

UNIVERSITI PUTRA MALAYSIA

ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS OF SCORODOCARPUS BORNEENSIS (OLACACEAE) AND GLYCOSMIS CALCICOLA (RUTACEAE)

CHRISTOPHE WIART

FSAS 2001 28

ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS OF SCORODOCARPUS BORNEENSIS (OLACACEAE) AND GLYCOSMIS CALCICOLA (RUTACEAE)

By

CHRISTOPHE WIART

Thesis Submitted in Fulfillment of the Requirement for the Degree of Doctor in Philosophy in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

March 2001

To my beloved wife Mazdida, to my beloved mother Flora, my father Patrice, my sister Vanessa, my sons Adam and Pierre,

In memory of my beloved and greatly missed grand parents Renée and José Monllor... In memory of my mentors Pr. Loic Girre, Dr. Lucille Allorge, Dr. Kochumen..

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor in Philosophy

ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS OF SCORODOCARPUS BORNEENSIS (OLACACEAE) AND GLYCOSMIS CALCICOLA (RUTACEAE)

By

CHRISTOPHE WIART

March 2001

Chairman: Professor Mawardi Rahmani, Ph.D

Faculty: Science and Environmental Studies

The extracts of plants collected from the forest of Northern Malay Peninsula were tested against bacteria, fungi and CEM-SS leukemia cell line. Gram-positive *Bacillus cereus* and Gram-negative *Pseudomonas aeruginosa* which are commonly involved in skin infections, have been used for screening antibacterial activity whereas *Candida lipolytica*, *Saccharomyces cerevisae*, *Saccharomyces lipolytica*, and *Aspergillus ochraceous* have been used for screening antifungal activity.

The crude extract from the seeds of *Scorodocarpus borneensis* showed a strong cytotoxic activity against CEM-SS leukemia cell-line and antimicrobial activities. A bioassay-guided separation had been carried out to separate the active constituents of the seeds. This resulted in the isolation and identification of an aliphatic sulfur compound, *bis*-(methylthiomethyl)disulfide, and a new indole

alkaloid, 13-docosenoyl serotonine from the petroleum ether extract A new sesquiterpene, scopotin, has been isolated from the chloroform extract of the seeds Another sesquiterpene, cadalene- β -carboxylic acid, has been isolated from the bark of this species

bis-(Methylthiomethyl)-disulfide appeared as the most active compound and the major constituent of the seeds extract of *Scorodocarpus borneensis* It acted significantly on a methicillin resistant strain of *Staphylococcus aureus* and showed a strong cytotoxic activity against CEM-SS leukemia and KU812F chronic myelogenous leukemia cell lines 13-Docosenoyl serotonine showed a moderate cytotoxic activity against CEM-SS leukemia cell line Scopotin showed a moderate antimicrobial activity and a strong cytotoxic effect against CEM-SS leukemia cell line

The crude petroleum ether extract and *bis*-(methylthiomethyl)disulfide strongly inhibited the growth of pathogen fungi and was formulated in external preparation by using commercial paraffin as excipient. This preparation exhibited drastic antifungal activities *in vitro* and *in vivo*. The acute toxicity of the crude petroleum ether extract was found to be inferior to phenobarbital in mice with LD_{50} at 275 mg/kg. The skin irritancy test was performed on rabbits and it showed that this preparation had an irritancy level acceptable by the FDA

Antimicrobial and cytotoxic activities were also performed on methylgerambullin and desmethoxyzanthophylline which were previously isolated from *Glycosmis calcicola* (Rutaceae). Methylgerambullin showed a strong cytotoxic activity against CEM-SS leukemia, melanoma HACC1, and colon cancer HT29 cell lines whereas desmethoxyzanthophylline has moderate activity against *Bacillus cereus*, *Pseudomonas aeruginosa* and CEM-SS leukemia cell line.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untunk ijazah Doktor Falsafah

ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS OF SCORODOCARPUS BORNEENSIS (OLACACEAE) AND GLYCOSMIS CALCICOLA (RUTACEAE)

Oleh

CHRISTOPHE WIART

Mac 2001

Pengerusi: Profesor Mawardi Rahmani

Fakulti: Sains dan Pengajian Alam Sekitar

Ekstrak tumbuh - tumbuhan yang dikumpul dari hutan Utara Semenanjung Malaysia telah diuji keberkesanannya terhadap bakteria, fungi dan sel leukemia CEM-SS. Bakteria Gram-positif *Bacillus cereus* dan Gram-negatif *Pseudomonas aeruginosa* yang biasa terlibat di dalam jangkitan kulit telah digunakan untuk kajian aktiviti antibakteria. Manakala fungi *Candida lipolytica, Saccharomyces cerevisae, Saccharomyces lipolytica* dan *Aspergillus ochraceous* telah digunakan pula untuk aktiviti antifungi.

Didalam kajian ini, ekstrak daripada bahagian buah pokok Scorodocarpus borneensis telah mempamerkan aktiviti sitotoksik yang kuat terhadap sel leukemia CEM-SS dan juga terhadap aktiviti antimikrobial. Kerja pemisahan biocerabinaan-kawalan telah dijalankan terhadap ekstrak ini untuk mencari sebatian yang aktif. Satu sebatian sulfur alifatik, bis-(methylthiomethyl)disulfide

dan satu alkaloid indol yang baru, 13-docosenoyl serotonine, telah ditemui daripada ekstrak petroleum eter. Manakala satu sesquiterpene yang baru, scopotin, telah dipisahkan daripada ekstrak klorofom terhadap buah. Selain daripada itu, satu sesquiterpene asid kadalena-β-karboksilik telah ditemui dari bahagian kulit pokok ini.

Didapati, *bis*-(methylthiomethyl)disulfide muncul sebagai sebatian yang paling aktif dan merupakan sebatian major daripada ekstrak buah *Scorodocarpus borneensis* ini. Ia bertindak kuat terutamanya terhadap *Staphylococcous aureus* yang resisten kepada methicillin. Sebatian ini juga menunjukkan sitotoksik yang kuat terhadap sel leukemia CEM-SS dan KU812F. Manakala sebatian 13docosenoyl serotonine pula menunjukkan sitotoksik terhadap sel leukemia CEM-SS. Begitu juga dengan sebatian scopotin yang menunjukkan aktiviti antimikrobial sederhana tetapi memberi kesan sitotoksik yang kuat terhadap sel leukemia CEM-SS.

Ekstrak mentah petroleum eter dan sebatian *bis*-(methylthiomethyl)disulfide pada khususnya menghalang kuat pertumbuhan fungi patogen dan telah diformulasikan sebagai kegunaan luar dengan menggunakan paraffin sebagai asasnya. Penyediaan ini telah mempamerkan aktiviti antifungal yang amat memberangsangkan dalam *in vitro* dan *in vivo*. Didapati ketoksikan ekstrak petroleum eter ini terhadap tikus adalah lemah berbanding dengan fenobarbital dengan LD₅₀ sebagai 275 mg/kg. Ujian rangsangan kulit terhadap

arnab telah dijalankan dan didapati formulasi ini adalah pada kadar rangsangan yang diterima oleh FDA.

Ujian antimikrobial dan sitotoksik juga telah dijalankan ke atas sebatian methylgerambullin dan desmethoxyzanthophylline yang mana telah dipencilkan daripada pokok *Glycosmis calcicola* (Rutaceae). Sebatian methylgerambullin menunjukkan aktiviti sitotoksik yang kuat terhadap sel leukemia CEM-SS, melanoma HACC1 dan sel kolon kanser HT29. Manakala sebatian desmethoxyzanthophylline pula menunjukkan aktiviti yang sederhana terhadap bakteria *Bacillus cereus*, *Pseudomonas aeruginosa* dan sel leukemia CEM-SS.

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Professor Dr. Mawardi Rahmani, Chairman of my Supervisory committee, for his guidance and encouragement throughout the thesis research. Special thanks are also extended to the other members of the committee, Associate Professor Dr. Abdul Manaf Ali and Associate Professor Dr. Mohd. Aspollah Sukari, for their assistance.

Thanks are due to Ms Chew Yean Ling for her work on Glycosmis calcicola.

Thanks are also due to lab technicians and graduate students for their support.

Finally, my deepest thanks to my wife and my sons for the sacrifices, understanding and support they have given me throughout this work.

I certify that an Examination Committee met on 25th March 2001 to conduct the final examination of Christophe Wiart on his Doctor of Philosophy thesis entitled "Antimicrobial and Cytotoxic Compounds from *Scorodocarpus borneensis* (Olacaceae) and *Glycosmis calcicola* (Rutaceae)" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the examination committee are as follows:

Taufiq Yap Yun Hin, Ph.D. Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

Mawardi Rahmani, Ph.D. Associate Professor Faculty of Science and Environmental Studies (Member)

Abdul Manaf Ali, Ph.D. Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Aspolla Sukari, Ph.D. Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

A. Hamid A. Hadi, Ph.D. Professor Deputy Dean Faculty of Science University Malaya (Independent Examiner)

AINI IDERIS, Ph.D. Professor/Dean of Graduate School, Universiti Putra Malaysia

Date: 2 5 MAY 2001

This Thesis was submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the degree of Doctor of Philosophy.

enfi AINI IDERIS, Ph.D,

Professor Dean of Graduate School, Universiti Putra Malaysia

Date: 14 JUN 2001

DECLARATION

I hereby declare that the thesis is based on my original work excepts for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Diant

Candidate Christophe Wiart

Date: 25th May 2001

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	111
ABSTRAK	vi
ACKNOWLEDGMENTS	ix
APPROVAL SHEETS	x
DECLARATION FORM	xii
LIST OF TABLES	XV
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxii

CHAPTER

Ι	INTRODUCTION	1
П	LITERATURE REVIEW	5
	Plants Natural Products of Therapeutic Importance	5
	Natural Products with Therapeutic Potentials	10
	Antitumour Compounds from Plants	10
	Antimicrobial Compounds from Plants	16
	Plant Natural Products with Antiprotozoal Activity	22
	Natural Products of the Malay Peninsula's Plants	26
	Scorodocarpus borneensis (Olacaceae)	37
	Botanical Characteristics	37
	Chemical Constituents of Scorodocarpus	
	borneensis	40
	Glycosmis calcicola (Rutaceae)	48
	Botanical Characteristics	48
	Chemical Constituents of Glycosmis calcicola	48
Ш	EXPERIMENTAL	50
	General Experimental Procedure	50
	Instruments	50
	Chromatography	51
	Plant Collection, Extraction and Bioassay	52
	Biological Tests	53
	Toxicological Tests	55
	External Preparation	56
	Extraction and Identification of Compounds from	
	Scorodocarpus borneensis	57
	The Constituents of the Seeds	57
	The Constituents of the Bark	62
	Purification Process in View of Large Scale Production	63

	Steam Distillation	63
	Extraction of bis-(Methylthiomethyl)disulfide	
	by Silver Nitrate Precipitation	64
IV	RESULTS	66
	Constituents of the Seeds of Scorodocarpus borneensis	66
	bis-(Methylthiomethyl)disulfide	68
	Isolation and Identification of	76
	13-Docosenoyl Serotonine	/5
	Isolation and Identification of Scopotin	92
	Constituents of the Bark of Scorodocarpus borneensis Isolation and Identification of	105
	8-Isopropy1-5-methy1-2-naphtoic Acid	105
	Biological Activity Results	117
	Screening of Crude Extracts	117
	Screening of Pure Compounds	125
	Bioassay Guided Fractionation of the Crude	
	Petroleum Ether Extract of the Seeds	
	of Scorodocarpus borneensis	127
	Bioactive Compounds of the Crude	
	Petroleum Ether Extract	130
	Inhibition of Pathogen Fungi Growth	133
	Antiseptic Activity	137
	Acute Toxicity	142
	Skin irritancy	147
	Purification Process in View of Large Scale production	151
	Steam Distillation	151
	Extraction of <i>bis</i> -(Methylthiomethyl)disulfide	
	by Silver Nitrate Precipitation	151
V	DISCUSSION	152
	Antifungal Potentials of the Crude Oil and	
	bis-(Methylthiomethyl)disulfide	152
	Toxicity	154
	Acute Toxicity	154
	Skin Irritancy	156
VI	CONCLUSION	160
BIRI	IOGRAPHY	161
BIODATA 1		171

LIST OF TABLES

Table		Page
1	Natural products of therapeutic importance (Evans, 1996)	6-7
2	Some antitumour compounds from plants (Dewick, 1996)	10-12
3	Some clinically important antibiotics (Berdy, 1982)	17-18
4	Plant constituents with anti-HIV activity (Evans, 1996)	20
5	Some plant constituents with antiprotozoal activity (Phillipson <i>et al.</i> , 1993)	23-24
6	Estimated number of Malaysian and World species of plants (Whitmore, 1972)	26
7	Dicotyledone orders and families of the Malay Peninsula (Whitmore, 1972)	29-30
8	Distribution of flavonoids in leaves of Olacaceae (Haron and Ping, 1997)	40
9	¹ H NMR spectral data of 13-docosenoyl serotonine, N-fatty acyl tryptamine and bufobutanoic acid	79
10	¹³ C NMR spectral data of 13-docosenoyl serotonine, bufobutanoid acid and N-fatty acyl tryptamine	c 80
11	¹ H NMR and ¹³ C NMR spectral data of 13-docosenoyl serotonine	82
12	NMR spectral data of scopotin	95
13	NMR spectral data of 8-isopropyl-5-methyl-2-naphtoic acid	108
14	Biological screening of plants collected in Malaysian tropical primary rain forest 119-	121
15	Antibacterial activities of Vitex longisepala leaves fractions	122
16	Minimum inhibiting concentration values of <i>Scorodocarpus borneensis</i> crude methanol seeds extract	123
17	Antibacterial and cytotoxic activity of various parts of <i>Scorodocarpus borneensis</i>	123

18	Cytotoxicity of methylgerambullin	125
19	Antimicrobial and cytotoxic activities of Desmethoxyzanthophylline	126
20	Antimicrobial activity of <i>Scorodocarpus borneensis</i> seeds fractions	128
21	Minimum inhibiting concentration values of <i>Scorodocarpus borneensis</i> seeds fractions	128
22	Cytotoxic activity of <i>Scorodocarpus borneensis</i> seeds, leaves and barks methanol extracts against CEM-SS	130
23	Antimicrobial activity of the various fractions obtained from a column chromatography of the crude petroleum ether extract of <i>Scorodocarpus borneensis</i> seeds	131
24	Antimicrobial activity of bis-(methylthiomethyl)disulfide	131
25	Activity of <i>bis</i> -(methylthiomethyl)disulfide against methicillin resistant <i>Staphylococcus aureus</i>	132
26	Antimicrobial activity of scopotin	133
27	Antifungal activity of Scorodocarpus borneensis seeds Petroleum ether extract against pathogenic fungi	134
28	Comparative activity of crude petroleum ether extract and nystatin standard against pathogenic fungi	134
29	Activity of <i>bis</i> -(methylthiomethyl)disulfide against pathogenic fungi	135
30	Comparative activity of <i>bis</i> -(methylthiomethyl)disulfide and nystatin standard against pathogenic fungi	136
31	In vitro evaluation of external preparations containing various concentration of Scorodocarpus borneensis seeds crude petroleum ether extract against Candida lipolytica	137
32	In vitro evaluation of deeply ensemenced external preparations containing various concentrations of Scorodocarpus borneensis seeds crude petroleum ether extract against Candida lipolytica	138

.

33	Symptoms observed after Microsporium inoculation	140
34	Symptoms observed after daily application of <i>Scorodocarpus borneensis</i> seeds extract (5 %) containing preparation	142
35	Behavior of the mice before injection	142-143
36	Determination of the LD_{50} of Scorodocarpus borneensis seeds crude petroleum ether extract	143-144
37	Recapitulative table of weights and deaths	144-145
38	Recapitulative table of the behavioral signs observed during the LD $_{50}$ determination	146
39	Evaluation of skin reaction to <i>Scorodocarpus borneensis</i> seeds crude petroleum ether extract	148
40	Some of the commonest dermatophytoses (Connan et al., 1971)) 153
41	Relationship between toxic signs and body organs (Namara, 19	76) 155
42	Classification of the various types of toxicity (Franck, 1996)	156
43	Evaluation of skin reaction (Draize, 1955)	157-158

LIST OF FIGURES

Figure		Page
1	Chemical Structure of Plant Constituents Used in Therapeutic (Pharmaceutical Codex, 1979)	8
2	Some Chemical Structure of Antitumour Compounds from Plants (Dewick, 1996)	13
3	Some Chemical Structure of Anti-HIV Compounds from Plants (Evans, 1996)	21
4	Some Chemical Structure of Plant Constituents with Antiprotozoa Activity (Phillipson <i>et al.</i> , 1993)	ul 25
5	Map of the Malay Peninsula	27
6	Scorodocarpus borneensis (Personal Communication)	39
7	Some Chemical Constituents Reported from the Olacaceae Family	y 43
8	Chemical Constituents Reported from Scorodocarpus borneensis	46
9	Sulfur Compounds of <i>Allium cepa</i> L. (Onion) and <i>Allium sativum</i> (Garlic)	47
10	Chemical Constituents Reported from Glycosmis calcicola (Chew, 1995)	49
11	Extraction of <i>bis</i> -(Methylthiomethyl)disulfide by Silver Nitrate Precipitation	
12	Isolation of the Three Bioactive Compounds of the Petroleum Ether Extract of the Seeds of Scorodocarpus horneensis	67
13	Chromatogram Obtained from Fraction 14	68
14	IR Spectrum of <i>bis</i> -(Methylthiomethyl)disulfide	71
15	Mass Spectrum of bis-(Methylthiomethyl)disulfide	71
16	¹ H NMR Spectrum of <i>bis</i> -(Methylthiomethyl)disulfide	72
17	¹³ C NMR Spectrum of <i>bis</i> -(Methylthiomethyl)disulfide	73

18	COSY Spectrum of bis-(Methylthiomethyl)disulfide	74
19	Partial Structure of 13-Docosenoyl Serotonine	77
20	N-Fatty Acyl Tryptamine	78
21	Bufobutanoic Acid	78
22	Erucic Acid	81
23	13-Docosenoyl Serotonine	81
24	IR Spectrum of 13-Docosenoyl Serotonine	83
25	Mass Spectrum of 13-Docosenoyl Serotonine in Positive Ion Mode	84
26	Mass Fragmentation of 13-Docosenoyl Serotonine	85
27	¹ H NMR Spectrum of 13-Docosenoyl Serotonine	86
28	¹³ C NMR Spectrum of 13-Docosenoyl Serotonine	87
29	DEPT Spectrum of 13-Docosenoyl Serotonine	88
30	COSY Spectrum of 13-Docosenoyl Serotonine	89
31	HETCOR Spectrum of 13-Docosenoyl Serotonine	90
32	HMBC Spectrum of 13-Docosenoyl Serotonine	91
33	Scopotin	94
34	UV Spectrum of Scopotin	96
35	IR Spectrum of Scopotin	97
36	Mass Spectrum of Scopotin in Positive Ion Mode	98
37	¹ H NMR Spectrum of Scopotin	99
38	¹³ C NMR Spectrum of Scopotin	100
39	DEPT Spectrum of Scopotin	101

40	COSY Spectrum of Scopotin	102
41	HETCOR Spectrum of Scopotin	103
42	HMBC Spectrum of Scopotin	104
43	8-Isopropyl-5-methyl-2-naphtoic Acid	107
44	IR Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	109
45	Mass Spectrum of 8-isopropyl-5-methyl-2-naphtoic Acid in Positive Ion Mode	110
46	¹ H NMR Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	111
47	¹³ C NMR Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	112
48	DEPT Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	113
49	COSY Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	114
50	HETCOR Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	115
51	HMBC Spectrum of 8-Isopropyl-5-methyl-2-naphtoic Acid	116
52	Activity of the Chloroform Extract of Vitex longisepala Leaves Against Bacillus cereus: Bioautography (Left), Paper Disc Test (Right)	124
53	Methylgerambullin	126
54	Desmethoxyzanthophylline	127
55	CEM-SS Growth Inhibition by Scorodocarpus borneensis Seeds Crude Methanol Extract In Vitro. Control (Top), Cells Treated with Extract at IC_{50} for 3 Days (Below)	129
56	Candida albicans Growth Inhibition by Scorodocarpus borneensis Seeds Crude Petroleum Ether Extract In Vitro	136
57	In Vitro Evaluation of External Preparations Containing Various Concentrations of Scorodocarpus borneensis Seeds Crude Petroleum Ether Extract Against Candida lipolytica	139
58	Effects of 15 Days Treatment of a Wound with 5%	

.

	Scorodocarpus borneensis Seeds Extract-Containing Preparation: Before (Top), After (Below)	141
59	Determination of the LD ₅₀ of the Crude Petroleum Ether Extract of <i>Scorodocarpus borneensis</i> Seeds	147
60	Test of Skin Irritancy: Rabbits Treated with Paraffin (Top), Oil (Below)	149
61	Test of Skin Irritancy: Rabbits Treated with AlCl ₃	150

÷

2

LIST OF ABBREVIATIONS

CHCl ₃	chloroform
CDCl ₃	deuterated chloroform
cm	centimeter
COSY	Correlation Spectroscopy
d	doublet
dd	doublet of doublet
EtOH	ethanol
FDA	Food and Drug Administration
g	gram
GC	Gas Chromatography
kg	kilogram
HETCOR	Heteronuclear Correlation
IC ₅₀	Inhibiting Concentration 50%
IR	Infra Red
LD ₅₀	Lethal Dose 50%
1	liter
m	multiplet
Me	methyl
MeOH	methanol
mg	milligram
MIC	Minimum Inhibiting Concentration
ml	milliliter
mm	millimeter
m.p.	melting point
MS	Mass Spectrum
NCI	National Cancer Institute
NMR	Nuclear Magnetic Resonance
PE	Petroleum Ether
ppm	part per million
rpm	rotation per minute
S	singlet
TLC	Thin Layer Chromatography
UI	Unit International
μl	microliter
μg	microgram

CHAPTER I

INTRODUCTION

Widely recognized as being of serious and immediate concern is the crisis of new and re-emerging infectious diseases for which no effective therapies are available and the development of resistance of many pathogens, such as *Staphylococcus aureus* to methicillin Penicillins discovered in the forties as well as more recent antibiotics, are now totally ineffective in common bacterial infections

Another concern is the need to develop new cancer chemotherapeutic agents with activity against the disease-types still resistant to current therapies and to overcome the development of multidrug resistance, which is increasingly observed in the treatment of many tumors Death rates and side effect are still high and new chemotherapeutic drugs need to be discovered

Thus, there is an urgent need to identify novel antimicrobial and cytotoxic molecules as leads for effective drug development Such active molecules may be synthesized by organic chemists or extracted from bacteria, fungi, animals, or plants The plant kingdom has been described by Farnworth as a "virtually untapped reservoir of novel drugs awaiting imaginative and progressive organizations"(Cordell, 1995) The author also estimated that five to fifteen percent of the approximately two hundred and fifty thousand species of higher

plant have been systematically investigated for the presence of bioactive compounds (Cordell, 1995)

Bioactive compounds of plant origin have played, and continue to play an invaluable role in the drug discovery process related to all disease types and, in particular, in the area of cancer and infectious diseases. For example, national prescription audit data for a period of fifteen years between 1959-1974 showed that over 25% of US Prescriptions dispensed in 1973 contained active ingredients derived from higher plants, while 13 3% and 2 7% were derived from microbial and animal sources, respectively (Cordell, 1995). Among the new approved drugs reported between 1983 and 1994, drugs of natural origin predominate in the area of antibacterial (78%), while 61% of the anticancer drugs are naturally derived or modeled on natural product parents. Of the eighty seven approved anticancer drugs four are of plant origin. Of the two hundred and ninety nine anticancer drug candidates nine are of plant higher origin (Cordell, 1995).

Higher plants which are able to produce new drugs are mainly found in primary and secondary tropical rain forests of Africa, Asia and especially South and Central America and Southeast Asia. The biodiversity there has forced plants to protect themselves against microorganisms, animals or insects by producing a great variety of chemical weapons. In Southeast Asia, our Malaysian forest is endowed with one of the oldest and richest flora in the world (Ridley, 1922). This

