 0.01 0.88± 0.01 0.88± 0.01
pH 5.54± 0.02 5.54± 0.01 5.85± 0.05 5.86± 0.04
Moisture content (%) 72.01± 2.76 72.05± 1.46 42.13± 2.46 42.97± 1.75
Lipids content (%) 6.04± 0.63 6.04± 0.47 6.10± 0.51 6.14± 0.45
Instrumental color L ∗ 48.43± 0.44 48.46± 0.06 37.42± 1.54 37.44± 1.16
Salt content (%) — — 2.92± 0.13 2.91± 0.06

Table 6 Quality measures (r, RMSEP,WAPE, TSTD andMAE) of the physico-chemical parameters of
fresh loins, predicted by applying the optimizedMRI parameters.

Quality
measure

Water
activity
(aW)

pH Moisture
content
(%)

Lipids
content
(%)

Instrumental
color L*

r predicted 0.979 0.950 0.966 0.978 0.955
r from validation 0.978 0.959 0.971 0.984 0.953
RMSEP 0.001 0.001 0.018 0.065 0.001
WAPE 0.001 0.001 0.019 0.067 0.001
TSTD 0.002 0.009 1.434 0.477 0.064
MAE 0.001 0.008 1.300 0.393 0.059

Quality characteristics based on the physico-chemical dataset
Table 5 shows the results of the physicochemical analyses of the experimental batch of
fresh and dry-cured loins. The results are consistent with previous studies (Caballero et
al., 2020; Kim & Kim, 2018; Menéndez et al., 2018; Muriel et al., 2004; Pérez-Palacios et al.,
2019; Utrilla, Soriana & Ruiz, 2010). The differences in these parameters between fresh
loins and dry-cured loins are attributed to the curing process, which leads to a loss of water.
This water loss causes a decrease in moisture, water activity and color coordinate L ∗ from
fresh to dry-cured loins (Muriel et al., 2004).

Validation of the predictive model
When the procedure to predict the physicochemical characteristics of pork loins by using
LF-MRI was optimized, it was also verified considering the validation batch of loins (Fig.
1). First, the evaluation metrics for the estimated features and validation batch parameters
were evaluated for fresh loins (Table 5); high correlations were obtained for the estimated
parameters and validation batch.

Tables 6 and 7 show several quality measures (including the correlation coefficient
r for the prediction model and validation batch), which were calculated to validate the
optimization procedure in fresh (Table 6) and dry-cured loins (Table 7).

The correlation values (r) were higher than 0.75 for all physicochemical parameters of
fresh and dry-cured loins, which indicates a very good to excellent correlation (Colton,
1974). The WAPE and RMSEP were lower than 0.01% in all the cases. For all quality
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Table 7 Quality measures (r, RMSEP,WAPE, TSTD andMAE) of the physico-chemical parameters of
dry-cured loins, predicted by applying the optimizedMRI parameters.

Quality
measure

Water
activity
(aW)

pH Moisture
content
(%)

Lipids
content
(%)

Instrumental
color L*

Salt
content
(%)

r predicted 0.949 0.892 0.851 0.865 0.893 0.932
r from validation 0.958 0.891 0.853 0.881 0.878 0.934
RMSEP 0.003 0.007 0.005 0.073 0.004 0.022
WAPE 0.005 0.008 0.008 0.082 0.006 0.024
TSTD 0.006 0.042 1.496 0.521 0.186 0.085
MAE 0.002 0.040 1.348 0.447 0.157 0.063

parameters, the TSTD values are slightly higher than the MAE values, indicating a lower
dispersion in the computer prediction than in the true measurements.

The values obtained by physicochemical analysis and predicted by applying the optimized
LF-MRI procedure are compared in Table 5. No differences were found for any of the
physicochemical characteristics of fresh and dry-cured loins.

These results support the appropriateness of the LF-MRI optimization procedure to
determine the physicochemical parameters of loins in a nondestructive way.

CONCLUSIONS AND FUTURE WORKS
This research is the first study that has specifically optimized LF-MRI acquisition for the
evaluation of the physicochemical characteristics of fresh and dry-cured loins.

The tunable parameters relaxation times (T1 and T2), TR, and TE of the image
acquisition of fresh and dry-cured loins were optimized and validated in LF-MRI in
this study, allowing us to determine the physicochemical characteristics of loins with high
accuracy in a nondestructive way.

The influence of MRI contrast (SE-T1-weighted vs. SE-T2-weighted), TE and TR on the
determination of the physicochemical parameters of loins has been suggested. This effect
is more notable in fresh loins than in dry-cured loins. In addition, significant differences
between most algorithms employed for MRI feature extraction (GLCM and OPFTA) in
the accuracy of the analysis of the loins have been presented.

The use of SE-T1-weighted MRI contrast, TE and TR of 22 and 630 ms, respectively,
for MRI acquisition, and OPFTA for MRI feature extraction achieved the most feasible
and accurate results and appropriate values of the validation parameters. The optimization
procedure could be applied to other LF-MRI systems or for other purposes by following
the procedure proposed in this paper.

Our experiments were performed on meat products to analyze the quality parameters
of loins in a nondestructive way. The authors of this paper are working with other meat
samples, such as beef and chicken, and the optimization procedure will be repeated step
by step with these new samples. In future works, other samples could be utilized, and a
comparative study of the optimization process for different products of food technology
(meat, fish, vegetables, fruit, etc.) could be presented.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.583


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is financed by the Consejería de Educación y Empleo, Junta de Extremadura,
Spain and the European Union (ERDF funds) through the support funds to research
groups GRU18138 and IB16089 project. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Consejería de Educación y Empleo, Junta de Extremadura, Spain and the European Union
(ERDF funds).
Junta de Extremadura, Spain and the European Union (ERDF funds).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Daniel Caballero conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
• Trinidad Pérez-Palacios conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Andrés Caro conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.
• Mar Ávila performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.
• Teresa Antequera conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

An example of the proposed algorithms and all the source code is available at GitHub:
https://github.com/UniversidadExtremadura/Example-Volume-Extractor.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.583#supplemental-information.

REFERENCES
Aggarwal N, Agrawal RK. 2012. First and second order statistics features for classification

of magnetic resonance brain images. Journal of Signal and Information Processing
3:574–580.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 19/26

https://peerj.com
https://github.com/UniversidadExtremadura/Example-Volume-Extractor
http://dx.doi.org/10.7717/peerj-cs.583#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.583#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.583


Aldeen YAAS, SallehM, RazzaqueMA. 2015. A comprehensive review on privacy
preserving data mining. SpringerPlus 4:694 DOI 10.1186/s40064-015-1481-x.

Antequera T, Caballero D, Grassi S, Uttaro B, Pérez-Palacios T. 2021. Evaluation of
fresh meat quality by Hyperspectral imaging (HSI), Nuclear Magnetic Resonance
(NMR) and Magnetic Resonance Imaging (MRI): a review.Meat Science 172:1–12.

Antequera T, Caro A, Rodríguez PG, Pérez-Palacios T. 2007.Monitoring the ripening
process of Iberian ham by computer vision on magnetic resonance imaging.Meat
Science 76:561–567 DOI 10.1016/j.meatsci.2007.01.014.

Aoyama T, Shimizu H, Shimizu I, Teramoto A, Kaneda N, Nakamura K, Nakamura
M, Kodaira T. 2018. Geometric distortion in magnetic resonance imaging systems
assessed using an open-source plugin for scientific image analysis. Radiological
Physics and Technology 11:467–472 DOI 10.1007/s12194-018-0477-y.

Association of Official Analytical Chemist. 2000.Official methods of analysis of AOAC
International. 17th ed Gaithersburg: AOAC International.

Ávila MM, Caballero D, Antequera T, DuránML, Caro A, Pérez-Palacios T. 2018.
Applying 3D textures algorithms on MRI to evaluate quality traits of loin. Journal
of Food Engineering 222:258–266 DOI 10.1016/j.jfoodeng.2017.11.028.

Ávila MM, DuránML, Caballero D, Antequera T, Pérez-Palacios T, Cernadas E,
Fernández-DelgadoM. 2019.Magnetic resonance imaging, texture analysis and
regression techniques to non-destructively predict the quality characteristics
of meat pieces. Engineering Applications of Artificial Intelligence 82:110–125
DOI 10.1016/j.engappai.2019.03.026.

Bajd F, SkrlepM, Candek-Potokar M, Vidmar J, Sersa I. 2016a. Application of quan-
titative magnetization transfer magnetic resonance imaging for characterization of
dry-cured hams.Meat Science 122:109–118 DOI 10.1016/j.meatsci.2016.08.001.

Bajd F, SkrlepM, Candek-Potokar M, Vidmar J, Sersa I. 2016b. Use of multiparametric
magnetic resonance microscopy for discrimination among different processing
protocols and anatomical positions of Slovenian dry-cured hams. Food Chemistry
197:1093–1101 DOI 10.1016/j.foodchem.2015.11.103.

Balsigier F, Jungo A, Scheidegger O, Carlier PG, Reyes M, Marty B. 2020. Spatially
regularized parametric map reconstruction for fast magnetic resonance fingerprint.
Medical Image Analysis 64:1–13.

BernauM, Kremer PV, Lauterbach E, Tholen E, Petersen B, Pappenberger E, Scholz
AM. 2015. Evaluation of carcass composition of intact boars using linear mea-
surements from performance testing, dissection, dual energy X-ray absorptiom-
etry (DXA) and magnetic resonance imaging (MRI).Meat Science 104:58–66
DOI 10.1016/j.meatsci.2015.01.011.

BertramHC, Holdsworth SJ, Whittaker AK, Andersen HJ. 2005. Salt diffusion
and distribution in meat studied by Na-23 nuclear magnetic resonance imaging
and relaxometry. Journal of Agricultural and Food Chemistry 53:7814–7818
DOI 10.1021/jf051017+.

Bro R, Smilde AK. 2014. Principal component analysis. Analytical Methods 6:2812–2831
DOI 10.1039/C3AY41907J.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 20/26

https://peerj.com
http://dx.doi.org/10.1186/s40064-015-1481-x
http://dx.doi.org/10.1016/j.meatsci.2007.01.014
http://dx.doi.org/10.1007/s12194-018-0477-y
http://dx.doi.org/10.1016/j.jfoodeng.2017.11.028
http://dx.doi.org/10.1016/j.engappai.2019.03.026
http://dx.doi.org/10.1016/j.meatsci.2016.08.001
http://dx.doi.org/10.1016/j.foodchem.2015.11.103
http://dx.doi.org/10.1016/j.meatsci.2015.01.011
http://dx.doi.org/10.1021/jf051017+
http://dx.doi.org/10.1039/C3AY41907J
http://dx.doi.org/10.7717/peerj-cs.583


Caballero D, Antequera T, Caro A, Amigo JM, Ersboll BK, Dahl AB, Pérez-Palacios T.
2018a. Analysis of MRI by fractals for prediction of sensory attributes: a case of study
in loin. Journal of Food Engineering 227:1–10
DOI 10.1016/j.jfoodeng.2018.02.005.

Caballero D, Antequera T, Caro A, Ávila MM, Rodríguez PG, Pérez-Palacios T. 2017a.
Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer
vision techniques and data mining. Journal of the Science of Food and Agriculture
97:2942–2952 DOI 10.1002/jsfa.8132.

Caballero D, Asensio M, Fernández C, Reina R, García MJ, Noguera JL, Silva A. 2020.
Effects of genotypes and crossbreeding on the quality parameters of dry-cured
shoulders from different Iberian genetic pig lines. Journal of Food Measurement and
Characterization 14:818–829 DOI 10.1007/s11694-019-00330-1.

Caballero D, Caro A, Amigo JM, Dahl AB, Ersboll BK, Pérez-Palacios T. 2017b.
Computer Analysis of Images and Patterns. CAIP 2017. In: Felsberg M, Heyden A,
Krüger N, eds. Lecture Notes in Computer Science. 10424. Cham: Springer, 208–218
DOI 10.1007/978-3-319-64689-3_17.

Caballero D, Caro A, Ávila MM, Rodríguez PG, Antequera T, Pérez-Palacios T. 2017c.
New fractal features and data mining to determine food quality based on MRI. IEEE
Latin America Transactions 15:1777–1784 DOI 10.1109/TLA.2017.8015085.

Caballero D, Caro A, Dahl AB, Ersboll BK, Amigo JM, Pérez-Palacios T, Antequera
T. 2018b. Comparison of different image analysis algorithms on MRI to predict
physico-chemical and sensory attributes of loin. Chemometrics and Intelligent
Laboratory Systems 180:54–63 DOI 10.1016/j.chemolab.2018.04.008.

Caballero D, Caro A, Rodríguez PG, DuránML, Ávila MM, Palacios R, Ante-
quera T, Pérez-Palacios T. 2016.Modeling salt diffusion in Iberian ham by
applying MRI and data mining. Journal of Food Engineering 189:115–122
DOI 10.1016/j.jfoodeng.2016.06.003.

Caballero D, Pérez-Palacios T, Caro A, Amigo JM, Dahl AB, Ersboll BK, Antequera T.
2017d. Prediction of pork quality parameters by applying fractals and data mining
on MRI. Food Research International 99:739–747 DOI 10.1016/j.foodres.2017.06.048.

Caballero D, Pérez-Palacios T, Caro A, Antequera T. 2021. Use of magnetic resonance
imaging to analyse meat and meat products non-destructively. Food Reviews Interna-
tional Epub ahead of print Apr 13 2021 DOI 10.1080/87559129.2021.1912085.

Caro A, Rodríguez PG, DuránML, Ávila MM, Antequera T, Gallardo R. 2004. Ar-
ticulated Motion and Deformable Objects. AMDO 2004. In: Perales FJ, Draper
BA, eds. Lecture Notes in Computer Science. 3179. Berlin, Heidelberg: Springer
DOI 10.1007/978-3-540-30074-8_24.

Cernadas E, Carrión P, Rodríguez PG, Muriel E, Antequera T. 2005. Analyzing mag-
netic resonance images of Iberian pork loin to predict its sensorial characteristics.
Computer Vision and Image Understanding 98:345–361.

Colton T. 1974. Statistics in medicine. 1st ed. New York, NY, USA: Little Brown and Co.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 21/26

https://peerj.com
http://dx.doi.org/10.1016/j.jfoodeng.2018.02.005
http://dx.doi.org/10.1002/jsfa.8132
http://dx.doi.org/10.1007/s11694-019-00330-1
http://dx.doi.org/10.1007/978-3-319-64689-3_17
http://dx.doi.org/10.1109/TLA.2017.8015085
http://dx.doi.org/10.1016/j.chemolab.2018.04.008
http://dx.doi.org/10.1016/j.jfoodeng.2016.06.003
http://dx.doi.org/10.1016/j.foodres.2017.06.048
http://dx.doi.org/10.1080/87559129.2021.1912085
http://dx.doi.org/10.1007/978-3-540-30074-8_24
http://dx.doi.org/10.7717/peerj-cs.583


Cortez P, Portelinha S, Rodrigues S, Cadavez V, Teixeira A. 2006. Lamb meat qual-
ity assessment by support vector machine. Neural Processing Letters 24:41–51
DOI 10.1007/s11063-006-9009-6.

Dietterich T. 1998. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation 10:1895–1923
DOI 10.1162/089976698300017197.

Muriel E, Ruiz J, PetrónMJ, Martín D, Antequera T. 2004. Physico-chemical and
sensory characteristics of dry-cured Iberian loin from different Iberian pig lines. Food
Science and Technology International 10:117–125 DOI 10.1177/1082013204043766.

EdelsteinWA, Bottomley PA, Hart HR, Smith LS. 1983. Signal, noise, and contrast
in nuclear magnetic resonance (NMR) imaging. Journal of Computer Assisted
Tomography 7:391–401 DOI 10.1097/00004728-198306000-00001.

Elster AD. 1988. An index system for comparative parameter weighting in MR imaging.
Journal of Computer Assisted Tomography 12:130–134
DOI 10.1097/00004728-198801000-00025.

ESAOTE SpA. 2007.Dedicated MRI Systems. 1st ed. Genoa: ESAOTE SpA.
Fantazzini P, Bortolotti V, Garavaglia C, GombiaM, Riccardi S, Schembri P, Virgili R,

Bordini CS. 2005.Magnetic resonance imaging and relaxation analysis to predict
non-invasively and non-destructively salt-to-moisture ratios in dry-cured meat.
Magnetic Resonance Imaging 23:359–361 DOI 10.1016/j.mri.2004.11.064.

Fantazzini P, GombiaM, Schembri P, Simoncini N, Virgili R. 2009. Use of [2] magnetic
resonance imaging for monitoring Parma dry-cured ham processing.Meat Science
82:219–227 DOI 10.1016/j.meatsci.2009.01.014.

Fayyad U, Piatetsky-Shapiro G, Smyth P. 1996. From Data mining to knowledge
discovery in databases. American Association for Artificial Intelligence 17:34–54.

Feig S. 2011. Comparison of costs and benefits of breast cancer screening with mammog-
raphy, ultrasonography, and MRI. Obstetrics and Gynecology Clinics of North America
38:179–196 DOI 10.1016/j.ogc.2011.02.009.

Gadekallu TR, AlazabM, Kaluri R, Maddikunta PKR, Bhattacharya S, Lakshmanna
K, Parimala M. 2021.Hand gesture classification using a novel CNN-crow search
algorithm. Complex & Intelligent Systems Epub ahead of print Mar 13 2021
DOI 10.1007/s40747-021-00324-x.

GallowayMM. 1975. Texture analysis using gray level run lengths. Computer Graphics
and Image Processing 4:172–179 DOI 10.1016/S0146-664X(75)80008-6.

García-García AB, Fernández-Valle ME, Castejón D, Escudero R, CamberoMI.
2019. Use of MRI as a predictive tool for physico-chemical and rheologi-
cal features during cured ham manufacturing.Meat Science 148:171–180
DOI 10.1016/j.meatsci.2018.10.015.

Hansen CL, Van Der Berg F, Ringaard S, Stodkilde-Jorgensen H, Karlsson AH. 2008.
Diffusion of NaCl in meat studied by 1H and 23Na magnetic resonance imaging
(MRI). Journal of Food Engineering 31:457–471.

Haralick RM, ShanmugamK, Dinstein I. 1973. Textural features for image classification.
IEEE Transactions on Systems, Man, and Cybernetics 3:610–621.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 22/26

https://peerj.com
http://dx.doi.org/10.1007/s11063-006-9009-6
http://dx.doi.org/10.1162/089976698300017197
http://dx.doi.org/10.1177/1082013204043766
http://dx.doi.org/10.1097/00004728-198306000-00001
http://dx.doi.org/10.1097/00004728-198801000-00025
http://dx.doi.org/10.1016/j.mri.2004.11.064
http://dx.doi.org/10.1016/j.meatsci.2009.01.014
http://dx.doi.org/10.1016/j.ogc.2011.02.009
http://dx.doi.org/10.1007/s40747-021-00324-x
http://dx.doi.org/10.1016/S0146-664X(75)80008-6
http://dx.doi.org/10.1016/j.meatsci.2018.10.015
http://dx.doi.org/10.7717/peerj-cs.583


Hendrick RE. 2005.Glossary of MR terms. 5th ed. Reston: American College of Radiol-
ogy.

Hyndman R, Koehler AB. 2006. Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting 22(4):679–688 DOI 10.1016/j.ijforecast.2006.03.001.

Ishiwatari N, FukuokaM, Sakai N. 2013. Effect of protein denaturation degree on
texture and water state of cooked meat. Journal of Food Engineering 117:361–369
DOI 10.1016/j.jfoodeng.2013.03.013.

Itoni S, Lecron F, Fortemps P. 2019. Specifics of medical data mining for diagnosis aid: a
survey. Expert Systems With Applications 118:300–314
DOI 10.1016/j.eswa.2018.09.056.

Javed AR, UsmanM, Rehman SU, KhanMU, Haghighi MS. 2021. Anomaly detection in
automated vehicles using multistage attention-based convolutional neural network.
IEEE Transactions on Intelligent Transportation Systems.

KimGW, KimHY. 2018. Comparison of physico-chemical properties between
standard and sow pork. Food Science of Animal Resources 38:1120–1130
DOI 10.5851/kosfa.2018.e45.

LaddME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S,
Speck O, Straub S, Zaiss M. 2018. Pros and cons of ultra-high-field MRI/MRS for
human application. Progress in Nuclear Magnetic Resonance Spectroscopy 109:1–50
DOI 10.1016/j.pnmrs.2018.06.001.

Leardi R. 2009. Experimental design in chemistry. Analytica Chimica Acta 652:161–172
DOI 10.1016/j.aca.2009.06.015.

Lee S, Lohumi S, LimHS, Gotoh T, Cho BK, Jung S. 2015. Determination of intramus-
cular fat content in beef using magnetic resonance imaging. Journal of the Faculty of
Agriculture, Kyushu University 60:157–162 DOI 10.5109/1526313.

Lufkin RB. 1998. The MRI manual. 1st ed. St. Louis: Mosby-Year Book.
Mahmoud-GhoneimD, Bonny JM, Renou JP, De Certaines JD. 2005. Ex-vivo magnetic

resonance image texture analysis can discriminate genotypic origin in bovine meat.
Journal of the Science of Food and Agriculture 85:629–632 DOI 10.1002/jsfa.1841.

Mandelbrot BB. 1982. The fractal geometry of nature. 1st ed. New York: W. H. Freeman
and Co..

Manzoco L, Anese M, Marzona S, Innocente N, Lagazio C, Nicoli MC. 2013.Monitoring
dry-curing of San Daniele ham by magnetic resonance imaging. Food Chemistry
141:2246–2252 DOI 10.1016/j.foodchem.2013.04.068.

Menéndez RA, Rendueles E, Sanz JJ, Santos JA, García-FernándezMC. 2018. Physico-
chemical and microbiological characteristics of diverse Spanish cured meat products.
CYTA - Journal of Food 16:199–204 DOI 10.1080/19476337.2017.1379560.

Molano R, Rodríguez PG, Caro A, DuránML. 2012. Finding the largest area rectangle
of arbitrary orientation in a closed contour. Applied Mathematics and Computation
218:9866–9874.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 23/26

https://peerj.com
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1016/j.jfoodeng.2013.03.013
http://dx.doi.org/10.1016/j.eswa.2018.09.056
http://dx.doi.org/10.5851/kosfa.2018.e45
http://dx.doi.org/10.1016/j.pnmrs.2018.06.001
http://dx.doi.org/10.1016/j.aca.2009.06.015
http://dx.doi.org/10.5109/1526313
http://dx.doi.org/10.1002/jsfa.1841
http://dx.doi.org/10.1016/j.foodchem.2013.04.068
http://dx.doi.org/10.1080/19476337.2017.1379560
http://dx.doi.org/10.7717/peerj-cs.583


Monziols M, Collewet G, BonneauM,Mariette F, Davenel A, KoubaM. 2006.
Quantification of muscle, subcutaneous fat and intramuscular fat in pig car-
casses and cuts by magnetic resonance imaging.Meat Science 72:146–154
DOI 10.1016/j.meatsci.2005.06.018.

Muhammad LJ, Algehyne EA, Usman SS, Ahmad A, Chakraborty C, Mohammed IA.
2021. Supervised machine learning models for prediction of COVID-19 infection
using epidemiology dataset. SN Computer Science 2:11
DOI 10.1007/s42979-020-00394-7.

Pan H, Li J, Wei Z. 2007. Incorporating domain knowledge into medical image cluster-
ing. Applied Mathematics and Computation 185:844–856.

Peckinpaugh S. 1991. An improved method for computing gray-level co-occurrence
matrix based texture measured. Computer Vision Graphics and Image Processing
53:574–580.

Pérez-Palacios T, Antequera T, DuránML, Caro A, Rodríguez PG, Palacios R. 2011.
MRI-based analysis of feeding background effect on fresh Iberian hams. Food
Research International 43:248–254.

Pérez-Palacios T, Antequera T, DuránML, Caro A, Rodríguez PG, Ruiz J. 2010.MRI-
based analysis, lipid composition and sensory traits for studying Iberian dry-cured
hams from pigs fed with different diets. Food Chemistry 126:1366–1372.

Pérez-Palacios T, Caballero D, Antequera T, DuránML, Ávila MM, Caro A. 2017.
Optimization of MRI acquisition and texture analysis to predict physico-chemical
parameters of loins by data mining. Food and Bioprocess Technology 10:750–758
DOI 10.1007/s11947-016-1853-4.

Pérez-Palacios T, Caballero D, Caro A, Rodríguez PG, Antequera T. 2014. Applying
data mining and computer vision techniques to MRI to estimate quality traits in
Iberian hams. Journal of Food Engineering 131:82–88
DOI 10.1016/j.jfoodeng.2014.01.015.

Pérez-Palacios T, Ruiz J, Martín D, Muriel E, Antequera T. 2008. Comparison of
different methods for total lipid quantification in meat and meat products. Food
Chemistry 110:1025–1029 DOI 10.1016/j.foodchem.2008.03.026.

Pérez-Palacios T, Ruiz-Carrascal J, Solomando JC, Antequera T. 2019. Strategies for
enrichment in ω-3 fatty acids aiming for healthier meat products. Food Reviews
International 35:485–503 DOI 10.1080/87559129.2019.1584817.

Portanguen S, Ikonic P, Clerjon S, Kondjoyan A. 2014.Mechanism of crust develop-
ment at the surface of beef meat subjected to hot air: an experimental study. Food
Bioproc. Tech. 7:3308–3318 DOI 10.1007/s11947-014-1321-y.

Grossman R, Seni G, Elder J, Agarwal N, Liu H. 2010. Ensamble methods in data mining:
improving accuracy through combining predictions. 1st ed. Williston: Morgan &
Claypool Publishers.

Rastogi N, Gloria M, Hendler J. 2015. Security and privacy of performing data analytics
in the cloud: a three-way handshake of technology, policy, and management. Journal
of Information Policy 5:129–154 DOI 10.5325/jinfopoli.5.2015.0129.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 24/26

https://peerj.com
http://dx.doi.org/10.1016/j.meatsci.2005.06.018
http://dx.doi.org/10.1007/s42979-020-00394-7
http://dx.doi.org/10.1007/s11947-016-1853-4
http://dx.doi.org/10.1016/j.jfoodeng.2014.01.015
http://dx.doi.org/10.1016/j.foodchem.2008.03.026
http://dx.doi.org/10.1080/87559129.2019.1584817
http://dx.doi.org/10.1007/s11947-014-1321-y
http://dx.doi.org/10.5325/jinfopoli.5.2015.0129
http://dx.doi.org/10.7717/peerj-cs.583


Rencher AC, ChristiansenWF. 2012.Methods of multivariate analysis. 1st ed. New York:
John Wiley & Sons.

Sancho JC, Caro A, Rodríguez PG. 2020. A preventive secure software development
model for a software factory: a case study. IEEE Access 8-1:77653–77665.

Sancho JC, Caro A, Ávila MM, Bravo A. 2020. New approach for threat classification and
security risk estimations based on security event management. Future Generation
Computer Systems 113:488–505 DOI 10.1016/j.future.2020.07.015.

Sangeetha S, Sudha SadasivamG. 2019. Privacy of big data: a review. In: Handbook of
big data and iot security. Cham: Springer, 5–23.

Sarkar A, KhanMZ, SinghMM, Noorwali A, Chakraborty C, Pani SK. 2021. Artificial
neural synchronization using nature inspired whale optimization. IEEE Access
9:16435–16447 DOI 10.1109/ACCESS.2021.3052884.

Shaarani SM, Nott KP, Hall LD. 2006. Combination of NMR and MRI quantification of
moisture and structure changes for convection cooking of fresh chicken meat.Meat
Science 72:398–403 DOI 10.1016/j.meatsci.2005.07.017.

Siew LH, Hodgson RM,Wood EJ. 1988. Texture measures for carpet wear assess-
ment. IEEE Transactions on Pattern Analysis and Machine Intelligence 10:92–104
DOI 10.1109/34.3870.

Song YH, Kim SJ, Lee SK. 2002. Evaluation of ultrasound for prediction of carcass meat
yield and meat quality in Korean native cattle. Journal of Animal Science 15:591–595.

SonkaM, Hlavac V, Boyle R. 1999. Image processing, analysis, and machine vision. 2nd
ed. Pacific Grove: PWS Publishing.

St-Jean S, De Luca A, Tax CMW, Viergever MA, Leemans A. 2020. Automated char-
acterization of noise distributions in diffusion MRI data.Medical Image Analysis
65:101758 DOI 10.1016/j.media.2020.101758.

Stark DD, BradleyWG. 1999.Magnetic Resonance Imaging. 1st ed. St. Louis: Mosby
Year Book.

Torres JP, Ávila MM, Caro A, Pérez-Palacios T, Caballero D. 2019. Pattern Recog-
nition and Image Analysis. IbPRIA 2019. In: Morales A, Fierrez J, Sánchez J,
Ribeiro B, eds. Lecture Notes in Computer Science. 11867. Cham: Springer
DOI 10.1007/978-3-030-31332-6_43.

Utrilla MC, Soriana A, García Ruiz A. 2010. Quality attributes of pork loin with
different levels of marbling from Duroc and Iberian cross. Journal of Food Quality
33:802–820 DOI 10.1111/j.1745-4557.2010.00352.x.

Vasan D, AlazabM,Wassan S, NaeemH, Safaei B, Zheng Q. 2020. IMCFN: image-based
malware classification using fine-tuned convolutional neural network architecture.
Computer Networks 171:107138 DOI 10.1016/j.comnet.2020.107138.

Walker A, Liney G, Metcalf PE, Holloway L. 2014.MRI distortion: considerations for
MRI based radiotherapy treatment planning. Physical and Engineering Sciences in
Medicine 37:103–113 DOI 10.1007/s13246-014-0252-2.

WuX, Kumar V, Ross-Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ,
Ng A, Liu B, Yu PS, Zhou Z, SteinbachM, Hand DJ, Steinberg D. 2008. Top

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 25/26

https://peerj.com
http://dx.doi.org/10.1016/j.future.2020.07.015
http://dx.doi.org/10.1109/ACCESS.2021.3052884
http://dx.doi.org/10.1016/j.meatsci.2005.07.017
http://dx.doi.org/10.1109/34.3870
http://dx.doi.org/10.1016/j.media.2020.101758
http://dx.doi.org/10.1007/978-3-030-31332-6_43
http://dx.doi.org/10.1111/j.1745-4557.2010.00352.x
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.1007/s13246-014-0252-2
http://dx.doi.org/10.7717/peerj-cs.583


10 algorithms in data mining. Knowledge and Information Systems 14:1–37
DOI 10.1007/s10115-007-0114-2.

Xu L, Jiang C,Wang J, Yuan J, Ren Y. 2014. Information security in big data: privacy and
data mining. IEEE Access 2:1149–1176 DOI 10.1109/ACCESS.2014.2362522.

Young IR, Burl M, Bydder GM. 1986. Comparative efficiency of different pulse se-
quences in MR imaging. Journal of Computer Assisted Tomography 10:271–286
DOI 10.1097/00004728-198603000-00020.

Caballero et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.583 26/26

https://peerj.com
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1109/ACCESS.2014.2362522
http://dx.doi.org/10.1097/00004728-198603000-00020
http://dx.doi.org/10.7717/peerj-cs.583

