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Normative aging and Alzheimer’s disease (AD) propagation alter anatomical connections
among brain parcels. However, the interaction between the trajectories of age- and
AD-linked alterations in the topology of the structural brain network is not well
understood. In this study, diffusion-weighted magnetic resonance imaging (MRI) datasets
of 139 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
were used to document their structural brain networks. The 139 participants consist
of 45 normal controls (NCs), 37 with early mild cognitive impairment (EMCI), 27 with
late mild cognitive impairment (LMCI), and 30 AD patients. All subjects were further
divided into three subgroups based on their age (56–65, 66–75, and 71–85 years).
After the structural connectivity networks were built using anatomically-constrained
deterministic tractography, their global and nodal topological properties were estimated,
including network efficiency, characteristic path length, transitivity, modularity coefficient,
clustering coefficient, and betweenness. Statistical analyses were then performed
on these metrics using linear regression, and one- and two-way ANOVA testing
to examine group differences and interactions between aging and AD propagation.
No significant interactions were found between aging and AD propagation in the
global topological metrics (network efficiency, characteristic path length, transitivity, and
modularity coefficient). However, nodal metrics (clustering coefficient and betweenness
centrality) of some cortical parcels exhibited significant interactions between aging
and AD propagation, with affected parcels including left superior temporal, right
pars triangularis, and right precentral. The results collectively confirm the age-related
deterioration of structural networks in MCI and AD patients, providing novel insight into
the cross effects of aging and AD disorder on brain structural networks. Some early
symptoms of AD may also be due to age-associated anatomic vulnerability interacting
with early anatomic changes associated with AD.

Keywords: Alzheimer’s disease, structural network, nerve fiber tracking, diffusion-weighted magnetic resonance
imaging, cognitive impairment
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INTRODUCTION

Increasing evidence suggests that both aging and Alzheimer’s
disease (AD) can cause deterioration in anatomical brain
connections, which is then associated with a decline in cognitive
abilities (Peters, 2002; Perl, 2010; Teipel et al., 2016). Normal
aging can undermine white matter organization, as nerve fiber
loss increases with age. This decrease in the connections between
distinct brain parcels contributes to a disruption in the normal
flow of information through cortical networks (Betzel et al.,
2014; Zhao et al., 2015; Wu et al., 2020). As a neurodegenerative
disorder that reduces synaptic transmission (Morabito et al.,
2015), AD also causes a gradual breakdown in brain structural
connectivity, eventually resulting in dementia (Voevodskaya
et al., 2018; Dai et al., 2019; Wu et al., 2019). This disruption of
structural connectivity between key functional subregions may
ultimately explain the characteristic deficits found in AD patients
(Yao et al., 2010; Fischer et al., 2015; delEtoile and Adeli, 2017;
Li et al., 2020). These age- and AD-related alterations in white
matter organization can profoundly affect topological features
of the brain structural network and synergistically damage its
integrity (Palop et al., 2006).

Diffusion-weighted imaging (DWI) has often been employed
to assess cerebral white matter tracts (Tuch et al., 2003; Sinke
et al., 2018; Innocenti et al., 2019; Sotiropoulos and Zalesky,
2019). Pioneering studies have then used graph theory to quantify
the brain structural organization, reporting meaningful results
on brain networks in normal aging and AD (Yao et al., 2010;
Stawarczyk et al., 2012; Ghanbari et al., 2014; Zhao et al., 2015).
In particular, alterations in the topology of brain structural
networks and their corresponding metrics reflect the regional
interactions as they evolve in both normal aging and in AD
progression. When used to address normative aging, decreased
network efficiency has been demonstrated in hub regions,
limiting their capacity to communicate (Gong et al., 2009;
Zhao et al., 2015). This is believed to result from degeneration
in the white matter microstructure (demyelination, Wallerian
degeneration, gliosis, severe fiber loss, etc.; Burzynska et al., 2010;
Damoiseaux, 2017; Reishofer et al., 2018) and contributes to
lifelong decline (van den Heuvel and Sporns, 2013; Betzel et al.,
2014; Gollo et al., 2018). For mild cognitive impairment (MCI)
and AD, altered interregional correlations (particularly among
the parahippocampal gyrus, medial temporal lobe, cingulum,
fusiform, medial frontal lobe, and orbital frontal gyrus; Yao et al.,
2010) lead to increased path lengths and decreased network
efficiency (Lo et al., 2010; Fischer et al., 2015; delEtoile and Adeli,
2017), suggesting an impairment of structural networks in MCI
and AD (He et al., 2008; Daianu et al., 2015; Raj et al., 2015).
Especially, a structural k-core network analysis (examination of
only nodes with a degree of k or higher) was performed on
normal controls (NCs) and AD patients to investigate brain
network breakdown as AD progresses (Daianu et al., 2013). This
study found that white matter integrity deteriorated with age and
was able to distinguish early MCI-linked white matter alterations
from those that occurred during normal aging. The fact that
aging and cognitive impairment could separately affect brain
networks highlights the unique effects that each has on brain

network topology. The interaction of these effects, however, has
not yet been thoroughly addressed.

Considering that age effects are not restricted to healthy
individuals, it is likely that the age-related disruption of structural
networks can exacerbate the cognitive decline in MCI and AD
patients. It is, therefore, necessary to recognize the distinct effects
of aging and impairment on the brain structural networks, and
how these separate factors can interact within both healthy
individuals and those with MCI and AD. At the present time,
age-related alterations in the structural networks of MCI and
AD patients have not been comprehensively explored. In this
study, the data from 139 subjects, obtained from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (Jack et al.,
2008) and divided into three age subgroups (56–65, 66–75, and
71–85 years), were used to assess the deterioration of structure
that occurs with age. We included 45 NCs, 37 early MCI
(EMCI), 27 late MCI (LMCI), and 30 AD patients. Statistical
analysis focused on the cross effects between aging and AD
progression on the topology of structural connectivity networks
and investigated how the global and nodal topological metrics
change with age, including network efficiency, characteristic path
length, transitivity, modularity coefficient, clustering coefficient,
and betweenness. From whole perspective, this study provides
a complete view of AD-related topological changes in brain
structural connectomes over time.

MATERIALS AND METHODS

Data
We used the ADNI database (adni.loni.usc.edu), launched in
2003 as a public-private partnership and led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether magnetic resonance imaging
(MRI), positron emission tomography (PET), biomarkers, and
clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD (Jack et al.,
2008; Risacher et al., 2009; Petersen et al., 2010). In this
study, 139 subjects aged from 56 to 85 years were selected
from the ADNI database, including 45 NCs (32 females and
13 males), 37 EMCIs (18 females and 19 males), 27 LMCIs
(11 females and 16males), and 30 ADs (13 females and 17males).
The criteria for the classification of the subjects was based
on mini-mental state examination (MMSE) and global clinical
dementia rating (CDR) scores (Aisen et al., 2010). Whole-brain
Diffusion-weighted imagings (DWIs) were collected from four
MRI centers using the: (1) Siemens 3T scanner (7 b0 images,
48 DWIs with b = 1,000 s/mm2, slice thickness = 2 mm, scanning
sequence = EP, echo time = 0.056 s, repetition time = 7.2 s,
flip angle = 90◦); (2) the Siemens 3T scanner (13 b0 images,
48 DWIs with b = 1,000 s/mm2, slice thickness = 2 mm, scanning
sequence = EP, echo time = 0.071 s, repetition time = 3.4 s, flip
angle = 90◦); (3) the GE 3T scanner (6 b0 images, 48 DWIs
with b = 1,000 s/mm2, slice thickness = 2 mm, scanning
sequence = EP_SE, echo time = 0.0606 s, repetition time = 7.8 s,
flip angle = 90◦); and, the (4) Philips 3T scanner (1 b0 image,
32 DWIs with b = 1,000 s/mm2, slice thickness = 2 mm, scanning
sequence = SE, echo time = 0.099 s, repetition time = 10.90 s, flip
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angle = 90◦; Daianu et al., 2013, 2015; Nir et al., 2015). ADNI
data collection was performed after obtaining written informed
consent from the participants. All procedures were in accordance
with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.
All DWI images were first denoised and corrected for eddy
current and head movement distortions using MRtrix1 and FSL2

toolboxes. Then, DWI bias field correction was performed by
estimating the bias field from b0 images. The whole flowchart of
brain structural network construction by DWI is demonstrated
in Figure 1.

Of note, there is still considerable controversy in the literature
on the statistical analysis of structural network topology from
multicenter DWI datasets (Tong et al., 2019). However, we
suggest that topological characterization of structural networks
would not significantly suffer from multicenter studies, as
individual-based analysis of diffusion measures is not sensitive to
the variability inMRI scanners (Tong et al., 2020). For the sake of
reproducibility, the subject identifiers of each group are provided
as Supplementary Materials.

Structural Network Construction
Brain structural networks can be represented as a graph,
completely described by assigning a set of nodes and a set
of edges with their corresponding weights (Hagmann et al.,
2008; Garcés et al., 2016; Maier-Hein et al., 2017). In order
to attain regional anatomical connectivity, the DKT template
was applied to parcellate the whole brain into 62 subcortical
regions (Potvin et al., 2017). Figure 1D demonstrates the DKT
parcellation template, and Table 1 lists the indices of regions
of interests (ROIs). This template was co-registered into DWI
native space to define ROIs for each subject. The MRtrix tool1

was employed to reconstruct fiber tracks using deterministic
tractography based on orientation distribution function (ODF)
computed with constrained spherical deconvolution (CSD;
Tournier et al., 2008). After fiber tracks were retrieved with
the command ‘‘tckgen -act,’’ spherical-deconvolution informed
filtering of tractograms (SIFT) was employed to improve whole-
brain streamlines reconstructions with the command ‘‘tcksift.’’
Then, an inter-regional anatomical connectivity matrix was
then obtained with ‘‘tck2connectome -symmetric -zero_diagonal,’’
where the value of any element of the matrix is equal to the
number of tracts originating in one region and terminating in (or
passing to) another region. The number of fiber tracts between
gray matter regions uncovered by MRtrix was determined from
the data rather than defined a priori, and was therefore variable
from individual to individual and from scan to scan (Bassett
et al., 2011). Finally, the structural connectivity matrices were
normalized into [0, 1] for topological characterization.

Topological Characterization
To characterize the underlying topological properties of
brain structural networks, four commonly-used network-
level and two nodal topological metrics were computed for

1https://www.mrtrix.org
2https://fsl.fmrib.ox.ac.uk/

each subject: efficiency, characteristic path length, transitivity,
modularity coefficient, clustering coefficient, and betweenness
centrality. These metrics were directly retrieved from structural
connectivity matrices using the Brain Connectivity Toolbox3 in
MATLAB (TheMathworks, Inc., Natick, MA, USA; Rubinov and
Sporns, 2010).

Network efficiency is a sensitive measure of network
alterations that occur in aging and neurodegenerative disorders,
which reflects the integration of information transfer within
a given network. This effectively characterizes how well the
information is communicated within the cerebral cortex and is
expected to decrease with age (Gong et al., 2009). This metric is
defined as:

Eglob(G) =
1

N(N − 1)

∑
i6=j∈G

1
Lij

(1)

where Lij is the shortest path length between node i and j in
structural connectivity graph G. N denotes the number of nodes
in the graph G.

The network characteristic path length is the average shortest
path length between every pair of nodes in the network, which
serves as a measure of overall network integration. This metric
is inversely related to network efficiency (Cao et al., 2013) and
quantifies the ability for information to be propagated in parallel.
This metric was computed as:

L(G) =
1

N(N − 1)

∑
i 6=j∈G

Lij (2)

where Lij is defined as the shortest path between node i and
node j.

Transitivitymeasures the probability that the adjacent vertices
of a vertex are connected, which is closely related to the clustering
coefficient of a graph, as both measure the relative frequency of
triangles (Rubinov and Sporns, 2010).

T(G) =
3λ(G)
τ (G)

(3)

where λ(G) is the number of triangles in G, and τ (G) is total
number of connected triples of nodes in G.

The optimal community structure is a subdivision of the
network into nonoverlapping groups of nodes in a way that
maximizes the number of within-group edges and minimizes
the number of between-group edges. Modularity coefficient is a
statistic that quantifies the degree to which the network may be
subdivided into such clearly delineated groups. The modularity
coefficient is defined as (Rubinov and Sporns, 2010):

Q(G) =
1
2m

∑
i,j

[
wi,j −

kikj
2m

]
δ(ci, cj) (4)

where wi,j is the connection weight between node i and j. ki and
kj are the sums of the weights of the edges attached to nodes
i and j, respectively. m is the total link weight in the network
overall. δ(ci, cj) is 1 when nodes i and j are assigned to the same

3http://www.brain-connectivity-toolbox.net/
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FIGURE 1 | Flowchart of brain structural network construction from diffusion-weighted imaging (DWI). Whole-brain models were parcellated into 62 different parcels
according to the DKT template. (A) DWI. (B) After DWI was denoised, eddy and motion correction were performed. (C) Brain extraction and bias field correction. (D)
DKT parcellation atlas. (E) White matter fibers reconstructed with anatomically-constrained tractography (Smith et al., 2012). (F) DKT atlas was co-registered into
DWI native space. (G) Brain structural connectivity matrix was built by assigning fibers to each parcel.

TABLE 1 | Indexes of ROIs used to construct structural networks (Tzourio-Mazoyer et al., 2002).

Region Region Region Region Region

1 Left caudal anterior cingulate 14 Left parahippocampal 27 Left superior parietal 40 Right lateral occipital 53 Right precentral
2 Left caudal middle frontal 15 Left paracentral 28 Left superior temporal 41 Right lateral orbitofrontal 54 Right precuneus
3 Left cuneus 16 Left pars opercularis 29 Left supramarginal 42 Right lingual 55 Right rostral anterior

cingulate
4 Left entorhinal 17 Left pars orbitalis 30 Left transverse temporal 43 Right medial orbitofrontal 56 Right rostral middle

frontal
5 Left fusiform 18 Left pars triangularis 31 Left insula 44 Right middle temporal 57 Right superior frontal
6 Left inferior parietal 19 Left pericalcarine 32 Right caudal anterior cingulate 45 Right parahippocampal 58 Right superior parietal
7 Left inferior temporal 20 Left postcentral 33 Right caudal middle frontal 46 Right paracentral 59 Right superior temporal
8 Left isthmus cingulate 21 Left posterior cingulate 34 Right cuneus 47 Right pars opercularis 60 Right supramarginal
9 Left lateral occipital 22 Left precentral 35 Right entorhinal 48 Right pars orbitalis 61 Right transverse tempora
10 Left lateral orbitofrontal 23 Left precuneus 36 Right fusiform 49 Right pars triangularis 62 Right insula
11 Left lingual 24 Left rostral anterior cingulate 37 Right inferior parietal 50 Right pericalcarine
12 Left medial orbitofrontal 25 Left rostral middle frontal 38 Right inferior temporal 51 Right postcentral
13 Left middle temporal 26 Left superior frontal 39 Right isthmus cingulate 52 Right posterior cingulate

module and 0 otherwise. LargerQ values are indicative of a highly
modular network organization, while lower Q values indicate a
more uniform network structure.

To assess the effect of aging and AD progression on local
brain regions, node clustering coefficient and betweenness
centrality were estimated for each group. The weighted clustering
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coefficient is the average intensity of all triangles associated with
each node, which indicates the extent of local interconnectivity or
cliquishness in a network (Daianu et al., 2013; Otte et al., 2015).

ci =
2

ki(ki − 1)

∑
j,k
(wi,jwj,kwk,i)

1/3 (5)

where ki is the degree of node i, and w denotes the structural
connection weight.

Node betweenness centrality is the number of shortest paths
that pass through a node (Equation 5). High betweenness
centrality values indicate more passages traversing a node. In this
work, betweenness centrality was normalized to the range [0, 1]
as betweenness/[(N − 1)(N − 2)] (Rubinov and Sporns, 2010).

bi =
∑

h 6=j,h 6=i,j6=i

phj(i)
phj

(6)

where phj is the number of shortest paths between nodes h and
j, and phj(i) is the number of shortest paths between h and j that
pass through the node i.

Statistical Analysis
The objective of this study is to assess the interactive effects
of aging and AD progression on topological properties of
the brain structural network. After the gender covariate was
regressed out, linear regression and ANOVAs were adopted
for statistical analysis and performed. In order to estimate the
changing trajectories of topological measures over age, linear
regression was separately performed on each global metric
in the NC, EMCI, LMCI, and AD groups, respectively. To
test whether the network-level topology of structural networks
was significantly different over age and across NC, EMCI,
LMCI, and AD groups, group-wise comparisons of network-level
topological measures were performed using one-way ANOVA
tests. Finally, to characterize the interaction between aging
and AD progression on network-level and nodal topological
properties, two-way ANOVA tests with the two factors of age
and AD propagation stage were employed to identify group-wise
differences. The factor of age consists of three levels: 56–65 years,
66–75 years, and 76–85 years. And the factor of the AD stage
includes four levels: NC, EMCI, LMCI, and AD. A significance
level of p-value<0.05 (uncorrected) was used for ANOVA tests.

RESULTS

Linear Regression on Network-Level
Topological Metrics
Linear regression was performed on the global topological
metrics (network efficiency, characteristic path length,
transitivity, andmodularity coefficient) to examine whether, over
age, the structural networks of MCI and AD patients exhibited
similar deterioration patterns. Figure 2 shows the results, which
indicate that the characteristic path lengths (Slope: 0.21, 0.12,
0.18, 0.05) of the NC, EMCI, LMCI, and AD groups increased
with age, while the metric of efficiency (Slope:−0.0004,−0.0002,
−0.0006, −0.0002) decreased. However, except for the EMCI
group, the transitivity of the NC, LMCI, and AD groups were

nearly unchanged. While modularity coefficients (Slope: 0.0010,
0.0008, 0.0002) of NC, EMCI, LMCI groups increase with age,
the coefficient of the AD group remained unchanged. R-square
values of the linear regression were present on the left corner of
each subgraph. Overall, linear regression results indicated that
the integrity of the structural networks of NC, MCI, and AD
individuals all roughly deteriorated with age. However, lesser
age-related effects were found in the metrics of the AD group.

ANOVA Tests on Topological Measures
Differences in the global topological measures between the
three age subgroups (56–65, 66–75, and 71–85 years) were
assessed using one-way ANOVA tests. Figure 3 demonstrates
the comparison results, and the asterisk sign (∗) indicates that
p-value <0.05 (uncorrected). For the NC group, differences
between age subgroups in network efficiency and characteristic
path were statistically significant (p-value = 0.0116 and
p-value = 0.0134, respectively). For EMCI, differences in
efficiency, characteristic path and clustering coefficient were
significant (p-value = 0.0467, p-value = 0.0256 and p-
value = 0.0069, respectively). For LMCI subjects, differences
between age groups in efficiency and clustering coefficient were
significant (p-value = 0.0211 and p-value = 0.0315, respectively).
No metrics significantly differentiated the two age subgroups
within the AD group.

Additionally, to detect group-wise differences among NC,
EMCI, LMCI, and AD subjects, one-way ANOVA tests were
also carried out. Results are shown in Figure 4, and pairwise
groups that exhibited significant differences were identified
and marked with an asterisk sign (∗), indicating that p-
value <0.05 (uncorrected). For the three age groups, efficiency
and characteristic paths do not significantly distinguish the
NC, EMCI, LMCI, and AD groups. However, for the three
age groups, significant differences were only found in the
metric of the modularity coefficient. Interestingly, a significant
difference between the NCs and LMCI groups was only found
in the 56–65 years group. This may be attributed to individual
variability. In summary, while the modularity coefficient was
most sensitive to AD propagation across 56–75 years, no
significant difference was identified in terms of this metric
among NC, LMCI, and AD subjects in the 76–85 years group.

Two-way ANOVA tests were also separately performed on
the global topological metrics, and the combined changing
trajectories of mean values of these metrics are shown
in Figure 5. In summary, no significant interactions were
found between aging and AD propagation in terms of these
network-level metrics.

To reveal the interactive effect of aging and AD progression
on local topological properties, nodal clustering coefficient and
betweenness centrality were estimated for each subject. Using
two-way ANOVA tests, it was found that multiple regions,
including the left lateral occipital (9), left postcentral (20),
right caudal anterior cingulate (32), right inferior parietal (37),
right rostral anterior cingulate (55), and right superior frontal
(57) exhibited significant differences in terms of clustering
coefficient over age (Table 2 and Figure 6). Moreover, significant
differences were found only in the parcel of right insula
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FIGURE 2 | Age effects on the global topological properties of structural networks, including global efficiency, characteristic path length, transitivity, and modularity
coefficient. R-square value is present on the left corner of each subgraph. The fitted lines are shown in red, and the black dots represent the metric values of each
subject.

(62) across AD propagation stages age (Table 2 and Figure 6).
Regional betweenness centrality values in the left entorhinal
(4), left fusiform (5), left middle temporal (13), left posterior
cingulate (21), right lingual (42), right precentral (53), right
rostral anterior cingulate (55), and right superior frontal (57),
showed significant differences across age subgroups (Table 2
and Figure 6). In addition, the left rostral anterior cingulate
(24) and right insula (62) parcels were identified to have
significant differences across AD stages in terms of betweenness
(Table 2 and Figure 6). Finally, for clustering coefficient, the
cortical parcels of right pars triangularis (49) and right precentral
(53) exhibit significant interaction between aging and AD
propagation stages (Table 2 and Figure 7A). For the metric
of betweenness, significant interactions between aging and AD
stages were found in the left superior temporal (28) and right pars
triangularis (49) (Table 2 and Figure 7A). The cortical parcels
that exhibited significant groupwise differences and interactions

are summarized in Table 2, and the corresponding positions of
these parcels are displayed in Figures 6, 7A.

DISCUSSION

Cortical connectivity can be seen to reduce with age and
AD progression, leading to significant deficits in topological
properties of the structural network. These topological metrics
provide valuable insights into the deteriorating neurological
processes underlying aging and AD progression, offering
a unique way to evaluate the impairment of anatomical
connectivity patterns. In this study, we constructed brain
structural networks of NC, EMCI, LMCI, and AD subjects by
calculating fiber bundle numbers between pairs of gray matter
parcels and investigating the cross effects of aging and AD
progression on network-level and nodal structural topography.
The results confirm that normal aging and AD propagation could
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FIGURE 3 | Differences between age subgroups (56–65, 66–75, and 76–85 years) in network efficiency, characteristic path length, transitivity, and modularity
coefficient. Group differences were estimated using one-way ANOVA, and the asterisk sign (*) indicates that p-value < 0.05 (uncorrected).

both affect the integrity of brain structural networks, and indicate
that the network-level metrics of AD structural networks were
relatively more deteriorated than those of NCs. Overall, however,
more significant age-related differences were indicated in healthy
controls than in AD patients.

Several recent studies based on DWI have demonstrated that
the efficiency of structural networks decreases during normal
aging due to neuronal shrinkage, loss of axon fibers, and
whiter matter degeneration (Gong et al., 2009; Zhao et al.,
2015; Sheffield et al., 2019). To reveal age-related degeneration
in the white matter microstructure of NCs, MCI, and AD,
this study performed linear regression on each of the global
topological metrics, separately. Results provided new insight
into the age-related changes in brain structural networks of
healthy, MCI, and AD individuals, which are crucial for
understanding how age affects the structural connectome of
AD disorders. For all groups, network efficiency decreased
with increasing age while characteristic path length increased.
This is in accordance with previous studies (Meunier et al.,

2009; Betzel et al., 2014; Fischer et al., 2015; Zhao et al.,
2015). As shown in Figure 2, the deteriorated network-level
topological properties of brain structural networks found in this
study may provide the underlying substrate for the functional
decline observed in aging individuals. In terms of the metrics of
efficiency, characteristic path length, and modularity coefficient,
the age-related deterioration in structural networks of AD
patients is less significant than for healthy and older adults with
MCI. We may infer that the anatomical connectivity breakdown
caused by AD weakens the detrimental effect of aging on brain
structural networks. Additionally, no significant age-related
differences were identified in the AD subgroup (Figure 3),
weighing against the hypothesis that aging leads to a vulnerability
to the spread of AD.

AD progression can be characterized by a loss of connected
areas in terms of global topological measures including
network efficiency, characteristic path length, transitivity, and
modularity coefficient. Much evidence from previous studies
supports the interpretation of AD as a disconnection syndrome
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FIGURE 4 | Differences across the normal control (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD)
groups were estimated using one-way ANOVA tests in terms of network efficiency, characteristic path length, transitivity, and modularity coefficient. The asterisk sign
(*) indicates that the p-value was < 0.05 (uncorrected).

(Fischer et al., 2015; Morabito et al., 2015; Guo et al., 2016). To
further reveal how AD propagation affects structural networks,
one-way ANOVA tests were employed to explore groupwise
differences across the NC, EMCI, LMCI, and AD groups in
each age subgroup (56–65, 66–75, and 76–85 years). Figure 4
demonstrates that in the 56–65- and 66–75-years age groups,
there were significant differences between NCs and ADs in
terms of modularity coefficient. For the 75–85 years group,
however, no significant difference in modularity coefficient was
detected, indicating that aging and AD both lead to inter-
module disconnection in brain structural networks. Interestingly,
as shown in Figure 4, the other global metrics (network
efficiency, characteristic path length, and transitivity) did not
exhibit significant differences between NC and AD subjects in
the three age groups (p-value > 0.05). The reasons why there
is no difference between the groups regarding efficiency and
path length are manifold. This work is based on cross-sectional
ADNI data. There are individual variabilities in brain structural
networks. The progression stages of AD are generally defined
by MMSE and CDR test scores. At present, it’s unclear if the
subjects with the same test score share the same brain structural
networks. Another hypothesis could be that neural plasticity
would alter structural connectivity during AD progression. Some
subjects may have better neural plasticity than others. Hence,
their connectivity could be better or worse than predicted.

These one-way ANOVA tests indicate that the AD subjects
are associated with greater structural connectivity deterioration
in younger adults, while cognitive impairments have relatively
lesser effects on older adults. Age-related alterations of whole-
brain white matter network properties of AD patients were not
detectable. However, the underlying neurophysiological reasons
may be worthy of further study.

To comprehensively reveal the interaction between aging
and AD progression on brain structural networks, using
two-way ANOVA tests, the cross effect of aging and AD
progression on local topological properties has been assessed
in terms of node clustering coefficients and betweenness
centrality (Table 2, Figures 6, 7). The results indicate that
aging and AD progression interactively and significantly affect
some local regions, including the left superior temporal,
right pars triangularis, and right precentral. This may occur
due to broken anatomical connections between these cortical
subregions and others, which were interactively affected by
aging and AD progression. The three parcels are related to
language understanding and motor movement (Foundas et al.,
1996; Yousry et al., 1997; Aeby et al., 2013), and these
cognitive functions both gradually deteriorate with age and
AD progression. Previous studies have found that subjects
with MCI and AD have a significant reduction in structural
connectivity in the superior temporal lobe, medial temporal
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FIGURE 5 | Combined changing trajectories of the four network-level topological metrics (efficiency, characteristic path length, transitivity, and modularity
coefficient). No significant interactions were found between aging and AD propagation at the level of p-value < 0.05 (uncorrected).

TABLE 2 | The cortical subregions with significant differences were identified in terms of clustering coefficient and betweenness centrality.

Nodal metrics The population means of Age are
significantly different (p < 0.5)

The population means of Stage are
significantly different (p < 0.5)

The interaction between Age and
Stage is significant (p < 0.5)

Clustering
Coefficient

left lateral occipital (9),
left postcentral (20),
right caudal anterior cingulate (32),
right inferior parietal (37),
right rostral anterior cingulate (55),
right superior frontal (57)

right insula (62) right pars triangularis (49),
right precentral (53)

Betweenness left entorhinal (4),
left fusiform (5),
left middle temporal (13),
left posterior cingulate (21),
right lingual (42),
right precentral (53),
right rostral anterior cingulate (55),
right superior frontal (57)

left rostral anterior cingulate (24),
right insula (62)

left superior temporal (28),
right pars triangularis (49)

The listed brain parcels in this table were visualized on Montreal Neurologic Institute 152 (MNI152) brain images, as shown in Figures 6, 7A. The numbers in parentheses were the
indexes of cortical parcels (Table 1). The p-values were not corrected.

lobe, inferior parietal areas, and lingual gyri (Bell-McGinty
et al., 2005; Yao et al., 2010; Zhao et al., 2015). Age-related
structural network studies also revealed that regional efficiency
reduced in the parietal and occipital lobes with age (Gong
et al., 2009; Burzynska et al., 2010; Zhao et al., 2015). To
some extent, our result is in accordance with these prior
studies. Specifically, no significant group-wise difference or
interaction was found in the occipital area and hippocampus
subregions (14 and 45) in this study. A possible reason for
this may be the choices of whole-brain parcellation atlas and

nodal metrics. Additionally, as the most serious hippocampal
pathology may be already present when the diagnosis of
MCI or AD was made, hippocampal connections could not
have much additional deteriorations over time. The present
results are, to some extent, consistent with these studies:
cognitive function deficits could be due to abnormalities
in the connectivity between these brain areas. This region-
specific topological analysis provides insight into the aberrant
topological patterns induced by interaction between aging and
AD propagation.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2021 | Volume 13 | Article 639795

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wu et al. Interactions Between Aging and AD

FIGURE 6 | The cortical parcels listed in Table 2 are visualized on MNI152 brain images. The numbers in parentheses are the indexes of parcels (Table 1). (A) Left
hemisphere. (B) Right hemisphere.

Several methodological issues about this study should be
addressed. First, the DKT atlas was used to parcellate the
whole cortex. When different parcellation schemes are used to
define network nodes, topological metrics may be different (Wu
et al., 2019). Second, the edges of the white matter networks
were reconstructed by deterministic tractography based on CSD.
Future studies should employ more advanced tractography
techniques, such as probabilistic tractography to define the
network edge weights (Sotiropoulos and Zalesky, 2019). Third,
to ascertain the real structural networks as accurately as possible,
this study included as many subjects as were available from each
group in the ADNI database, whichmade the sample sizes of each
group inconsistent. Fourth, as the DWI datasets are collected
from multiple MRI centers, network consistency still needs to be
confirmed. For different patients, AD onsets may start in distinct
brain areas (Ossenkoppele et al., 2020), and this may influence
the statistical analysis of local topological characterization.
Finally, as the cause for white matter hyperintensities remain
uncertain (Merio, 2019), we did not consider this factor in
the statistical tests. Interaction across aging, AD progression,
and neural plasticity (Bernhardi et al., 2017) complicates the

analysis of brain structural connectivity deterioration due to
AD. In the future, the combination of the multimodal MRI
techniques (structural, diffusion-weighted, and functional MRI)
should yield a comprehensive understanding of the relationship
between structural and functional changes during normal aging
and AD progression.

CONCLUSION

Brain network analysis offers a promising new approach to track
and understand aging and AD progression. From this study, we
conclude that age-related deterioration in structural networks
contributes less to AD patients than healthy old adults. While
no significant interaction is identified between aging and AD
propagation in terms of the network-level metrics, significant
interaction is found in the parcels of left superior temporal, right
pars triangularis, and right precentral in terms of nodal clustering
coefficient and betweenness. These findings may explain how
network abnormalities in AD patients gradually evolve over
time. In summary, our results emphasize age- and AD-related
degeneration of specific brain parcels, thus providing novel
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FIGURE 7 | Significant interactions between aging and AD propagation were found in the cortical parcels of left superior temporal, right pars triangularis, and right
precentral. (A) Visualization of the parcels of left superior temporal, right pars triangularis, and right precentral. (B) Combined changing trajectories of mean values of
clustering coefficient. (C) Combined changing trajectories of mean values of betweenness.

insights into the underlying pathophysiological mechanisms of
connectivity alterations over aging and AD progression. This also
indicates the potential of using these parcels’ topological metrics
as a diagnostic biomarker. Further studies for neurophysiological
correlation between aging and AD progress are still needed to
comprehensively assess their cross effects on the integrity of
structural connectivity.
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