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Instituto Politécnico Nacional de
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Trypanosoma cruzi is a digenetic parasite that requires triatomines and mammalian host
to complete its life cycle. T. cruzi replication in mammalian host induces immune-mediated
cytotoxic proinflammatory reactions and cellular injuries, which are the common source of
reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the acute
parasitemic phase. Mitochondrial dysfunction of electron transport chain has been
proposed as a major source of superoxide release in the chronic phase of infection,
which renders myocardium exposed to sustained oxidative stress and contributes to
Chagas disease pathology. Sirtuin 1 (SIRT1) is a class III histone deacetylase that acts as a
sensor of redox changes and shapes the mitochondrial metabolism and inflammatory
response in the host. In this review, we discuss the molecular mechanisms by which
SIRT1 can potentially improve mitochondrial function and control oxidative and
inflammatory stress in Chagas disease.

Keywords: peroxisome proliferator-activated receptor gamma coactivator 1, reactive oxygen species, sirtuin,
Chagas disease, mitochondrial dysfunction
INTRODUCTION

Trypanosoma cruzi (T. cruzi) infection leads to the development of Chagas disease (CD) that is one
of the most frequent causes of heart failure and sudden death in the Americas. There are three stages
in Chagas disease: the acute phase, the early chronic phase that is also referred as indeterminate
phase, and the late chronic disease phase. Shortly after exposure to the parasite, infected individuals
develop acute parasitemia when trypomastigotes and amastigotes can be easily detected by
microscopic examination of the blood and/or cerebrospinal fluid. In most of the infected
individuals, immune response is sufficiently active to control acute parasitemia within 2 to 4
months post-exposure ([[NoAuthor]]). Infected individuals then appear healthy with almost no
clinical symptoms of cardiac involvement and may remain in this phase for decades. However,
approximately 1/3 of the infected persons progress to clinically symptomatic, chronic disease phase
Abbreviations: CD, Chagas disease; mtDNA, mitochondrial DNA; PGC-1a, peroxisome proliferator–activated receptor
gamma coactivator 1; RNS, reactive nitrogen species; ROS, reactive oxygen species; SIRT1, sirtuin 1.
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presented with cardiomyopathy and heart failure (Dias et al.,
2016; Rassi et al., 2017). Chronically infected individuals may
also develop digestive or neurological disorders.

Sirtuins, initially named as silent information regulator 2 (Sir2)
proteins, are defined as class III histone deacetylases that utilize
nicotinamide adenine dinucleotide (NAD+) as substrate. In the
deacetylase reaction, sirtuins hydrolyze one NAD+ molecule and
produce deacetylated substrate, nicotinamide (NAM), and O-
acetyl-ADP ribose (Landry et al., 2000). The sirtuin family of
proteins in humans consists of SIRT1–SIRT7 that are highly
conserved, both structurally and functionally. Sirtuins are
ubiquitously expressed in all organs including the blood, brain,
heart, kidney, lung, liver, ovary, skeletal muscle, spleen, and testis,
though the level of expression varies in different organs. The
catalytic core deacetylase domain is highly conserved in sirtuins;
however, they differ in sequence, subcellular location, enzyme
activity, substrate specificity and physiological functions (Frye,
1999; Michishita et al., 2005) (Figure 1). For example, SIRT1,
SIRT6, and SIRT7 are generally found in a nuclear compartment
and known to modulate gene expression through transcription
factors, co-factors, or histones (Liszt et al., 2005; Ford et al., 2006;
Mostoslavsky et al., 2006; Michishita et al., 2008; Zhong et al.,
2010). SIRT2 is primarily localized in the cytoplasm, and it was
shown to regulate oligodendrocyte differentiation and cell cycle
(Dryden et al., 2003; Li et al., 2007). The remaining known sirtuins
(SIRT3, SIRT4, and SIRT5) are predominantly found in
mitochondrial compartment and shown to regulate metabolic
enzyme activities and oxidative stress pathways (Ahuja et al.,
2007; Nakamura et al., 2008).

SIRT1 is the closest homolog of yeast Sir2, and it is the most
studied sirtuin (Frye, 2000). At the cellular level, SIRT1 shuttles
between the nucleus and cytoplasm depending on environmental
conditions (Hou et al., 2010). SIRT1 has two nuclear localization
signals and a coiled-coil domain in addition to the core deacetylase
domain. Many of the endogenous substrates of SIRT1, including
p53, NBS1, p65, c-Jun, and c-Myc play a role in transcriptional
regulation of gene expression (Yeung et al., 2004; Solomon et al.,
2006; Yuan et al., 2007; Gao and Ye, 2008; Yuan et al., 2009).
While SIRT1 core deacetylase domain determines its enzymatic
activity, other domains may influence the binding to NAD+

substrate and target proteins. SIRT1-mediated deacetylation
activity regulates several proteins and their translation, and it is
involved in critical physiological processes including cell
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
proliferation, genomic stability, metabolism, and antioxidant/
oxidant response. SIRT1 has been reported to associate with
chronic inflammatory diseases, metabolic dysfunctions,
neurodegenerative diseases, and cardiovascular dysfunction
(Boutant and Canto, 2014; Chang and Guarente, 2014;
Herskovits and Guarente, 2014; Hubbard and Sinclair, 2014).

T. cruzi is a eukaryotic parasite that consists of genes encoding
for two sirtuins, named TcSir2rp1 and TcSir2rp3 that are
identified to be localized in cytosol and mitochondria,
respectively (Moretti et al., 2015). Inhibition and overexpression
studies suggest that TcSir2rp1 and TcSir2rp3 seemingly have
opposite roles in parasite growth and differentiation (Moretti
et al., 2015). A panel of sirtuin inhibitors has been screened for
their activity against TcSir2rp1 and TcSir2rp3 (Matutino Bastos
et al., 2020) and broad-range SIRT inhibitors (salermide or
nictoinamide) were shown to inhibit T. cruzi growth and
differentiation in culture and in vivo in mice (Moretti et al.,
2015). Thus, SIRTs are required for parasite growth and survival
in the mammalian host, and SIRT inhibitors are developed as
anti-parasite therapies.

In this review, we discuss various roles of SIRT1 with a focus
on its beneficial effects in regulating Chagas disease pathogenesis.
MITOCHONDRIA DYSFUNCTION IN
EXPERIMENTAL MODELS OF CD AND
INFECTED HUMANS

Heart function is supported by a high rate of ATP production
through mitochondrial oxidative phosphorylation pathway.
Cardiomyocytes have a high copy number of mitochondrial
DNA (mtDNA) that encodes essential components of
respiratory complexes to support energy demands of the heart
(Gustafsson and Gottlieb, 2008). Mitochondrial biogenesis
encompasses processes and events resulting in replication,
maintenance, and function of mitochondria. Peroxisome
proliferator-activated receptor gamma coactivator 1 (PGC-1a)
is a member of the PGC family of transcription coactivators, and
it is designated as a master regulator of mitochondrial biogenesis
and oxidative metabolism (Finck and Kelly, 2006). PGC-1a is
preferentially expressed in the heart, kidneys, and skeletal muscle
tissues that have high oxidative capacity and abundant
FIGURE 1 | Schematic representation of human sirtuins. SIRT1–3 (class I), SIRT4 (class II), SIRT5 (class III), and SIRT6–7 (class IV) are shown. NAD+ binding region
is presented in black. MTS, mitochondria-targeting sequence is shown in orange; N, nuclear; C, cytoplasmic; ADRT, ADP-ribosyltransferase. Catalytic histidine and
zinc-coordinating cysteines are not shown.
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mitochondria. PGC-1a functions as an adapter or scaffold
protein and docks onto the transcription factor targets or
protein complexes to drive the expression of nuclear DNA and
mtDNA encoded proteins involved in mitochondrial biogenesis
and oxidative phosphorylation (Ventura-Clapier et al., 2008).
The estrogen-related nuclear orphan receptors (ERR-a and ERR-
g) are also activated by PGC-1a, which enhances the expression
of proteins involved in fatty acid uptake, fatty acid oxidation, and
ATP production and transportation (Shao et al., 2010). PGC-1
also binds to and co-activates nuclear respiratory factors 1 and 2
(NRF-1 and NRF-2) that maintain redox homeostasis and
upregulate the mitochondrial transcription factor A (TFAM)-
mediated mtDNA replication and transcription (Gureev
et al., 2019)

The impairment of mitochondrial membrane phospholipids,
DNA, or proteins can all affect the mitochondrial oxidative
phosphorylation capacity. We have documented significant
decline in the activities of the respiratory complex I and
complex III in cultured human cardiomyocytes and
myocardium of mice infected with T. cruzi (Vyatkina et al.,
2004). Quantitative assays and light and electron microscopic
analysis of the human plasma and serum samples (Wen et al.,
2006) the myocardial biopsies of human CD patients (Wan et al.,
2012) and T. cruzi-infected experimental animals showed that
mitochondrial degenerative changes occurred in early T. cruzi
infection and were exacerbated with progression of disease (Wen
et al., 2006; Wen et al., 2008; Wan et al., 2012). No changes in
PGC-1a levels were noted; however, its activity in signaling
NRF1/2 and TFAM-mediated mitochondrial biogenesis was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
clearly compromised as was evidenced by the findings of a
decline in cardiac mtDNA content, mtDNA synthesis, and
oxidative phosphorylation mediated ATP synthesis in Chagas
hearts (Wan et al., 2012) (Figure 2).
OXIDATIVE STRESS IN CD

High oxidative stress results from increase in the ROS and RNS
production above the physiologically relevant threshold levels.
ROS describe a variety of free radicals, including superoxide
(O2•−), hydroxyl radical (•OH), and hydrogen peroxide (H2O2)
derived from molecular oxygen. ROS are formed in various
organs and tissues through the action of specific oxidases [e.g.,
NADPH oxidase (NOX2)], peroxidases (e.g., myeloperoxidase),
and as a by-products of mitochondrial electron transport chain
(Altenhofer et al., 2012). RNS are a family of molecules derived
from nitric oxide (•NO) produced by neuronal, endothelial, and
inducible isoforms of nitric oxide synthase (NOS). Phagosomal
activation of NOX2 and iNOS serves as primary source of O2•−
and •NO that react together to form highly stable and cytotoxic
peroxynitrite (ONOO−) required for direct killing of T. cruzi in
macrophages (Alvarez et al., 2011). While ROS/RNS play an
important role in signaling host defense and regulation of pH
and ion concentration in the phagosome and in cell
differentiation (Bedard and Krause, 2007), excessive oxidative/
nitrosative stress can cause a wide range of pathological processes
and cell and tissue injury in the host. In T. cruzi infection, NOX2
components were detected at the plasma membrane of peritoneal
FIGURE 2 | Potential mechanism of mitochondrial dysfunction in Chagas disease. T. cruzi uptake by monocytes/macrophages activates NADPH oxidase-mediated
superoxide and ROS production. T. cruzi induces intracellular Ca2+ flux that causes mitochondrial membrane permeability transition, respiratory complex inefficiency,
and increased leakage of electron from electron transport chain to oxygen, resulting in superoxide production. ROS suppress mitochondrial biogenesis through
inhibition of PGC-1a-mediated transcriptional activation of NRF1/2 and TFAM that maintain redox homeostasis and mtDNA replication and transcription.
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macrophages (de Carvalho and de Souza, 1987). However,
splenocytes of infected mice and macrophages in vitro infected
with T. cruzi exhibited low levels of ROS and •NO production
that allowed parasite survival (Koo et al., 2016). Myeloperoxidase
and nitrite levels were increased in circulation of T. cruzi-
infected mice (Dhiman et al., 2008) and humans (Dhiman
et al., 2009), though their relevance in parasite control is
not clear.

Mitochondrial respiratory chain is the site for leakage of
electrons to oxygen and superoxide production. In context of
CD, we have documented that infection by T. cruzi results in
intracellular Ca2+ flux, changes in mitochondrial membrane
potential, and a decline in the activities of the respiratory
complexes. Consequently increase in electrons’ leakage to O2

and increased O2•− formation were noted in murine
cardiomyocytes (Gupta et al., 2009; Wen and Garg, 2010) and
almost all muscle tissues of acutely infected mice (Gupta et al.,
2009). Mitochondrial defects of complex III and resultant
increase in ROS release persisted in the heart tissue of
chronically infected mice and Chagas patients (Wen et al.,
2008; Wen and Garg, 2010; Wan et al., 2012; Dhiman et al.,
2013), thus suggesting that mitochondria are a major source of
oxidative stress after acute infection phase and during chronic
phase of disease progression. ROS-induced oxidative adducts
were conducive to proinflammatory macrophage activation
(Choudhuri and Garg, 2020).

The overall cellular oxidative stress is an outcome of the
relative rate of ROS production and the rate by which ROS are
reduced by antioxidants. The critical antioxidants in
cardiomyocytes including Mn2+ superoxide dismutase
(MnSOD), glutathione peroxidase, catalase, and glutathione
were enhanced in various muscle tissues of acutely infected
mice (Wen et al., 2004). However, progression of chronic
phase in infected mice and humans was associated with
sustained or increase in mitochondrial ROS release and
oxidative stress markers (e.g., glutathione disulfide, lipid
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
peroxide, protein carbonyl, 4-hydroxynonenal) as well as non-
responsive or decreased antioxidants (especially MnSOD)
activity (Perez-Fuentes et al., 2003; Budni et al., 2013; Dhiman
et al., 2013). Moreover, treatment with an antioxidant controlled
the oxidative insult in infected patients (Ribeiro et al., 2010) and
preserved the mitochondrial and cardiac function in infected
mice (Wen et al., 2006; Wen et al., 2010). Phenyl-N-tert-
butylnitrone (PBN) is a spin-trapping antioxidant. Treatment
of T. cruzi-infected mice and rats with PBN was beneficial in
arresting the myocardial oxidative lesions and preserving the rate
of oxidative phosphorylation and ATP synthesis (Wen et al.,
2006; Wen et al., 2010). Likewise, MnSOD transgenic mice were
better equipped in controlling the inflammatory infiltrate and
oxidative stress and cardiac hypertrophy that are hallmarks of
chronic CD (Dhiman et al., 2013). All these observations suggest
that inefficient antioxidant response, along with mitochondrial
dysfunction, contributes to sustained oxidative and
inflammatory stress in Chagas cardiomyopathy (Figure 3).
SIRT1: A POTENTIAL ADJUVANT
THERAPY IN CD

SIRT1 Agonists
Resveratrol and SRT1720 are the most studied SIRT1 agonists in
scientific literature. Resveratrol (3,5,4′-trihydroxy-trans-
stilbene) is a natural phytoallexin found in grapes’ skin,
berries, peanuts, and roots of rhubarb, and other plants.
Resveratrol protects the plants from fungal infection, and it
was first described in 1940s. In 2003, a drug screen for small
molecule activators of SIRT1 identified fifteen SIRT1 activators,
and resveratrol was the most potent one. The anti-aging
properties of resveratrol were evidenced by an increase in the
life span of yeast, nematodes, fish, and flies etc. (Valenzano et al.,
2006; Agarwal and Baur, 2011). Others documented that
FIGURE 3 | Mitochondrial ROS contribute to cardiac damage, inflammation, and remodeling in chronic Chagas cardiomyopathy. Mitochondrial dysfunction of
electron transport chain is sustained in chronically infected mice and humans that results in persistence of ROS production and a decline in oxidative phosphorylation
and ATP production. ROS-induced oxidative adducts signal inflammatory responses. Antioxidants capable of scavenging ROS have a potential to control cardiac
damage and remodeling in chronic CD.
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resveratrol is broadly beneficial in inhibiting the growth of cancer
cells in culture (Saunier et al., 2017), and in preventing or
slowing down the neurodegenerative disorders, cardiac
involvement, and cancer in rodents (Hung et al., 2000;
Ignatowicz and Baer-Dubowska, 2001; Shigematsu et al., 2003).
Moreover, resveratrol treatment of mice improved the running
time and increased oxygen consumption in the skeletal muscle,
which was associated with activation of genes for oxidative
phosphorylation and mitochondrial biogenesis (Guo et al.,
2014). The authors attributed these benefits to activation of
SIRT1 and PGC-1a and found that resveratrol treatment
prevented the diet-induced-obesity and insulin resistance in
mice. Cumulatively, many studies have shown that resveratrol
offers a multitude of benefits including increase in mitochondrial
content and antioxidant capacity, reduced inflammation,
improved metabolic and vascular function (Thirunavukkarasu
et al., 2007; Barger et al., 2008; Bereswill et al., 2010; Guo
et al., 2014).

SRT1720 was first identified in a high-throughput in vitro
fluorescence polarization assay which was used for screening
SIRT1 agonists (Milne et al., 2007). SRT1720 is ~1,000-fold more
potent than resveratrol in activating SIRT1 activity. SRT1720
exerts its effects by binding to SIRT1–substrate complex and
potentiate deacetylation of SIRT1 target proteins (Milne et al.,
2007; Feige et al., 2008). C2C12 cells treated with SRT1720
exhibited increased expression of citrate synthase activity and
ATP levels indicating the improvement of mitochondrial
biogenesis (Smith et al., 2009). In vivo studies in obese mice
and rats showed that SRT1720 treatment improved the insulin
sensitivity, regulated plasma glucose levels, and enhanced the
mitochondrial oxidative metabolism in various tissues, including
skeletal muscle, liver, and brown adipose tissue (Minor et al.,
2011; Durkacz et al., 1980; D’Amours et al., 1999). We
demonstrated that SIRT1 activity was decreased in mice
infected with T. cruzi, and treatment with SRT1720 during the
indeterminate phase, i.e., after the immune control of circulating,
blood parasitemia and before the onset of chronic disease phase,
preserved the cardiac structure and function in CD mice (Wan
et al., 2016).

Some studies have noted that resveratrol and SRT1720 exhibit
off-target activities against many enzymes, ion channels,
receptors, and transporters and do not directly influence
SIRT1-mediated deacetylation on target peptides (Pacholec
et al., 2010). Nevertheless, because of its small molecular size
and potent activity, SRT1720 is actively being studied for the
treatment of metabolic and chronic diseases.

SIRT1 Improves Mitochondrial Biogenesis
One of the primary targets of SIRT1 deacetylation is PGC-1a. PGC-
1a undergoes post-translational modifications including acetylation
and phosphorylation, and it serves as master regulator of the
mitochondrial biogenesis and oxidative metabolism. Studies have
shown that deacetylation of PGC-1a is dependent on SIRT1 activity
(Sims et al., 1981; Gerhart-Hines et al., 2007; Amat et al., 2009;
Gurd, 2011; Guo et al., 2014). Mutation of the acetylation sites,
which sealed PGC-1a in deacetylated state, markedly enhanced its
basal activity (Sims et al., 1981). It was suggested that SIRT1 may
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
physically and functionally interact with PGC-1a through ADP-
ribosyl transferase domain of SIRT1, and mutations in this domain
prevent SIRT1’s interactions with PGC-1a (Gurd, 2011). SIRT1-
activated PGC-1a rapidly translocates to the nucleus where it co-
activates the NRF1/NRF2 and TFAM to regulate the expression of
genes encoding key components of respiration, mtDNA
transcription, and mtDNA replication machineries. SIRT1 also
acts as a sensor of changes in nutrient and energy metabolism.
SIRT1 was activated by fasting, and SIRT1 and PGC-1a interaction
enhanced the expression of hepatic gluconeogenic genes (Sims et al.,
1981). SIRT1 deacetylation of PGC-1a in skeletal muscle was
required for signaling the expression of enzymes involved in
mitochondrial fatty acid oxidation (Gerhart-Hines et al., 2007).

Poly(ADP-ribose) polymerase (PARP) family members are
recognized for their function in maintaining DNA and RNA
metabolism. Among the 17 known members of the PARP family,
PARP1 is most active enzymatically. PARP1 is activated upon
sensing the oxidized DNA (Beck et al., 2014), and it utilizes NAD
as a substrate to catalyze the formation of poly(ADP-ribose)
(PAR) chains on itself and other proteins (D’Amours et al., 1999;
Hassa et al., 2006; Messner et al., 2010). SIRT1 and PARP1
compete for NAD+ availability; crosstalk between these proteins
is inevitable (Luna et al., 2013). PARP1 knockout mice exhibited
an increase in mitochondrial content and energy expenditure
and were protected against metabolic disease (Hassa et al., 2006)
confirming that PARP1 influences SIRT1 activity in maintaining
mitochondrial homeostasis. In mice chronically infected with
T. cruzi, myocardial PARP1 expression was increased, and it
compromised the polymerase gamma activity resulting in a
decline in mtDNA content, mtDNA-encoded gene expression,
and oxidative phosphorylation capacity (Wan et al., 2016; Wen
et al., 2018). Consequently, an increase in mitochondrial ROS
and oxidative stress was noted in Chagas myocardium. Genetic
deletion of PARP1 or treatment with PARP1 inhibitor or SIRT1
agonist improved the mitochondrial biogenesis, oxidative
phosphorylation, and left ventricular function in chronic CD
(Wan et al., 2016; Wen et al., 2018). These studies indicate the
SIRT1–PARP1 imbalance is a major contributor to myocardial
mitochondrial stress in CD.

SIRT1 Mitigates Oxidative Stress
Oxidative stress is characterized by increased intracellular levels
of ROS and decreased antioxidant capacity (Johnson and Giulivi,
2005). Oxidative stress plays a key role in the pathophysiology of
many diseases, including atherosclerosis, diabetic mellitus, and
myocardial dysfunction of infectious and non-infectious
etiologies (Deng et al., 2008).

SIRT1 has been demonstrated to control ROS levels by its
regulatory effects on mitochondrial electron transport chain
(discussed above). SIRT1 also inhibited NF-kB transcriptional
activation and reduced the expression of gp91phox and p22phox

encoding for NADPH oxidase subunits, and thus prevented the
production of reactive oxygen and nitrogen radicals by
phagocytes (Xie et al., 1994; Sakitani et al., 1998; Anrather
et al., 2006; Manea et al., 2007; Manea et al., 2010). Quercetin
enhanced the SIRT1 expression, increased AMP-activated
protein kinase (AMPK) activity, and decreased NADPH
June 2021 | Volume 11 | Article 693051
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production, thus providing protective effects against the
hyperglycemia-induced oxidant damage in HUVEC cells
(Hung et al., 2015). Conversely, SIRT1 inhibition led to
increase in NOX2 activity and ROS production and
contributed to endothelial dysfunction (Wosniak et al., 2009;
Zarzuelo et al., 2013).

At a molecular level, SIRT1 influences antioxidant status
through its effects on transcription factors. FoXO (Forkhead box)
family of transcription factors consists of FoxO1, FoxO3, FoxO4,
and FoxO6 (Kaestner et al., 2000). FoXO proteins regulate many
cellular processes, including stress resistance, energy metabolism,
cell cycle, and cell death. In a number of studies, SIRT1 is shown to
deacetylate FoxO1, FoxO3a, and FoxO4, and activate FoXO-
regulated antioxidants in mitochondria (e.g., MnSOD,
peroxiredoxins 3 and 5), peroxisomes (catalase), and plasma (e.g.,
selenoprotein P, ceruloplasmin) (Zhang and Tarleton, 1999; Brunet
et al., 2004; van der Horst et al., 2004; Sengupta et al., 2011; Xiong
et al., 2011; Yamamoto and Sadoshima, 2011). SIRT1-mediated
deacetylation of FoXO1 and FoXO4 enhanced their DNA-binding
ability to induce antioxidants’ gene expression (Daitoku et al., 2004;
van der Horst et al., 2004). FoxO1 depletion by siRNA inhibited
SIRT1 expression in vascular smooth muscle cells and HEK293 cells
suggesting that FoxO1 provides positive feedback signal for SIRT1
activity (Xiong et al., 2011).

Nuclear Factor, Erythroid 2 Like 2 (NFE2L2, also referred as
NRF2 in literature) bind to the antioxidant response element
(ARE) sequences in promoters of the antioxidant genes and plays
an important role in activation of cellular antioxidant defense. It
has been reported that melatonin signals SIRT1-dependent
transcriptional activation of NRF2 to exert anti-oxidative
effects in the developing rat brain and BV2 cells, and SIRT1
inhibitor significantly decreased the SIRT1 and NRF2 expression
in BV2 cells (Shah et al., 2017). SIRT1 was also demonstrated to
enhance the activation of the NFE2L2 (NRF2)/ARE antioxidant
pathway and inhibit the apoptosis of type II alveolar epithelial
cells (Ding et al., 2016). We noted that T. cruzi induced ROS had
a negative effect on the expression, nuclear translocation as well
as ARE binding and transcriptional activity of NFE2L2 in
cardiomyocytes (Wen et al., 2017). Subsequently, expression of
several of the NFE2L2-regulated antioxidants, including gamma-
glutamyl cysteine synthase, heme oxygenase-1, glutamate-
cysteine ligase, thioredoxin, glutathione S transferase, and
NADPH dehydrogenase quinone 1 was decreased in
cardiomyocytes and myocardium of mice infected with T. cruzi
(Wen et al., 2017). Though we did not examine the effects of
SIRT1 agonist on NFE2L2 in this study; however, preserving the
NFE2L2 activity by other means established the antioxidant/
oxidant balance and preserved the mitochondrial and cardiac
health in CD mice (Wen et al., 2017).

SIRT1 Controls Inflammation
The NF-kB transcription factor family consists of five proteins
including p65 (RelA), RelB, c-Rel, p105/p50 (NF-kB1), and p100/52
(NF-kB2). NF-kB transcription factors regulate the expression of a
large number of genes involved in inflammation, cell proliferation,
cell differentiation, and cell survival. In the absence of stimuli,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
NF-kB remains in an inactive form in the cytoplasm through
association with inhibitory IkB proteins. IkB kinase (IKK)-
mediated IkB phosphorylation leads to its degradation and
released NF-kB translocates to nucleus to carry out transcription
of target genes (Nakajima and Kitamura, 2013). SIRT1 deacetylates
the p65/RelA at Lys310 residue and inhibits NF-kB activity (Yeung
et al., 2004). SIRT1 can also inhibit NF-kB by activating AMPK and
peroxisome proliferator-activated receptor a, which inactivate the
NF-kB pathway and prevent ROS generation. Resveratrol treatment
enhanced the SIRT1 activity, and repressed NF-kB and ROS
generation in HUVEC cells treated with TNF-a (Pan et al., 2016).
NF-kB can also suppress SIRT1 activity (Kauppinen et al., 2013),
thus suggesting that a feedback regulation of SIRT1 and NF-kB
determines the inflammatory and oxidative status in a cell.

Acute inflammation occurs over seconds to days to eliminate
the cause of tissue injury (e.g., microbes) and reinstates the
immune homeostasis. Innate immune cells including
monocytes/macrophages, granulocytes, and dendritic cells
express toll-like receptors (TLRs), nod like receptors (NLRs),
rig-I-like receptors (RLRs), and other receptors that sense
pathogen-associated molecular patterns (PAMPs) and signal
transcription activation of cytokines and chemokines (Dalpke
and Heeg, 2002). Further, TLR sensing of PAMPs rapidly
stimulates the expression and transcriptional activation of
Hypoxia Inducible Factor 1 Subunit Alpha (HIF-1a), which
switches mitochondrial glucose oxidation to glycolysis and
increase in glucose level for supporting the expression of
proinflammatory genes (Koo and Garg, 2019). Transcription
regulation of the switching from the proinflammatory to anti-
inflammatory and immuno-regulatory state requires SIRT1-
dependent deacetylation of NF-kB and histone proteins (e.g.,
H1K26, H4K16, H3K9, and H3K14) and recruitment of new
methyltransferases (Liu and McCall, 2013). SIRT1 also regulates
acute inflammatory process by mediating a metabolic switch
(Krawczyk et al., 2010; Michalek et al., 2011; Liu et al., 2012)
through activating PGC-1a that increases the flux of fatty acids
and transfer of fatty acids into mitochondria and supports fatty
acid oxidation as an energy source for mitochondrial function
(Liu and McCall, 2013).

Chronic inflammation is caused by persistent low-level of
pathogenic or non-pathogenic stimuli. A decline in SIRT1
activity is noted in many chronic inflammatory diseases.
Examples include fat deposits in obesity (Schug and Li, 2010),
lungs in chronic obstructive pulmonary disease (COPD)
(Rajendrasozhan et al., 2008), brain in Alzheimer’s disease
(Qin et al., 2006), arteries in atherosclerosis (Gorenne et al.,
2013), and skin in aging (Massudi et al., 2012). SIRT1 inhibition
likely contributes to chronic inflammation due to hosts’ inability
to shut down NF-kB-dependent gene expression of
proinflammatory cytokines (Serrano-Marco et al., 2012). Yet,
the mechanisms of SIRT1 decline during chronic inflammation
are not very clear. Enhancing NAD+ levels (Imai and Guarente,
2014) or activating SIRT1 by resveratrol suppressed chronic
inflammation and helped establish metabolic homeostasis
(Haigis and Sinclair, 2010). It is suggested that cellular
bioenergetics and SIRT1 coordinate to provide a regulation
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axis (positive and negative) that controls host’s inflammatory
response to pathogens as well as maintain cellular metabolic
homeostasis (Liu et al., 2011).

We showed that yolk-sac-derived CD11b+ F4/80+ monocytes/
macrophages were increased in spleen and heart tissue of CD
mice, and these cells displayed surface markers of inflammatory
phenotype (CD80+/CD64+ > CD200+/CD206+) as well as
inflammatory functional response, evidenced by increase in the
cytokines’ expression (IL-6 + TNF-a >> Arg-1 + IL-10) (Wan
et al., 2019). When treated with SRT1720, splenic expansion and
myocardial infiltration of proinflammatory monocytes/
macrophages were controlled in CD mice. SRT1720 did not
alter the inherent capability of macrophages to respond to
T. cruzi infection. Instead, SRT1720 treatment diminished
the T. cruzi-induced expression and/or phosphorylation of
focal adhesion kinase (FAK) non-receptor kinase and the
downstream transcription factors (Pu.1, c-Myb, and Runx1)
that are known to participate in macrophage proliferation and
migration and Notch1 that is involved in macrophage’s
functional activation. Studies in cultured macrophages showed
that SIRT1 agonist or FAK inhibitor abrogated the NF-kB
transcriptional activity and inflammatory cytokine gene
expression in macrophages infected with T. cruzi, and thus
provided further evidence of agonistic effects of SIRT1 on FAK
signaling of transcription factors involved in macrophage
functional activation (Wan et al., 2019).
CONCLUSIVE REMARKS

Inflammatory and oxidative stress and mitochondrial
dysfunction are recognized of pathological importance in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
chronic Chagas cardiomyopathy. We have shown that SIRT1
activity is compromised in the myocardium during CD
progression, and treatment of infected mice with SRT1720 for
3-weeks in indeterminate phase ameliorated the left ventricular
dysfunction. The benefits of SRT1720 were associated with
control of chronic oxidative stress and proinflammatory
differentiation of macrophages in spleen of chronically infected
mice (Figure 4). Similar benefits in improving the cardiac
outcomes in infected mice were obtained by inhibiting PARP1
that competes with SIRT1 for the NAD+ substrate. Whether
PARP1–SIRT1 imbalance occurs in human Chagas disease and
whether PARP1 inhibitors or SIRT1 agonists will be useful in
improving the cardiac outcomes in human Chagas disease
remain to be investigated in future studies.

The mechanism(s) connecting SIRT1 to tissue inflammation/
oxidative stress have been enigmatic. The bone marrow and
splenic myeloid progenitor cells give rise to proinflammatory
macrophages in Chagas heart. However, how SIRT1 deficiency
and SIRT1 agonists regulate the proliferation and differentiation
of monocytes of different lineages into macrophages with diverse
phenotypic and functional activation remains to be studied.
Likewise, how the crosstalk or substrate allocation between
SIRT1 and PARP1 is regulated is not known, and further
studies will be needed to understand their precise role in
human health and disease, especially as related to Chagas disease.
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