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Abstract. A subset 𝑆 of vertices of a simple connected graph is a neighborhood 

set (𝑛-set) of 𝐺 if 𝐺 is the union of subgraphs of 𝐺 induced by the closed 

neighbors of elements in 𝑆. Further, a set 𝑆 is a resolving set of 𝐺 if for each pair 

of distinct vertices 𝑥, 𝑦 of 𝐺, there is a vertex 𝑠 ∈ 𝑆 such that 𝑑(𝑠, 𝑥) ≠ 𝑑(𝑠, 𝑦). 

An 𝑛-set that serves as a resolving set for 𝐺 is called an 𝑛𝑟-set of 𝐺. The 𝑛𝑟-set 

with least cardinality is called an 𝑛𝑟-metric basis of 𝐺 and its cardinality is called 

the neighborhood metric dimension of graph 𝐺. In this paper, we characterize 

graphs of neighborhood metric dimension two. 

Keywords: landmarks; metric dimension; neighborhood metric dimension; 

neighborhood set. 

1 Introduction 

All graphs considered in this paper are connected, simple, undirected and finite.   

Let 𝐺(𝑉, 𝐸) be a graph with vertex set 𝑉 and edge set 𝐸. Let 𝑑(𝑢, 𝑣) denote the 

distance between the vertices 𝑢 and 𝑣. Let 𝑁[𝑣] denote the closed neighborhood 

of the vertex 𝑣 ∈  𝑉, i.e. 𝑁[𝑣] = {𝑥 ∈ 𝑉: 𝑑(𝑥, 𝑣) ≤ 1}. A neighborhood set of G 

is a subset S of the vertex set of 𝐺 with the property that  𝐺 =  ⋃ 𝐺𝑣𝑣∈𝑆  

where 𝐺𝑥 =  〈𝑁[𝑥]〉 . Further, a subset 𝑆 of 𝑉 is called a resolving set of 𝐺 if for 

each pair 𝑢, 𝑣 of vertices of 𝐺 there is a vertex 𝑡 ∈ 𝑆 with the property that 

|𝑑(𝑣, 𝑡) − 𝑑(𝑢, 𝑡)| > 0. A neighboring set of 𝐺 that also serves as an 𝑟-set of 𝐺 

is called a neighborhood resolving set (𝑛𝑟-set) of 𝐺. In other words, an 𝑛𝑟-set 𝑆 

is an ordered subset 𝑆 = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑘) of 𝑉 such that  𝛤 (𝑥/𝑆)  ≠  𝛤 (𝑦/𝑆) 

for all 𝑥, 𝑦 ∈ 𝑉 − 𝑆 and 𝐺 = ⋃ 〈𝑁[𝑠𝑖]〉𝑘
𝑖=1 , where 𝛤 (𝑎/𝑆)  =  (𝑑(𝑎, 𝑠1), 𝑑(𝑎, 𝑠2),

… , 𝑑(𝑎, 𝑠𝑘)) is called the code of vertex 𝑎 with respect to 𝑆. 

An 𝑛𝑟-set is called a minimal 𝑛𝑟-set (𝑚𝑛𝑟-set) if none of its proper subsets is 

an 𝑛𝑟-set. The 𝑚𝑛𝑟-set of 𝐺 with least cardinality is called the neighborhood 

metric basis (𝑛𝑚𝑏) and its cardinality is called the lower neighborhood metric 

dimension or simply the neighborhood metric dimension of graph 𝐺, denoted by 
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𝑛𝑚𝑑(𝐺). Similarly, the upper neighborhood metric dimension of 𝐺 is the 

greatest  cardinality of an 𝑚𝑛𝑟-set, denoted by 𝑁𝑚𝑑(𝐺). Further, an 𝑛𝑟-set 𝑆 is 

called a maximal neighborhood resolving set (𝑀𝑛𝑟-set) whenever 𝑉 − 𝑆 is not 

an 𝑛𝑟-set. The minimum cardinality of an 𝑀𝑛𝑟-set is called the lower maximal 

neighborhood metric dimension or simply the maximal neighborhood metric 

dimension of 𝐺, denoted by 𝑛𝑀𝑑(𝐺). Similarly, the maximum  cardinality of an 

𝑀𝑛𝑟-set of 𝐺 is called the upper maximal neighborhood metric dimension of 𝐺, 

denoted by 𝑁𝑀𝑑(𝐺). These sets and dimensions have been studied for paths 

and cycles in [1]. Related work can be found in [2-19]. For the terms not 

defined here we refer to [20,22]. 

We recall the following theorem in [23]: 

Theorem 1.1.  Let 𝐺(𝑉, 𝐸) be a graph and 𝑆 ⊆  𝑉(𝐺). Then, 𝑆 is an 𝑛-set of 𝐺 if 

and only if every pair of adjacent vertices in  𝑆̅ is dominated by a common 

vertex in 𝑆 [23]. 

Corollary 1.2. Let 𝐺 be a triangle free graph. Then, 𝑆 is an 𝑛-set of 𝐺 if and only 

if 〈 𝑆̅ 〉 ≡ 𝐾̅𝑛, where  𝑆̅ = 𝑉(𝐺) − 𝑆 and 𝑛 = |𝑉(𝐺)| [23]. 

 

Figure 1 Graph G. 

Example: The sets {𝑣3, 𝑣7 }, {𝑣2, 𝑣5, 𝑣7}, and {𝑣2, 𝑣3, 𝑣5, 𝑣8} are an 𝑟-set, 𝑛-set, 

and 𝑛𝑟-set of graph 𝐺 in Fig. 1, respectively. The set {𝑣2, 𝑣3, 𝑣4, 𝑣7} is a 

minimal 𝑛𝑟-set. 

Theorem 1.3. The minimum cardinality of an r-set of G is 1 if and only if 𝐺 = 𝑃𝑛 

for some 𝑛 ≥ 2 [24]. 

Theorem 1.4. Let 𝑇 = (𝑉, 𝐸) be a tree with 𝛿(𝑇) ≥ 3. Then the minimum 

cardinality of an r-set is given by  ∑ (𝑙𝑣 − 1)𝑣𝜖𝑉:𝑙𝑣>1  [24]. 

Theorem 1.5. For any positive integer 𝑛, 𝑛𝑚𝑑(𝑃𝑛) = {
⌈

𝑛

2
⌉ ,    𝑖𝑓 𝑛 ≤ 3

⌊
𝑛

2
⌋ ,    𝑖𝑓 𝑛 ≥ 4

  [1]. 

Remark 1.6. If graph 𝐺 contains 𝑘 pendent vertices adjacent to a vertex 𝑣 in it, 

then every resolving set of 𝐺 should contain at least 𝑘 − 1 of these pendent 
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vertices. Otherwise, two of these pendent vertices not in a resolving set receive 

the same code due to the fact that 𝑣 is a cut vertex. 

We state the following theorems whose proof follows immediately from the 

definition of an 𝑛𝑟-set and Theorem 1.3. 

Theorem 1.7. For a connected graph 𝐺, 𝑛𝑚𝑑(𝐺) = 1 if and only if 𝐺 ≃
 𝐾1 𝑜𝑟 𝐾2. 

Theorem 1.8. For any connected graph 𝐺, 2 ≤  𝑛𝑚𝑑(𝐺) ≤ |𝑉(𝐺)| − 1, 
whenever |𝑉(𝐺)| ≥ 3. 

The upper bound in Theorem 1.8 is tight for the complete graph 𝐾𝑛 on 

𝑛 vertices. In a later section of this paper we characterize the graphs that satisfy 

the lower bound and construct a graph of prescribed neighborhood dimension. 

2  Application of Neighborhood Resolving Sets 

In most safeguard applications of a network model, various types of protection 

sets have been studied to identify or locate an ‘intruder’ or to check a faulty 

processor. The locating sets are such a protection sets, not only to identify 

intruders but also to determine the distance to an intruder. These were 

introduced by Slater [25] and independently by Harary and Melter [26]. When 

two intruders are linked (known to each), then it is more efficient to have a 

common protection device at a vertex 𝑣 adjacent (known to) both intruders. 

However, the study of special types of dominating sets, namely neighborhood 

sets, was introduced in [23]. The neighborhood set is a notion that is somehow 

in between vertex cover and dominating sets. These sets are considered in [1] to 

build a powerful locating-dominating set, as they have the additional property of 

edge covering along with the domination and locating properties. Such sets are 

useful in the study of the location of vertices as well as edges in a network. 

3  Realization 

In this section we construct a graph with prescribed parameters. 

Theorem 3.1. For the given positive integers 𝛼, 𝛽, 𝛾 with 𝛼, 𝛽 ≤ 𝛾, there is a tree 

on 𝑛 vertices such that 𝑙𝑛(𝐺) = 𝛼, 𝑙𝑟(𝐺) = 𝛽 and 𝑙𝑛𝑟(𝐺) = 𝛾 whenever 2𝛾 −
𝛽 ≤  𝑛 ≤ 𝛾 + 𝛼. 

Proof.  Let 𝑙𝑛(𝐺) = 𝛼, 𝑙𝑟(𝐺) = 𝛽 and 𝑙𝑛𝑟(𝐺) = 𝛾. Then 𝛼 ≤ 𝛾,  𝛽 ≤ 𝛾 and 

𝛼 + 𝛽 ≥ 𝛾. Let 𝑘 = 𝛼 + 𝛽 − 𝛾; 𝐻1 = 𝐾̅𝛾−𝛼 and 𝐻2 = (𝛼 + 𝛽 − 𝛾) 𝐾2. 
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Consider a path 𝑃2(𝛾−𝛽): 𝑣1 − 𝑣2 −  … − 𝑣2(𝛾−𝛽). Add the edges between one 

end vertex of each copy of 𝐾2 in 𝐻2 to the vertex 𝑣1, and each vertex of 𝐻1 to 

𝑣1. The graph 𝐺 thus obtained satisfies:  

1) 𝑙𝑛(𝐺) = 𝛼. 

In fact, if 𝑆 is any 𝑛-set, then 𝑆 should include (𝛾 − 𝛽) vertices of 𝑃2(𝛾−𝛽) and 

𝛼 + 𝛽 − 𝛾 vertices of 𝐻2, because 𝐺 is triangular free and by Corollary 1.1,  

〈𝑉 − 𝑆〉 is totally disconnected and hence |𝑆| ≥  (𝛾 − 𝛽) + (𝛼 + 𝛽 − 𝛾) = 𝛼. 

On the other hand, the set 𝑆 = { 𝑢𝑖, 𝑣𝑗: 𝑢𝑖  is a vertex in the 𝑖𝑡ℎ copy of  𝐾2 in 

𝐻2,  𝑣𝑗 ∈  𝑉( 𝑃2(𝛾−𝛽)) and 𝑗 is odd } is an 𝑛-set of 𝐺 with |S|≤ 𝛼. 

2) 𝑙𝑟(𝐺) = 𝛽.   

Since 𝐺 is a tree with 𝛽 + 1 legs it follows from Theorem 1.5 that 𝑙𝑟(𝐺) = 𝛽 +
1 − 1 = 𝛽. 

3) 𝑙𝑛𝑟(𝐺) = 𝛾.  

Let 𝑆 be an 𝑛𝑟-set of 𝐺, then at least 𝛽 pendent vertices of 𝐺 should be in 

𝑆 being an 𝑟-set and 𝛾 − 𝛽 vertices of a path 𝑃2(𝛾−𝛽)(𝐺) = 𝛽 being an 𝑛-set. So 

|𝑆| ≥ 𝛽 + 𝛾 − 𝛽 = 𝛾. 

On the other hand, 𝑆 = {𝑣𝑗: 𝑣𝑗 ∈ 𝑉(𝑃2(𝛾−𝛽))} ∪ {𝑥: 𝑥 is a pendant vertex of 𝐺 

not in 𝑃𝑛} is an 𝑛𝑟-set with |𝑆| = 𝛾. 

 

Figure 2 A tree G with 𝑙𝑛(𝐺) = 𝛼, 𝑙𝑟(𝐺) = 𝛽 and 𝑙𝑛𝑟(𝐺) = 𝛾. 

As an immediate consequence of Theorem 3.1, we have: 

Corollary 3.2  For the positive integers 𝛼, 𝛽, 𝛾 with 𝛼, 𝛽 ≤ 𝛾 ≤ 𝛼 + 𝛽 there is 

a graph G, see Fig.  2, with 𝑙𝑛(𝐺) = 𝛼, 𝑙𝑟(𝐺) = 𝛽 and 𝑙𝑛𝑟(𝐺) = 𝛾. 
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4  Graphs of Neighborhood Metric Dimension Two 

We begin this section with the following lemma: 

Lemma 4.1. Let 𝑮 be a connected graph and 𝑺 = {𝒔𝟏, 𝒔𝟐} be an independent 

𝒏𝒓-set of 𝑮. Then there is a unique vertex 𝒗 that is adjacent to both 𝒔𝟏 and 𝒔𝟐 

in G. 

Proof.  We first prove the existence. Since 𝐺 is connected and 𝑆 is an 

independent 𝑛-set, 𝑠1 is adjacent 𝑣, and 𝑠2 is adjacent to 𝑢 for some 𝑢, 𝑣 ∈
𝑉(𝐺). The vertex 𝑣 does not need to be distinct from 𝑢. If 𝑣 = 𝑢, then 𝑣 is the 

desired vertex. Else, if 𝑢 and 𝑣 are distinct, then there is a vertex 𝑤1 ∈ 𝑉(𝐺) −
𝑆 such that 𝑤1 is in the shortest path from 𝑣 to 𝑢 adjacent to 𝑣. But then, for the 

edge 𝑣𝑤1, by Theorem 1.1 we see that 𝑤1 is adjacent to 𝑠1. If 𝑤1 is adjacent to 

𝑠2, then 𝑤1 is the desired vertex. Otherwise, repeating this argument by 

replacing 𝑣 with 𝑤1, we arrive at 𝑘 finite steps that there is a vertex 𝑤𝑘(≠ 𝑢)  

adjacent to 𝑠1 as well to 𝑠2 or 𝑢. If 𝑤𝑘 is adjacent to 𝑠2, then 𝑤𝑘 is the desired 

vertex. Else, if 𝑤𝑘 is not adjacent to 𝑠2 for any 𝑘, then for the last possible 𝑘, we 

see that 𝑤𝑘𝑢 ∈ 𝐸(𝐺). Hence by Theorem 1.1 we get 𝑢 is adjacent to 𝑠1. So 𝑢 is 

the desired vertex. 

To prove uniqueness: Suppose that 𝑣1 and 𝑣2 are two distinct vertices adjacent 

to both 𝑠1 and 𝑠2. However, then 𝑑(𝑣1, 𝑠1) = 𝑑(𝑣2, 𝑠1) and 𝑑(𝑣1, 𝑠2) =
𝑑(𝑣2, 𝑠2)  imply that 𝑆 has no vertex that resolves 𝑣1 and 𝑣2, a contradiction (∵
𝑆 is an 𝑟-set). 

Remark 4.2. If 𝑆 is a non-independent 𝑛𝑟-set, then 𝐺 does not need to have a 

common vertex adjacent to both elements in 𝑆 as in Lemma 4.1. Thus, 𝑆 can 

have at most one vertex in 𝑉(𝐺) − 𝑆 that is adjacent to both 𝑠1 and 𝑠2 for any 

general 𝑛𝑟-set S of cardinality 2. 

Lemma 4.3. Let 𝐺 be a connected graph and 𝑆 = {𝑠1, 𝑠2} be an 𝑛𝑟-set of 𝐺. 

Then, 1 ≤ 𝑑𝑒𝑔(𝑠𝑖)  ≤  3, for each 𝑖 = 1, 2. 

Proof. Let us assume to contrary that 𝑑𝑒𝑔(𝑠𝑖) ≥ 4 for some 𝑖 = 1,2. Without 

loss of generality we take deg(𝑠1)≥ 4. Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 be the vertices adjacent 

to 𝑠1. Then: 

Case 1: 〈𝑆〉 is independent. 

In this case, by Lemma 4.1, there is a unique vertex 𝑥 adjacent to both 𝑠1 and 

𝑠2, and hence at least three of the vertices in {𝑣1, 𝑣2, 𝑣3, 𝑣4} are not adjacent to 

𝑠2. Without loss of generality, let 𝑣1, 𝑣2, 𝑣3 be the vertices not adjacent to 𝑠2. 
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But then, 𝑑(𝑣𝑖 , 𝑠1) = 1 and  𝑑(𝑣𝑖 , 𝑠2) = {
3    𝑖𝑓 𝑣𝑖  𝑥 ∉ 𝐸(𝐺)

2    𝑖𝑓 𝑣𝑖 𝑥 ∈ 𝐸(𝐺)
. In either of these 

cases there are at least two vertices 𝑣𝑙 , 𝑣𝑚  ∈ {𝑣1, 𝑣2, 𝑣3} that satisfy 𝑑(𝑣𝑙 , 𝑠2) =
𝑑(𝑣𝑚, 𝑠2), a contradiction to the fact that 𝑆 resolves 𝐺. 

Case 2: 〈𝑆〉 is connected. 

In this case there are at least three vertices 𝑣𝟏, 𝑣2, 𝑣3 not in 𝑆 adjacent to 𝑠𝟏 in 𝐺. 

But then, by Remark 4.2, at least two of these, say 𝑣𝟏 and 𝑣2, are not adjacent to 

𝑠2. So, 𝑑(𝑣1, 𝑠1) = 𝑑(𝑣2, 𝑠1) and  𝑑(𝑣𝟏, 𝑠2) = 𝑑(𝑣2, 𝑠2) = 2, a contradiction to 

the fact that 𝑆 resolves 𝐺. 

The above Lemma 4.1 and Lemma 4.3, together with the domination property 

of n-sets, yield the following theorem: 

Lemma 4.4. If 𝐺 is a connected graph of order 𝑛 with 𝑛𝑚𝑑(𝐺) = 2, then 3 ≤
𝑛 ≤ 7. 

Lemma 4.5. Let 𝐺 be a connected graph and 𝑆 = {𝑠1, 𝑠2} be the neighborhood 

metric basis of 𝐺. Let 𝑥 be the vertex adjacent to both 𝑠𝟏, 𝑠2. If 𝑢, 𝑣 are vertices 

adjacent to s1, then either 𝑢 is adjacent to 𝑥 or 𝑣 is adjacent to 𝑥 in 𝐺. 

Proof. If not, then there are two possible cases: (i) both 𝑢 and 𝑣 are not adjacent 

to 𝑥, and (ii) both 𝑢 and 𝑣 are adjacent to 𝑥. By Lemma 4.1, neither 𝑢 nor 𝑣 is 

adjacent to 𝑠2. So, Г(𝑢/𝑆) =  Г(𝑣/𝑆) =  (1,3) and Г (
𝑣

𝑆
) = Г (

𝑢

𝑆
) = (1,2) in the 

cases (i) and (ii) respectively, a contradiction to the fact that 𝑆 is an 𝑟-set. 

Lemma 4.6.  If 𝐺 is a connected graph of size 𝑚 and 𝑛𝑚𝑑(𝐺) = 2, then 2 ≤  m  

≤ 10. 

Proof. Let 𝑛𝑚𝑑(𝐺) = 2 and S = {𝑠1, 𝑠2} be the neighborhood metric basis of 

𝐺. The lower bound is trivial, as nmd(𝐾2) = 1. To prove the upper bound, let 𝑠𝑙,𝑖 

be the 𝑖𝑡ℎ  vertex adjacent to 𝑠1 and 𝑠2,𝑗 be the  𝑗𝑡ℎ vertex adjacent to 𝑠2. Then 

1 ≤  𝑖 , 𝑗 ≤  3  (by Lemma 4.3 ), 𝑠1,𝑖 = 𝑠2,𝑗 for exactly one (𝑖, 𝑗) (by Lemma 4.1) 

and 𝑠1,𝑖 is adjacent to 𝑠1,1 for exactly one 𝑖 , 𝑖 ≥ 2  (by Lemma 4.5). Without 

loss of generality we take 𝑠1,1 = 𝑠2,1 as the common vertex adjacent to both 𝑠1 

and 𝑠2. Similarly, 𝑠2,𝑗 is adjacent to 𝑠1,1 for exactly one 𝑗, 𝑗, ≥ 2. Without loss of 

generality, we assume that 𝑠1,2 is adjacent to 𝑠1,1, 𝑠2,2 is adjacent to 𝑠2,1 (note 

that 𝑠1,1 = 𝑠2,1). Further, by Lemma 4.4 , 𝐺 has at most 𝑠1, 𝑠2, 𝑠1,𝑖, 𝑠2,𝑗, for 1 ≤

 𝑖, 𝑗 ≤  3 vertices. Therefore, ∑ deg (𝑣)𝑣∈𝑉 ≤  ∑ deg (𝑠𝑖)2
𝑖=1 +
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∑ deg(𝑠1,𝑖) + ∑ deg(𝑠2,𝑗) +  deg(𝑠1,1) ≤ (3 + 3) + (3 + 2) +3
𝑗=2

3
𝑖=2

(3 + 2) + 4 = 20. Hence, m = 
1

2
 ∑ deg (𝑣)𝑣∈𝑉  ≤

1

2
(20) =  10. 

Lemma 4.7. A graph 𝐺 with 𝑛𝑚𝑑(𝐺) = 2 cannot have an induced cycle 𝐶𝑛 for 

any n ≥ 4. 

Proof. Suppose to contrary that 𝑛𝑚𝑑(𝐺)=2 and 𝐺 has an induced cycle 𝐶𝑛 for 

some n ≥ 4. Then 𝐶𝑛 has no induced triangle. Let S = {𝑠1, 𝑠2} be the 

neighborhood metric basis for 𝐺. We have only the following three cases: 

Case (1): 𝑠1, 𝑠2∈ 𝑉 (𝐶𝑛) 

In this case, 𝑆 is not an independent set (by Lemma 4.1). Since 𝑛 ≥  4, there is 

an edge 𝑢𝑣 ∈  〈𝑉 (𝐶𝑛) − 𝑆〉. However, then by Theorem 1.1 either 

〈{𝑢, 𝑣, 𝑠1}〉 or 〈{𝑢, 𝑣, 𝑠2}〉 is an induced triangle of 𝐶𝑛, a contradiction to the fact 

that 𝐶𝑛 has no induced triangle. 

Case (2): 𝑠1 ∈ 𝑉(𝐶𝑛) and 𝑠2 ∉ 𝑉(𝐶𝑛) 

Let 𝑥 and 𝑢 be the vertices of 𝐶𝑛 adjacent to 𝑠1. By Lemma 4.1 the vertex 𝑠2 

can be adjacent to at most one of these vertices, say 𝑢 ∉ 𝑁(𝑠2). Then, by 

Theorem 1.1, the vertex  𝑢′(≠ 𝑠1) adjacent to 𝑢 in 𝐶𝑛 should be in 𝑁(𝑠1) and 

hence 〈{𝑠1, 𝑢, 𝑢′}〉 is an induced triangle of 𝐶𝑛, a contradiction. 

Case (3): 𝑠1, 𝑠2 ∉ 𝑉(𝐶𝑛) 

In this case, by Lemma 4.5, 𝑛 = 4 or 𝑛 = 5. By Lemma 4.1, 𝑠1 and 𝑠2 are 

adjacent to at most one common vertex 𝑥 ∈  𝑉 − 𝑆. Therefore, there exist two 

adjacent vertices 𝑢, 𝑣 ∈  𝑉(𝐶𝑛) such that 𝑢, 𝑣 ∉  𝑁(𝑠1) ∩ 𝑁(𝑠2). In view of 

Theorem 1.1, without loss of generality we take 𝑢, 𝑣 ∉  𝑁(𝑠1) (hence 𝑢, 𝑣 ∈
 𝑁(𝑠2)). Since 𝑛 ≥ 4, there are two distinct vertices 𝑢′ and 𝑣′adjacent to 

respectively 𝑢 and 𝑣 in 𝐶𝑛. Let 𝑣′ = 𝑥 ∈ 𝑁(𝑠1) ∩ 𝑁(𝑠2)  and from Remark 4.2 

𝑠1 is adjacent to only 𝑢′. Then an edge 𝑢𝑢′ ∉ ⋃v∈s〈𝑁 [𝑣]〉, a contradiction to an 

𝑛-set 𝑆. And also Г(𝑢/𝑆) =  Г(𝑣/𝑆) =  (1,2)  implies 𝑆 is not an 𝑟-set. 

Lemma 4.8. A graph 𝐺 with 𝑛𝑚𝑑(𝐺) = 2 cannot have an induced subgraph 

isomorphic to 𝑃6. 

Proof.  Let 𝑛𝑚𝑑(𝐺) = 2 and 𝑆 be any 𝑛𝑚𝑏 of 𝐺. If possible, let 𝑃6: 𝑣1, 

𝑣2, … , 𝑣6 be an induced path of 𝐺 with 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 for each 𝑖, 1 ≤  𝑖 ≤  5. If 𝐺 

has no other vertices,  then 𝐺 ≅ 𝑃6, a contradiction to the fact that 𝑛𝑚𝑑 (𝑃6) =
3 (by Theorem 1.5). Further, as 𝐺 can have at most 7 vertices (by Lemma 4.4), 
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𝐺 has exactly one new vertex 𝑣. The graph 𝐺 ≄ 𝑃7 (since 𝑛𝑚𝑑(𝑃7) = 3 > 2, 

by Theorem 1.5) and hence 𝑣 cannot be adjacent to only 𝑣1 or only 𝑣6. Also, if 

𝑣 is not adjacent to both 𝑣1 and 𝑣6, then by Theorem 1.1, every 𝑛𝑚𝑟-set 𝑆 

should include at least two vertices from the set {𝑣1, 𝑣2, 𝑣5, 𝑣6} for the edges 

𝑣1𝑣2 and 𝑣5𝑣6, and a new vertex for the edge 𝑣3𝑣4, so |𝑆| ≥ 3 ⇒ 𝑛𝑚𝑑(𝐺) ≥ 3, 

a contradiction. Finally if 𝑣 should be adjacent to both 𝑣1 and 𝑣6, then by 

Lemma 4.7, the vertex 𝑣 is adjacent to every 𝑣𝑖, 2 ≤ 𝑖 ≤ 5 and hence 𝐺 has 11 

edges, a contradiction by Lemma 4.6. Thus, 𝑣 should be adjacent to exactly 𝑣1 

(or 𝑣6 but not both) and a vertex 𝑣𝑖, 2 ≤ 𝑖 ≤ 5. Without loss of generality we 

assume 𝑣𝑣1 ∈ 𝐸. 

If 𝑣 ∉  𝑆, then by Theorem 1.1 for the edge 𝑣𝑣1, either 𝑣1 ∈ 𝑆, or 𝑣2 ∈ 𝑆 and 

𝑣𝑣2 ∈ 𝐸(𝐺). Let 𝑆 = {𝑣𝑖, 𝑣𝑗} where 𝑖 = 1 or 𝑖 = 2, and 𝑖 + 1 ≤ 𝑗 ≤ 5. Then by 

Lemma 4.7, we get 𝑗 = 𝑖 + 1. But then for the edge 𝑣5𝑣6, by Theorem 1.1, 

either 𝑣𝑖 or 𝑣𝑖+1 adjacent to both 𝑣5 and 𝑣6, a contradiction to the fact that 𝑃6 is 

an induced path. Therefore, 𝑣 ∈ 𝑆 and hence 𝑆 = {𝑣, 𝑣1}. But then, again for the 

edge 𝑣5𝑣6, by Theorem 1.1 only 𝑣 should be adjacent to both 𝑣5 and 𝑣6 (since 

𝑃6 is an induced path), a contraction to the fact that 𝑣 is not adjacent to 𝑣6. 

Hence the theorem is proved. 

Lemma 4.9. Let 𝐺 be a graph of order 𝑛 and 𝑆 be a neighborhood metric basis 

of cardinality 2 in 𝐺. If 𝑆 has a pendent vertex of 𝐺, then 𝑛 ≤ 5. 

Proof. Let S = {𝑠1, 𝑠2} be the neighborhood metric basis and 𝑠1 be a pendent 

vertex in 𝑆. If 𝑠2 is adjacent to 𝑠1, then 𝑑(𝑠1, 𝑥)= 𝑑(𝑠2, 𝑥) for every 𝑥 ∈ 𝑉(𝐺) 

and hence 𝑠2 may be adjacent to at most one more vertex in 𝐺, which implies 

that 𝑛 ≤ 3. If 𝑠2 is not adjacent to 𝑠1, then 𝑆 is an independent set. Hence by 

Lemma 4.1, 𝐺 has exactly one vertex adjacent to both 𝑠1 and 𝑠2. Finally, as 

each vertex of 𝐺 is adjacent to either 𝑠1 or 𝑠2, the order of 𝐺 =
 |𝑁[𝑠1]⋃𝑁[𝑠2]| =  |𝑁[𝑠1]| + |𝑁[𝑠2]| − |𝑁[𝑠1]  ∩ 𝑁[𝑠2]| = 2 +  4 −  1 =  5. 

Lemma 4.10. A graph 𝐺 with 𝑛𝑚𝑑(𝐺) =  2 cannot have a subgraph 

isomorphic to 𝐾4. 

Proof. Let 𝑛𝑚𝑑(𝐺)  =  2 and S = {𝑠1, 𝑠2} be an 𝑛𝑚𝑟-set of 𝐺.If possible, 

suppose to contrary that 𝐺 has a subgraph 𝐻 isomorphic to 𝐾4. Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 

be the vertices of 𝐻. Then we have the following cases: 

Case (i): 𝑆 ⊆  𝐻 

In this case, for the vertices, 𝑥, 𝑦 ∈ 𝐻 − 𝑆, we get 𝑑(𝑠1, 𝑥) = 𝑑(𝑠2, 𝑥); 𝑑(𝑠1, 𝑦) 

= 𝑑(𝑠2, 𝑦) = 1,  a contradiction to the fact that 𝑆 is an 𝑟-set. 
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Case (ii): |𝑆 ∩  𝑉(𝐻)|  =  1. 

Without loss of generality we take 𝑠1 = 𝑣1 ∈ 𝑆 ∩  𝑉, then in this case 𝑠2 ≠  𝑣𝑖, 

for any 𝑖, 2 ≤ i ≤ 4 and 𝑠1 is adjacent to each 𝑣𝑗, 2 ≤ 𝑗 ≤ 4. Hence by Lemma 

4.3, 𝑠1 is not adjacent to 𝑠2 as well no other vertex in 𝑉(𝐺) − 𝑉(𝐻). So, by 

Lemma 4.1, there is a vertex 𝑣𝑗 for exactly one 𝑗, 2 ≤  𝑗 ≤  4, adjacent to both 

𝑠1 and 𝑠2. Without loss of generality, we take 𝑣2 is adjacent to 𝑠1 and 𝑠2. But 

then, Г(𝑣3|𝑆) =  Г(𝑣4|𝑆) =  (1,2), a contradiction to the fact that 𝑆 is an 𝑟-set. 

Case (iii):  |𝑆 ∩  𝑉(𝐻)|  =  ∅. 

By Theorem 1.1, for the edge 𝑣1𝑣2, we have either 𝑣1, 𝑣2 ∈ 𝑁(𝑠1) or 𝑣1, 𝑣2 ∈
𝑁(𝑠2). Without loss of generality we take 𝑣1, 𝑣2 ∈ 𝑁(𝑠1). By Lemma 4.3, 𝑠1 

can be adjacent to at most one of the vertices in {𝑣3, 𝑣4}, and by Lemma 4.1, 𝑠2 

can be adjacent to at most one vertices in {𝑣1, 𝑣2}. Without loss of generality, 

we take 𝑣3 ∉ 𝑁(𝑠1) and 𝑣1 ∉ 𝑁(𝑠2). However, then 𝐺 has no triangle 

containing the edge 𝑣1𝑣3, one of its vertices in 𝑆, a contradiction (by Theorem 

1.1) to the fact that 𝑆 is an 𝑛-set. 

Corollary 4.11. If 𝑆 is a neighborhood metric basis of cardinality 2 of a graph 

𝐺, then the graph 〈𝑉 − 𝑆〉 is acyclic. 

Proof. If not, then by Lemma 4.7, 〈𝑉 − 𝑆〉  has a triangle. Let 𝑣1, 𝑣2, 𝑣3 be 

vertices in a cycle of 〈𝑉 − 𝑆〉. Then, by Theorem 1.1 both end vertices of the 

edge 𝑣1𝑣2 are adjacent to one of the vertices in 𝑆, say 𝑠1. If 𝑣3 is adjacent to 𝑠1, 

then 〈{𝑣1, 𝑣2, 𝑣3, 𝑠1}〉 is an induced 𝐾4, a contradiction to Lemma 4.10. So, 𝑣3 is 

not adjacent to 𝑠1. 

Now, by Theorem 1.1 the end vertices 𝑣2, 𝑣3 of the edge 𝑣2 𝑣3 should be 

adjacent to 𝑠2. But then 𝑣2 is adjacent to both 𝑠1 and 𝑠2 and hence by Lemma 

4.1, 𝑣1 cannot be adjacent to 𝑠2. Therefore none of the end vertices of edge 

𝑣1𝑣3 are adjacent to 𝑠1 or 𝑠2, a contradiction to Theorem 1.1. 

We now prove our main theorem of this section. 

Theorem 4.12. For a graph 𝐺, the neighborhood metric dimension, 𝑛𝑚𝑑(𝐺) =
2 if and only if 𝐺 is isomorphic to one of the graphs in Fig. 3. 
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Figure 3 Graphs of neighborhood metric dimension two. 

Proof. For the graphs 𝐺6, 𝐺7, and 𝐺5, an 𝑛-set 𝑆 should contain a non-pendent 

vertex. But such a set with cardinality less than 2 is not a resolving set. Hence 

𝑛𝑟(𝐺) ≥  2. Other graphs in the Figure are not paths, hence by Theorem 1.3  it 

follows that 𝑛𝑟(𝐺) ≥  2. The reverse inequality follows by noting that the set 

𝑆 = {𝑎, 𝑏} is an 𝑛𝑟-set for each of the graphs. 

Conversely, let 𝐺 be any connected graph with 𝑛𝑚𝑑(𝐺) = 2 and let S = 

{𝑠1, 𝑠2} be a neighborhood resolving basis of 𝐺. Then, by Corollary 4.11 

〈𝑉 − 𝑆〉 is a forest. Therefore we have only the following cases: 

Case 1: 〈𝑆〉 is connected. 

By Lemma 4.1 and Lemma 4.3, 〈𝑉 − 𝑆〉 has at most two edges. 

Subcase 1: 〈𝑉 − 𝑆〉 ≃ 𝑃3 ∪ m𝐾1. 

By Theorem 1.1 and Lemma 4.1, both end vertices of one of the edges of 𝑃3 

should be adjacent to 𝑠1 and both end vertices of other edges to 𝑠2. Therefore 

the center of 𝑃3 is adjacent to both 𝑠1 and 𝑠2. Thus by Lemma 4.3, neither 𝑠1 

nor 𝑠2 is adjacent to any more vertex, which implies that 𝑚 = 0. Hence 𝐺 ≃
 𝐺17 in this case.  

Subcase 2: 〈𝑉 − 𝑆〉 ≃ 2𝑃2 ∪ m𝐾1. 

In this case both vertices of one of the copies of 𝑃2 are adjacent to one of the 

vertices in 𝑆, say 𝑠1, and both vertices of the other copy of 𝑃2 should be 



128 B. Sooryanarayana and S.A. Shanmukha 

adjacent to only 𝑠2. Further, by Lemma 4.3,  𝑚 = 0. We observe that 𝐺 ≃
 𝑃2 ⊙ 𝑃2, so the end vertices in each copy of 𝑃2 receive the same code with 

respect to 𝑆. Therefore, no graph 𝐺 exists with 𝑛𝑚𝑑(𝐺) = 2 in this case. 

Subcase 3:  〈𝑉 − 𝑆〉 ≃ 𝑃2 ∪ m𝐾1. 

As above, 𝑃2 should be adjacent to one of the vertices in 𝑆, say 𝑠1. But then, by 

Lemma 4.3 the vertices of 𝑚𝐾1 are adjacent to only 𝑠2 and 𝑚 ≤  2. Further, 

none of these pendent vertices are in 𝑆 and hence by Remark 1.6 it follows that 

𝑚 ≠  2. Therefore 𝑚 ≤  1. 

If 𝑚 = 0, then by Lemma 4.10, exactly one of the end vertices of 𝑃2 should be 

adjacent to 𝑠2 (else the end vertices of 𝑃𝑛  receive the same code or induce 𝐾4). 

Thus, 𝐺 ≃ 𝐺3 in this case. 

If 𝑚 = 1, then as above exactly one of the vertices of 𝑃2 should be adjacent to 

𝑠2 (to resolve the vertices of 𝑃2). Hence graph 𝐺 ≃ 𝐺4  in this case. 

Subcase 4: 〈𝑉 − 𝑆〉 ≃  m𝐾1. 

In this case, one of the isolated vertices in 〈𝑉 − 𝑆〉 may be common to both 

elements in 𝑆 (by Lemma 4.1) and each vertex in 𝑆 may be adjacent to at most 

one isolated vertex in 𝐺 (by Remark 1.6). Therefore 𝑚 ≤ 3 and 𝐺 ≃ 𝐺5,  𝐺7,
𝐺8, 𝐺10, 𝐺18.  

Case (ii): 〈𝑆〉 is disconnected. 

In this case, in view of Lemma 4.1 and Lemma 4.3, the graph 〈𝑉 − 𝑆〉  can have 

at most four edges. 

Subcase (i): 〈𝑉 − 𝑆〉 is totally disconnected.  

Let 〈𝑉 − 𝑆〉 = 𝑚𝐾1. Then 𝑚 ≥ 1, else 𝐺 is disconnected. Suppose that 𝑢1, 𝑢2, 

…, 𝑢𝑚 are the vertices in 𝐾𝑚
̅̅ ̅̅  = 𝑚𝐾1. By Lemma 4.1, without loss of generality 

we take 𝑢1 is the only vertex that is adjacent to both 𝑠1 and 𝑠2. 

If 𝑚 = 1, then 𝐺 ≃ 𝐺5 in this case. 

If 𝑚 ≥  2, then 𝑢2 is adjacent to exactly one of the vertices in 𝑆, say 𝑠1. Now, 

𝐺 ≃ 𝐺7 if  𝑚 = 2. Else if 𝑚 ≥  3, then by Remark 1.6 𝑢3 is adjacent to only 𝑠2. 

Therefore 𝐺 ≃ 𝐺6 if 𝑚 = 3. Finally, if 𝑚 > 3 then by the pigeonhole principle, 

at least one of the vertices in 𝑆 is a support for at least two pendent vertices not 

in 𝑆. By Remark 1.6 no such graph with 𝑛𝑚𝑑(𝐺) = 2 exists. 
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Subcase (ii): 〈𝑉 − 𝑆〉 has exactly one edge. 

In this case, 〈𝑉 − 𝑆〉 ≃ 𝑃2 ∪ 𝑚𝐾1 and by Theorem 1.1 both vertices of 𝑃2 are 

adjacent to exactly one of the vertices of 𝑆, say 𝑠1. By Lemma 4.1 exactly one 

of the vertices of 𝑃2 is adjacent to 𝑠2. Therefore, similar to Subcase (i) it follows 

that 𝐺 ≃ 𝐺8 if 𝑚 = 0; 𝐺 ≃ 𝐺9 or 𝐺10   if 𝑚 = 1; 𝐺 ≃ 𝐺11 if 𝑚 = 2; and no 

graph exists if 𝑚 ≥  3. 

Subcase (iii): 〈𝑉 − 𝑆〉 has exactly two edges. 

Subsubcase (i): 〈𝑉 − 𝑆〉 ≃ 2𝑃2 ∪ m𝐾1. 

In this case, since 𝑆 is an 𝑛-set, both vertices of one of the copies of 𝑃2 are 

adjacent to exactly one of the vertices in 𝑆, say 𝑠1. Also exactly one of the 

vertices of this copy of 𝑃2 is adjacent to 𝑠2. Similarly, both vertices of the other 

copies of 𝑃2 are adjacent to only 𝑠2 and exactly one of them is adjacent to 𝑠1. 

Hence there are two vertices, one from each copy of 𝑃2, that are adjacent to both 

𝑠1 and 𝑠2, which is not possible by Lemma 4.1. Therefore, no graph exists in 

this case with 𝑛𝑚𝑑(𝐺) = 2. 

Subsubcase (ii): 〈𝑉 − 𝑆〉 ≃ 𝑃3 ∪ m𝐾1. 

If all vertices of 𝑃3 are adjacent to a vertex in 𝑆, say 𝑠1, then exactly one of the 

end vertices of 𝑃3 should be adjacent to 𝑠2 (by Lemma 4.1) to resolve all 

vertices of 𝑃3 by 𝑠2. Further, no vertex of 𝑚𝐾1 is adjacent to 𝑠1 (by Lemma 4.3) 

and at most one vertex is adjacent to 𝑠2 (by Remark 1.6). Therefore, 𝑚 ≤  1, 
and 𝐺 ≃ 𝐺4 if 𝑚 = 0, and 𝐺 ≃ 𝐺16 if 𝑚 = 1. 

If all vertices of 𝑃3 are not adjacent to a vertex in 𝑆, then the end vertices of the 

edges are adjacent to 𝑠1 and the end vertices of the other edges are adjacent to 

𝑠2, and hence the central vertex of 𝑃3 is adjacent to both 𝑠1 and 𝑠2. Further, by 

Lemma 4.1 and Remark 1.6 vertex 𝑠1 may be adjacent to a pendent vertex of 

𝑚𝐾1 and 𝑠2 may be adjacent to at most one other pendent vertex in of 𝑚𝐾1, 

which implies that 𝑚 ≤  2. Hence 𝐺 ≃ 𝐺2 if 𝑚 = 0; 𝐺 ≃ 𝐺15 if 𝑚 = 1; and 

𝐺 ≃ 𝐺14 if 𝑚 = 2. 

Subcase (iv): 〈𝑉 − 𝑆〉 has exactly three edges. 

Subsubcase (i): 〈𝑉 − 𝑆〉 ≃ 𝑃4 ∪ m𝐾1. 

Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 be the vertices of 𝑃4. Then, as above, if the vertices 𝑣1, 𝑣2 are 

adjacent to say 𝑠1, the vertices 𝑣3, 𝑣4 are adjacent to 𝑠2 (by Theorem 1.1 and 
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Lemma 4.3). Further, for the edge 𝑣2𝑣3, by Theorem 1.1 either 𝑣2 is adjacent to 

𝑠2, or 𝑣3 is adjacent to 𝑠1. Thus, similar to the previous arguments on m𝐾1, 𝐺 ≃
𝐺12 if 𝑚 = 0; 𝐺 ≃ 𝐺13 if 𝑚 = 1; and no graph exists if 𝑚 > 1 (since 

𝑑𝑒𝑔(𝑠𝑖) = 3, for one 𝑖 = 1, 2). 

Subsubcase (ii): 〈𝑉 − 𝑆〉 ≃ (𝑃3 ∪ 𝑃2) ∪ m𝐾1. 

In this case, both the end vertices of 𝑃2 should be adjacent to one of the vertices 

of 𝑆 say 𝑠1. But then by Theorem 1.1 and Lemma 4.3 all the vertices of 𝑃3 

should be adjacent to 𝑠2, and by Lemma 4.1 exactly one of the end vertices of 

𝑃3 should be adjacent to 𝑠1 (to resolve all the vertices of 𝑃3). But then 𝑚 = 0 

(since already 𝑑𝑒𝑔(𝑠1) = 𝑑𝑒𝑔(𝑠2) = 3). Now, the end vertices of 𝑃2 are 

equidistant from 𝑠1 (at a distance 1) as well as equidistant from 𝑠2 (at a distance 

2). Therefore, no graph 𝐺 exists in this case with 𝑛𝑚𝑑(𝐺) = 2. 

Subsubcase (iii): 〈𝑉 − 𝑆〉 ≃ 3𝑃2 ∪ m𝐾1. 

In this case 𝑛 ≥  |𝑆| + 3|𝑃2| + 𝑚 ≥  2 + 6 + 0 = 8. Hence, by Lemma 4.4, no 

graphs exist in this case. 

Subcase (v): 〈𝑉 − 𝑆〉 has exactly four edges. 

By Lemma 4.3 the maximum number of vertices in 〈𝑉 − 𝑆〉 is 5. Therefore the 

only the possible forests are 〈𝑉 − 𝑆〉 ≃ a path 𝑃5 or a Bistar 𝐵1,2 or a star 𝐾1,4 or 

(𝐾1,3 + 𝑒) ∪ m𝐾1 with 𝑚 ∈ {0, 1}. 

Subsubcase (i): 〈𝑉 − 𝑆〉 ≃ 𝑃5. 

Let 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 be the vertices of 𝑃5. Then by Theorem 1.1, Lemma 4.1 

and Lemma 4.3 the only possibility is that 𝑠1 is adjacent to 𝑣1, 𝑣2, 𝑣3, and 𝑠2 is 

adjacent to 𝑣3, 𝑣4, 𝑣5. The graph 𝐺 ≃ 𝐺1 exists in this case. 

Subsubcase (ii): 〈𝑉 − 𝑆〉 ≃ 𝐵1,2. 

Let 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 be the vertices of 𝐵1,2 and 𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣3𝑣5 be its 

edges. By Theorem 1.1 and without loss of generality we assume that 𝑣3, 𝑣5 ∈ 

𝑁(𝑠2). 

If 𝑣3, 𝑣4∉ 𝑁(𝑠2), then by Theorem 1.1, 𝑣3, 𝑣4 ∈ 𝑁(𝑠1) and hence 𝑣3 is the 

vertex adjacent to both 𝑠1 and 𝑠2. So for the edge 𝑣2𝑣3, by Theorem 1.1 by 

symmetry we assume that 𝑣2 ∈  𝑁(𝑠1). But then by Lemma 4.1 𝑣2∉ 𝑁(𝑠2) and 

hence for the edge 𝑣1𝑣2 by Theorem 1.1 𝑣1 ∈  𝑁(𝑠1), therefore 𝑑𝑒𝑔(𝑠1) ≥  4, a 
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contradiction to Lemma 4.3. Thus, 𝑣3, 𝑣4  ∈ 𝑁(𝑠2),  and 𝑣3 is adjacent to both 

𝑠1 and 𝑠2. But then, 𝛤(𝑣4|𝑆)  =  𝛤(𝑣5|𝑆) =  (1,2),  so 𝑆 cannot be an 𝑟-set and 

hence there is no graph 𝐺 with 𝑛𝑚𝑑(𝐺) = 2 in this case. 

Subsubcase (iii): 〈𝑉 − 𝑆〉 ≃ 𝐾1,4. 

Let 𝑣 be the central vertex and 𝑣1, 𝑣2, 𝑣3, 𝑣4 be the end vertices of 𝐾1,4. Then by 

Lemma 4.1, Lemma 4.3 and Theorem 1.1, without loss of generality we assume 

only the possibilities that {𝑣1, 𝑣2, 𝑣}= 𝑁(𝑠1) and {𝑣3, 𝑣4, 𝑣} = 𝑁(𝑠2). Now, for 

the vertices 𝑣3, 𝑣4, we get 𝛤(𝑣3|𝑆)  =  𝛤(𝑣4|𝑆) =  (1,2), and hence 𝑆 cannot be 

an 𝑟-set. Therefore, there is no graph 𝐺 with 𝑛𝑚𝑑(𝐺) = 2 in this case.  

Subsubcase (iv):  〈𝑉 − 𝑆〉 ≃ (𝐾1,3 + 𝑒) ⋃ 𝑚𝐾1, 0 ≤ 𝑚 ≤ 1. 

Let 𝑣1, 𝑣2, 𝑣3, 𝑣4 be the vertices of (𝐾1,3 + 𝑒) and 𝑣1𝑣2, 𝑣1𝑣3, 𝑣2𝑣3, 𝑣3𝑣4  be its 

edges. By Theorem 1.1 without loss of generality we assume that 𝑣3, 𝑣4 ∈ 

𝑁(𝑠1). From Lemma 4.10, {𝑣1, 𝑣2, 𝑣3} ⊈ 𝑁(𝑠1). Without loss of generality we 

assume that 𝑣1 is adjacent to 𝑠1, and 𝑣2 is adjacent to 𝑠2. But then by Theorem 

1.1, 𝑣3 ∈ 𝑁(𝑠2) and hence by Lemma 4.1 𝑣4 ∉ 𝑁(𝑠2). Thus, for the vertices 

𝑣1, 𝑣4 , 𝛤(𝑣1/𝑆)  =  𝛤(𝑣4/𝑆) =  (1,2) implies that 𝑆 cannot be an 𝑟-set. 

Therefore, there is no graph 𝐺 with 𝑛𝑚𝑑(𝐺) = 2 in this case. Hence the 

theorem is proved.  

5         Conclusions and Open Problems 

An 𝑁𝑃-complete problem of uniquely determining the location of an intruder in 

a network was the principal motivation behind introducing the concept of metric 

dimension in graphs by P.J. Slater. 

In many practical situations, the role of a vertex in a network depends on its 

neighborhood. Since every neighborhood set is a dominating set, the concept of 

the neighborhood resolving set can be related to connected dominating sets, 

which has wide applications in building algorithms for wireless sensor networks 

(WSNs). The common approach to constructing a backbone for a WSN is to 

build a set of nodes such that every other node is close to a node in the given 

set. Such a set is known as a dominating set. The concept of the 𝑛𝑟-set studied 

in this paper not only covers neighboring nodes but also distinguishes them 

through their resolving property. The idea of connected 𝑛𝑟-sets can also be used 

in ad-hoc networks. The main result of this paper is a nice characterization of 

graphs of 𝑛𝑟-dimension two. In general, it is natural to ask for a characterization 

of graph classes with respect to the nature of their neighborhood metric 

dimension. Thus, we end this section with some open problems: 
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1. Find a vertex transitive graph 𝐺(𝑉, 𝐸) of regularity 𝑟 with 𝑛𝑚𝑑(𝐺) = 𝑘 

for every possible 2 ≤  𝑘 ≤  |𝑉| − 1. 

2. Find an algorithm to execute a minimal (optimal) connected 𝑛𝑟-set of a 

given connected graph 𝐺(𝑉, 𝐸). 

3.  Solve the graph equation 𝑛𝑚𝑑(𝐺) = |𝑉| − 1 for 𝐺(𝑉, 𝐸). 
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