

UNIVERSITI PUTRA MALAYSIA

FOTODEGRADASI FENOL DAN 4-KLOROFENOL DALAM AIR MENGGUNAKAN TITANIUM DIOKSIDA

MD SUHAIMI BIN ELIAS

FSAS 2001 8

FOTODEGRADASI FENOL DAN 4-KLOROFENOL DALAM AIR MENGGUNAKAN TITANIUM DIOKSIDA

MD SUHAIMI BIN ELIAS

MASTER SAINS UNIVERSITI PUTRA MALAYSIA

2001

FOTODEGRADASI FENOL DAN 4-KLOROFENOL DALAM AIR MENGGUNAKAN TITANIUM DIOKSIDA

Oleh

MD SUHAIMI BIN ELIAS

Tesis Ini Dikemukakan Sebagai Memenuhi Keperluan Untuk Ijazah Master Sains Di Fakulti Sains dan Pengajian Alam Sekitar Universiti Putra Malaysia

Disember 2001

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FOTODEGRADASI FENOL DAN 4-KLOROFENOL DALAM AIR **MENGGUNAKAN TITANIUM DIOKSIDA**

Oleh

MD SUHAIMI ELIAS

Disember 2001

Pengerusi: Profesor Madya Zulkarnain Zainal, Ph.D.

Fakulti

: Sains dan Pengajian Alam Sekitar

Pencemaran sumber air merupakan masalah utama kepada keperluan air minuman

dan kehidupan akuatik pada masa kini. Pelbagai teknologi digunakan untuk merawat

sumber air. Salah satu kaedah tersebut ialah dengan menggunakan semikonduktor TiO2

sebagai fotomangkin dalam fotodegradasi sebatian organik.

Dalam kajian ini fotodegradasi fenol dan 4-klorofenol menggunakan serbuk

mangkin TiO₂ dan TiO₂ (sol-gel) yang dipegunkan di atas kaca (TiO₂/kaca) digunakan.

Pemegunan TiO₂/kaca dilakukan dengan dua kaedah; iaitu berdasarkan bilangan celupan

TiO₂/kaca dan berdasarkan amaun TiO₂.

Didapati dengan menggunakan serbuk mangkin TiO₂ kadar fotodegradsi 20 ppm

fenol mencapai 73.0% dan 4-klorofenol ialah 97.4%. Kadar fotodegradasi fenol mencapai

30.5% dengan menggunakan kaedah bilangan celupan TiO2/kaca dimana pencelupan kaca

dilakukan sebanyak 8x. Manakala dengan menggunakan kaedah berdasarkan amaun

TiO₂/kaca didapati kadar fotodegradasi fenol mencapai 43.4% apabila jisim TiO₂ yang

dipegunkan di atas kaca mencapai jisim maksimum iaitu 0.077 ± 0.003 g. Apabila amaun TiO_2 /kaca meningkat kadar fotodegradasi fenol juga meningkat.

Peningkatan suhu pengkalsinan TiO₂/kaca memberikan keputusan perkadaran songsang dimana peningkatan suhu pengkalsinan mengurangkan kadar fotodegradasi fenol. Pada suhu pengkalsinan yang tinggi didapati berlakunya penanggalan TiO₂ yang dipegunkan ke atas kaca. Namun kesan kenaikan suhu larutan fenol dan 4-klorofenol menunjukkan perkadaran terus, dimana kenaikan suhu 30 °C hingga 50 °C masing-masing dapat meningkatkan kadar fotodegradasi fenol sebanyak 15.8% dan 12.2% bagi 4-klorofenol.

Kesan penambahan ion-ion K⁺, Na⁺, Ca²⁺ dan Zn²⁺ kepada larutan fenol terhadap kadar fotodegradasi juga dikaji. Didapati dengan menggunakan serbuk TiO₂ kadar fotodegradasi meningkat apabila ion K⁺ dan Ca²⁺ dengan kepekatan 0.01 M dan ion Zn²⁺ dengan kepekatan 0.001 M ditambahkan. Tetapi dengan penambahan ion Na⁺ ianya didapati merencatkan kadar fotodegradasi fenol. Manakala dengan menggunakan amaun TiO₂/kaca pula, penambahan ion Ca²⁺ merencatkan kadar fotodegradasi fenol dan 4-klorofenol. Sementara penambahan ion K⁺ pada kepekatan 0.01M pula dapat meningkatkan kadar fotodegradasi 4-klorofenol.

Abstract of thesis presented to the Senate Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHOTODEGRADATION OF PHENOL AND 4-CHLORPHENOL IN WATER **USING TITANIUM DIOXIDE**

By

MD SUHAIMI ELIAS

December 2001

Chairman: Associate Professor Zulkarnain Zainal, Ph.D.

Faculty

: Science and Environmental Studies

Presently, pollution of water resources has become a major problem to the supply of

drinking water and aquatic living organisms. Many technologies are being used to treat the

water resources. One of them is by using the semiconductor TiO₂ as a photocatalyst in

degradation of organic pollution.

In this study, the TiO₂ catalyst in a powder form and TiO₂ (sol-gel) immobilized on

a glass substrate (TiO₂/glass) were used to photodegrade phenol and 4-chlorophenol. The

immobilization of TiO₂/glass were done in two ways; base on the number of dip coating and

the amount of TiO₂ immobilized on a glass substrate.

The photodegradation of 20 ppm phenol and 4-chlorophenol of about 73.0 % and

97.4 % was achieved respectively when the TiO₂ catalyst in a powder form was used.

However, the photodegradation rate of phenol was 30.5 % by using the 8 times dip coating

of $TiO_2/glass$ and 43.4 % by using the maximum amount of TiO_2 0.077 \pm 0.003 g

immobilized on glass. The increase of the amount of TiO₂/glass increased the

photodegradation rate of phenol.

iv

The effect of calcination temperatures of TiO₂/glass showed the reverse effect on the rate of photodegradation, where the increase of calcination temperatures decreased the photodegradation rate of phenol. At higher calcination temperature more TiO₂ was peeled off from the glass surface. However the temperature of phenol and 4-chlorophenol solutions has significant effect on the rate. The increased of temperature from 30 °C to 55 °C increased the amount of photodegraded phenol and 4-chlorophenol by 15.8 % and 12.2 % respectively.

The effect of addition of K⁺, Na⁺, Ca²⁺ and Zn²⁺ ions to the phenol solution were also investigated. The addition of K⁺ and Ca²⁺ ions at 0.01 M and Zn²⁺ ion at 0.001 M increased the photodegradation rate of phenol, by using TiO₂ catalyst in a powder form. However, the addition of Na⁺ ion inhibited the photodegradation rate of phenol. In the case of using TiO₂/glass the addition Ca²⁺ ion inhibited the photodegradation rate of phenol and 4-chlorophenol. However, the addition of 0.001 M K⁺ ion increased the photodegradation rate of 4-chlorophenol.

PENGHARGAAN

Syukur Alhamdulillah segala puji bagi Allah kerana dengan limpah izinNya dan hidayahNya maka tesis ini berjaya disiapkan. Ucapan jutaan terima kasih kepada penyelia, Prof. Madya Dr. Zulkarnain Zainal yang banyak menyumbang idea, kritikan, kata-kata semangat dan dorongan serta kepercayaan kepada saya dalam menyiapkan tesis ini. Terima kasih juga kepada Prof. Madya Dr. Mohd. Zobir Hussein dan Dr. Taufiq Yap Yun Hin yang banyak memberikan nasihat, teguran dan kerjasama.

Paling istimewa untuk bonda, ayahanda, abang, kakak, adik dan tunang tersayang "As" serta keluarga yang lain yang telah banyak memberikan semangat, bantuan, sokongan dan keyakinan sehingga tesis ini berjaya disiapkan. Buat Rodhyrolin Shahdan, Looi Ming Hong, Puan Nor Hafizah, Encik Zainudin, Encik Narzari dan Cik Azilah (Biosains UPM), terima kasih atas kerjasama dan bantuan yang telah disumbangkan sepanjang menjalankan penyelidikan ini.

Tidak dilupakan buat teman seperjuangan dan rakan serumah Rodhy, Adnan, Azhar, Norhafizi dan penghuni Makmal Kimia Lama 2 di atas segala bantuan kalian secara langsung atau tidak langsung dalam membantu menjayakan penyelidikan ini. Terima kasih semua.

Saya mengesahkan bahawa Jawatankuasa Pemeriksa bagi Md Suhaimi Bin Elias telah mengadakan pemeriksaan akhir pada 11^{hb} Disember 2001 untuk menilai tesis Master Sains beliau yang bertajuk "Fotodegradasi Fenol dan 4-Klorofenol dalam Air Menggunakan Titanium Dioksida" Mengikut Akta Universiti Pertanian Malaysia (Ijazah Lanjutan) 1980 dan Peraturan-Peraturan Universiti Pertanian Malaysia (Ijazah lanjutan) 1981. Jawatankuasa Pemeriksa memperakukan bahawa calon ini layak dianugerahkan ijazah tersebut. Anggota Jawatankuasa pemeriksa adalah seperti berikut:

ABDUL HALIM BIN ABDULLAH, Ph.D.

Pensyarah Fakulti Sains dan Pengajian Alam Sekitar Universiti Putra Malaysia (Pengerusi)

ZULKARNAIN BIN ZAINAL, Ph.D.

Profesor Madya, Fakulti Sains dan Pengajian Alam Sekitar Universiti Putra Malaysia (Ahli)

MOHD. ZOBIR BIN HUSSEIN, Ph.D.

Profesor Madya, Fakulti Sains dan Pengajian Alam Sekitar Universiti Putra Malaysia (Ahli)

TAUFIQ YAP YUN HIN, Ph.D, CChem. MRSC (U.K).

Pensyarah Fakulti Sains dan Pengajian Alam Sekitar Universiti Putra Malaysia (Ahli)

MOHOCHAZALI MOHAYIDIN, Ph.D.

Profesor Timbalan Dekan, Pusat Pengajian Siswazah Universiti Putra Malaysia

Tarikh: 3 0 DEC 2001

Tesis ini telah diserahkan kepada Senat Universiti Putra Malaysia dan telah diterima sebagai memenuhi keperluan untuk ijazah Master Sains

AINI BT. IDERIS, Ph.D.

Profesor Dekan, Pusat Pengajian Siswazah Universiti Putra Malaysia

Tarikh: 14 MAK ZUUZ

PENGAKUAN

Saya mengaku bahawa tesis ini adalah hasil kerja saya yang asli melainkan petikan dan sedutan yang telah diberi penghargaan di dalam tesis. Saya juga mengaku bahawa tesis ini tidak dimajukan untuk ijazah-ijazah lain di Universiti Putra Malaysia atau institusi-institusi lain.

(MD SUHAIMI BIN ELIAS)
Tarikh: 29-12-2001

KANDUNGAN

		Mı	ıka Surat
ABST	RAK		ii
ABST	TRACT		iv
PENC	SHAR	GAAN	vi
PENC	GESAH	IAN	vii
PENC	GAKU	AN	ix
KAN	DUNG	AN	x
		ADUAL	xiii
		RAJAH	xiv
		INGKATAN	xxii
BAB			
I	PENO	GENALAN	
	1.1	Pengenalan Pencemaran	1
	1.2	Mangkin	3
	1.3	Fotomangkin dan Cahaya	6
	1.4	Konsep Asas Fotomangkin	8
	1.5	Semikonduktor	10
	1.5	1.5.1 Semikonduktor Oksida Logam	10
		1.5.2 Jenis-jenis Semikonduktor	12
		1.5.3 Semikonduktor Titanium Dioksida (TiO ₂)	14
	1.6	Sol-Gel Titanium Dioksida (TiO ₂)	17
	1.7	Titanium Dioksida Sebagai Fotomangkin	18
	1.7	Mekanisme Pembentukan Spesies Radikal Reaktif	19
	1.8	•	21
		Campuran Mangkin TiO ₂ dan lon Logam	
	1.10	e e	22
		1.10.1 Proses Pemfotomangkinan Heterogen	22
		1.10.2 Tindak Balas Kimia di Permukaan Mangkin Heterogen	
	1.11		24
	1.12	, ,	26
	1.13	$\boldsymbol{\varepsilon}$	27
	Obje	ktif Kajian	30
II	KAE		
	2.1	Alat radas	31
	2.2	Bahan Kimia	31
	2.3	Peralatan	32
	2.4	Proses Fotodegradasi Fenol dan 4-Klorofenol	
		Menggunakan Kaedah Ampaian Serbuk	
		Mangkin TiO ₂	33
	2.5	Penyediaan TiO ₂	35
	2.6	Pemegunan Titanium Dioksida di Atas Kaca	
		(TiO ₂ /Kaca)	35
		2.6.1 Pemegunan Berdasarkan Bilangan Celupan	
		TiO ₂ /kaca	35

		2.6.2	Pemegunan Berdasarkan Amaun	
		_	TiO ₂ /Kaca	36
	2.7		s Fotodegradasi Fenol Menggunakan TiO ₂	
			s Kaca (TiO ₂ /Kaca)	36
			Kesan Amaun TiO ₂ /Kaca	36
			Kesan Bilangan Celupan TiO ₂ /kaca	37
	2.8		egradasi Fenol Menggunakan TiO ₂ /Kaca	••
	• •	_	Diulang Guna	38
	2.9		Kepekatan ke Atas Fenol dan 4-klorofenol	••
	0.10		gunakan Ampaian Serbuk TiO ₂	38
	2.10		Fotodegradasi Fenol dan 4-Klorofenol	20
	0.11	•	gunakan TiO ₂ /Kaca	39
	2.11		Pengkalsinan TiO ₂ /Kaca ke Atas	20
			egradasi Fenol	39
			Kesan Bilangan Celupan TiO ₂ /Kaca	39
	2.12		2 Kesan Amaun TiO ₂ /Kaca	40
	2.12		n Penambahan Ion K ⁺ , Na ⁺ , Ca ²⁺ dan Zn ²⁺	
			dap Fotodegradasi Fenol Menggunakan	40
	2 12	Ampa	aian Serbuk Mangkin TiO ₂ n Penambahan Ion K ⁺ , Na ⁺ , Ca ²⁺ dan Zn ²⁺	40
	2.13		idap Fotodegradasi Fenol dan	
			orofenol Menggunakan TiO ₂ /Kaca	40
	2.14		n Suhu Larutan Terhadap Fotodegradasi	40
	2.14		gunakan Serbuk TiO ₂	41
	2.15	_	n Suhu Larutan Terhadap Kadar Fotodegradasi	41
	2.13		gunakan TiO ₂ /Kaca	41
	2.16	_	sis Pembelauan Sinar-X (XRD)	42
	2.17		sis HPLC (Kromatografi Cecair Prestasi Tinggi)	42
	2.17		sis Morfologi Struktur Permukaan	43
	2.10	/ tildii:	sis Monologi Struktur i Cimukami	73
III	KEP	UTUSA	AN DAN PERBINCANGAN	
•••	3.1		legradasi Fenol dan 4-klorofenol Menggunakan	
			ık TiO ₂	44
			Kesan Amaun Serbuk TiO ₂	44
		3.1.2	Pembentukan Bahan Perantaraan	49
		3.1.3		55
	3.2	Fotod	legradasi Fenol Menggunakan TiO2 di Atas Kaca	
			/Kaca) Berdasarkan Bilangan Celupan	64
		3.2.1	•	
			Fotodegradasi	64
		3.2.2	•	66
		3.2.3	Kesan Pengkalsinan TiO ₂ /Kaca	70
	3.3	Fotod	legradasi Fenol Menggunakan Amaun TiO ₂	
		di At	as Kaca	73
		3.3.1	Kesan Amaun TiO2 di Atas Kaca	73
		3.3.2		75
		3.3.3	Pembentukan Bahan Perantaraan	78
		3.3.4	Hasil Fotodegradasi Fenol dan 4-Klorofenol	87
		3.3.5	Kesan Pengkalsinan TiO ₂ /Kaca	91

	3.4	Kesan Kepekatan Terhadap Fotodegradasi Fenol dan	
		4-Klorofenol	94
		3.4.1 Fotodegradasi Menggunakan Serbuk TiO ₂	94
		3.4.2 Fotodegradasi Menggunakan TiO ₂ /Kaca	97
	3.5	Kesan Suhu Larutan Fenol dan Klorofenol Terhadap	
		Fotodegradasi	102
		3.5.1 Fotodegradasi Menggunakan Serbuk TiO ₂	102
		3.5.2 Fotodegradasi Menggunakan TiO ₂ /Kaca	104
	3.6	Kesan Penambahan Ion K ⁺ , Na ⁺ , Ca ²⁺ dan Zn ²⁺ Terhadap	
		Kadar Fotodegradasi Fenol dan 4-klorofenol	109
		3.6.1 Fotodegradasi Menggunakan Serbuk TiO ₂	109
		3.6.2 Fotodegradasi Menggunakan TiO ₂ /Kaca	113
	3.7	Analisis Morfologi TiO ₂ /Kaca Menggunakan	
		Mikroskop Pengimbas Elektron (SEM)	119
	3.8	Analisis Pembelauan Sinar-X (XRD)	126
	3.9	Analisis Pembelauan Sinar-X (XRD) TiO ₂ /Kaca Yang	
		Dikalsinkan Pada Suhu Yang Berbeza	131
	3.10	Analisis Morfologi TiO ₂ /Kaca Yang Dikalsinkan	
		Pada Suhu Yang Berbeza Menggunakan	
		Mikroskop Pengimbas Elektron (SEM)	133
	3.11	Fotodegradasi Fenol Menggunakan TiO ₂ /Kaca	
		Yang Diulang Guna	137
IV	KESI	IMPULAN DAN CADANGAN	139
	RUJI	UKAN	143
	LAM	PIRAN	149
	RIOT	DATA	152

SENARAI JADUAL

Jadual		Muka	Surat
1	Senarai jisim mangkin optimum yang dilaporkan oleh para penyelidik		46
2	Nilai-nilai k dan t _{1/2} bagi fotodegradasi fenol berdasarkan bilangan celupan TiO ₂ /kaca dengan kepekatan awal 20 ppm		69
3	Nilai-nilai pemalar kadar (k) dan setengah hayat (t _{1/2}) bagi pengkalsinan TiO ₂ /kaca yang dicelup sebanyak 8x pada suhu yang berbeza		72
4	Nilai-nilai k dan t _{1/2} bagi tindak balas fotomangkin fenol berdasarkan kaedah amaun TiO ₂ /kaca dengan kepekatan awal fenol 20 ppm		77
5	Kadar fotodegradasi fenol menggunakan kaca yang dikalsinkan pada suhu yang berbeza menggunakan amaun TiO ₂ /kaca pada jisim 0.077 g		94
6	Nilai-nilai k dan t _{1/2} bagi tindak balas fenol dan 4-klorofenol dengan kepekatan yang berbeza menggunakan TiO ₂ /kaca (0.077 g)		101
7	Kedudukan puncak-puncak 2θ dan nilai-nilai d(Å) dalam pembelauan sampel TiO ₂ /kaca dengan menggunakan keadah amaun TiO ₂ /kaca dan serbuk mangkin TiO ₂ semua puncak yang dikesan berada dalam fasa anatasa		130

SENARAI RAJAH

Rajah		Muka Surat
1	Tenaga keupayaan bagi tindak balas eksotermik yang menunjukkan fungsi mangkin merendahkan tenaga pengaktifan	5
2	Spektrum radiasi elektromagnet	7
3	Skema menunjukkan (a) pasangan elektron/lubang terbentuk pada permukaan partikel semikonduktor (b) Pemfotojanaan pasangan elektron/lubang dalam jalur konduksi (J.K) dan jalur valensi (J.V). Tenaga jalur ditunjukkan sebagai E _g	8
4	Keadaan semikonduktor yang menunjukkan keadaan (a) penebat dan (b) konduktor	10
5	Skema menunjukkan semikonduktor jenis n	11
6	Skema menunjukkan semikonduktor jenis p	12
7	Paras tenaga menunjukkan kedudukan tenaga jalur konduksi dan jalur valensi pelbagai semikonduktor dalam media akeaus	14
8	Struktur menunjukkan kedudukkan atom titanium dan oksigen dalam struktur (a) rutil (b) anatasa	16
9	Skema menunjukkan pembentukan bahan perantaraan hasil tindak balas tindak balas 4-klorofenol dengan radikal OH sehingga menghasilkan CO ₂ dan H ₂ O	28
10	Skema menunjukkan bahan perantaraan yang terhasil sehingga fenol terurai kepada CO ₂ dan H ₂ O	29
11 (a)	Skema menunjukkan susunan radas fotodegradasi fenol dan 4-klorofenol menggunakan kaedah ampaian serbuk mangkin ${\rm TiO_2}$	34
11 (b)	Skema menunjukkan susunan radas fotodegradasi fenol dan 4-klorofenol menggunakan kaedah pemegunan TiO2/kaca	34
12	Kesan jisim serbuk mangkin TiO ₂ terhadap peratus	45

13	fotodegradasi larutan 4-klorofenol	45
14	Kepekatan relatif fenol melawan masa penyinaran menggunakan jisim serbuk mangkin TiO ₂ yang berbeza dengan kepekatan awal 20 ppm	47
15	Kepekatan relatif 4-klorofenol melawan masa penyinaran menggunakan jisim serbuk mangkin TiO ₂ yang berbeza dengan kepekatan awal 20 ppm	48
16	Spektrum UV menunjukkan perubahan puncak panjang gelombang maksimum semasa fotodegadasi fenol dengan menggunakan serbuk mangkin TiO ₂	51
17	Spektrum UV menunjukkan perubahan puncak panjang gelombang maksimum semasa fotodegadasi 4-klorofenol dengan menggunakan serbuk mangkin TiO ₂	51
18	Penggabungan serbuk mangkin TiO ₂ dengan 4-klorofenol sehingga terhasilnya proses degradasi 4-klorofenol kepada H ₂ O dan CO ₂	52
19	Penggabungan serbuk mangkin TiO ₂ dengan fenol sehingga terhasilnya proses degradasi fenol kepada H ₂ O dan CO ₂	54
20 (a)	Spektrum HPLC menunjukkan piawai sebatian fenol tanpa serbuk mangkin TiO ₂	58
20 (b)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 0 minit menggunakan serbuk mangkin TiO ₂	58
20 (c)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 120 minit menggunakan serbuk mangkin TiO ₂	59
20 (d)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 240 minit menggunakan serbuk mangkin TiO ₂	59
20 (e)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 360 minit menggunakan serbuk mangkin TiO ₂	60
20 (f)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 480 minit menggunakan serbuk mangkin TiO ₂	60
21 (a)	Spektrum HPLC menunjukkan piawai sebatian 4-klorofenol tanpa serbuk mangkin TiO ₂	61

21 (b)	Spektrum HPLC menun jukkan fotodegradasi 4-klorofenol pada masa 0 minit menggunakan serbuk mangkin TiO ₂	61
21 (c)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 120 minit menggunakan serbuk mangkin TiO ₂	62
21 (d)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 240 minit menggunakan serbuk mangkin TiO ₂	62
21 (e)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 360 minit menggunakan serbuk mangkin TiO ₂	63
21 (f)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 480 minit menggunakan serbuk mangkin TiO ₂	63
22	Fotodegradasi fenol dengan kepekatan awal 20 ppm menggunakan TiO ₂ /kaca pada beberapa bilangan celupan yang berlainan	65
23	Kesan bilangan celupan TiO ₂ /kaca terhadap peratus degradasi fenol selepas 8 jam	66
24	Garis kinetik menunjukkan kehilangan fenol berdasarkan bilangan celupan TiO ₂ /kaca	69
25	Kesan pengkalsinan 8x bilangan celupan TiO ₂ /kaca terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm pada suhu yang berbeza	71
26	Garis lurus kinetik menunjukkan kehilangan fenol kesan kalsinasi TiO ₂ /kaca pada suhu yang berbeza	72
27	Penurunan kepekatan fenol terhadap masa untuk fotodegradasi berdasarkan amaun TiO ₂ di atas kaca	74
28	Garis kinetik menunjukkan kehilangan fenol menggunakan kaedah berdasarkan amaun TiO ₂ /kaca	76
29	Perkaitan diantara setengah hayat $(t_{1/2})$ dan pemalar kadar (k) terhadap amaun $TiO_2/kaca$	78
30 (a)	Spektrum HPLC menunjukkan piawai sebatian fenol menggunakan TiO ₂ /kaca	81

30 (b)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 0 minit menggunakan TiO ₂ /kaca	81
30 (c)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 120 minit menggunakan TiO ₂ /kaca	82
30 (d)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 240 minit menggunakan TiO ₂ /kaca	82
30 (e)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 360 minit menggunakan TiO ₂ /kaca	83
30 (f)	Spektrum HPLC menunjukkan fotodegradasi fenol pada masa 480 minit menggunakan TiO ₂ /kaca	83
31 (a)	Spektrum HPLC menunjukkan piawai sebatian 4-klorofenol menggunakan TiO ₂ /kaca	84
31 (b)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 0 minit menggunakan TiO ₂ /kaca	84
31 (c)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 120 minit menggunakan TiO ₂ /kaca	85
31 (d)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 240 minit menggunakan TiO ₂ /kaca	85
31 (e)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 360 minit menggunakan TiO ₂ /kaca	86
31 (f)	Spektrum HPLC menunjukkan fotodegradasi 4-klorofenol pada masa 480 minit menggunakan TiO ₂ /kaca	86
32	Spektrum UV menunjukkan puncak-puncak panjang gelombang maksimum semasa fotodegradasi fenol dengan kepekatan awal 20 ppm menggunakan 0.077 g TiO ₂ /kaca	88
33	Spektrum UV menunjukkan puncak-puncak panjang gelombang maksimum semasa fotodegradasi 4-klorofenol dengan kepekatan awal 20 ppm menggunakan 0.077 g TiO ₂ /kaca	89
34	Kesan pengkalsinan TiO ₂ /kaca pada suhu berbeza menggunakan 0.077 g TiO ₂ /kaca dengan kepekatan awal 20 ppm	92
35	Graf menunjukkan peratus fotodegradasi fenol pada kepekatan awal 20 ppm dalam masa 8 jam dengan pengkalsinan 0.077 g TiO ₂ /kaca	92

36	Garis kinetik menunjukkan kesan pengkalsinan pada suhu yang berbeza dengan menggunakan kaedah berdasarkan amaun TiO ₂ /kaca	93
37	Kesan kepekatan fenol terhadap kadar fotodegradasi menggunakan serbuk mangkin TiO ₂	96
38	Kesan kepekatan 4-klorofenol terhadap kadar fotodegradasi menggunakan serbuk mangkin TiO ₂	97
39	Kesan kepekatan fenol terhadap kadar fotodegradasi menggunakan 0.077 g TiO ₂ /kaca	98
40	Kesan kepekatan 4-klorofenol terhadap kadar fotodegradasi menggunakan 0.077 g TiO ₂ /kaca	98
41	Peratus fotodegradasi fenol pada kepekatan yang berbeza menggunakan 0.077 g TiO ₂ /kaca dalam masa 8 jam	99
42	Peratus fotodegradasi 4-klorofenol pada kepekatan yang berbezamenggunakan 0.077 g TiO ₂ /kaca dalam masa 8 jam	100
43	Kesan suhu larutan fenol dengan kepekatan awal 20 ppm menggunakan serbuk mangkin ${\rm TiO_2}$	103
44	Kesan suhu larutan 4-klorofenol dengan kepekatan awal 20 ppm menggunakan serbuk mangkin TiO ₂	103
45	Kesan suhu larutan fenol terhadap kadar fotodegradasi dengan kepekatan awal 20 ppm menggunakan 0.077 g TiO ₂ /kaca	105
46	Kesan suhu larutan 4-klorofenol terhadap kadar fotodegradasi dengan kepekatan awal 20 ppm menggunakan 0.077 g TiO ₂ /kaca	105
47	Gambarajah menunjukkan koordinat tindak balas tenaga relatif bagi keadaan awal, keadaan akhir dan keadaan perantaraan	107
48	Graf ln k melawan 1/T bagi degradasi fenol	108
49	Graf ln k melawan 1/T bagi degradasi 4-klorofenol	109
50	Kesan penambahan ion K ⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan serbuk TiO ₂ dengan penyinaran UV selama 8 jam	111
51	Kesan penambahan ion Ca ²⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan serbuk TiO ₂ dengan penyinaran UV selama 8 jam	112

52	Kesan penambahan ion Zn ²⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan serbuk TiO ₂ dengan penyinaran UV selama 8 jam	112
53	Kesan penambahan ion Na ⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan serbuk TiO ₂ dengan penyinaran UV selama 8 jam	113
54	Kesan penambahan ion Ca ²⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	115
55	Kesan penambahan ion Zn ²⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	115
56	Kesan penambahan ion K ⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	116
57	Kesan penambahan ion Na ⁺ terhadap kadar fotodegradasi fenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	116
58	Kesan penambahan ion K ⁺ terhadap kadar fotodegradasi 4-klorofenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	117
59	Kesan penambahan ion Ca ²⁺ terhadap kadar fotodegradasi 4-klorofenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	117
60	Kesan penambahan ion Na ⁺ terhadap kadar fotodegradasi 4-klorofenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	118
61	Kesan penambahan ion Zn ²⁺ terhadap kadar fotodegradasi 4-klorofenol pada kepekatan 20 ppm menggunakan TiO ₂ /kaca dengan penyinaran UV selama 8 jam	118
62 (a)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.012 g dengan pembesaran 500x	120
62 (b)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.012 g dengan pembesaran 1000x	121
63 (a)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.032 g dengan pembesaran 500x	121

63	(b)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.032 g dengan pembesaran 1000x	122
64	(a)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.057 g dengan pembesaran 500x	122
64	(b)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.057 g dengan pembesaran 1000x	123
65	(a)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.067 g dengan pembesaran 500x	123
65	(b)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.067 g dengan pembesaran 1000x	124
66	(a)	Mikrograf SEM menunjukkan TiO ₂ yang dipegunkan di atas kaca sebanyak 0.077 g dengan pembesaran 500x	124
66	(b)	Mikrograf SEM menunjukkan TiO_2 yang dipegunkan di atas kaca sebanyak 0.077 g dengan pembesaran $1000x$	125
67	(a)	Mikrograf SEM menunjukkan serbuk TiO_2 dengan pembesaran $500x$	125
67	(b)	Mikrograf SEM menunjukkan serbuk TiO ₂ dengan pembesaran 1000x	126
68		Difraktogram sinar-X sampel TiO ₂ /kaca yang disediakan menggunakan amaun TiO ₂ /kaca yang berbeza jisim. A = anatasa	127
69		Difraktogram pembelauan sinar-X bagi sampel serbuk mangkin TiO_2 . A= anatasa	129
70		Difraktogram pembelauan sinar-X menunjukkan sampel TiO ₂ /kaca yang dikalsinkan pada suhu yang berbeza Menggunakan kaedah berdasarkan amaun TiO ₂ /kaca (0.077 g)	132
71	(Mikrograf SEM menunjukkan TiO ₂ /kaca yang dikalsinkan pada suhu 200 °C (a) Pembesaran 500x	
	((b) Pembesaran 1000x	134
72	(Mikrograf SEM menunjukkan TiO ₂ /kaca yang dikalsinkan pada suhu 300 °C (a) Pembesaran 500x	
	-	(h) Pembesaran 1000v	135

73	Mikrograf SEM menunjukkan TiO ₂ /kaca yang dikalsinkan pada suhu 400 °C		
	(a) Pembesaran 500x		
	(b) Pembesaran 1000x	136	
74	Perbandingan peratus degradasi fenol terhadap amaun TiO2/kaca asal dengan TiO2/kaca yang telah diulang guna	138	

SENARAI RINGKASAN PERKATAAN

Amaun TiO₂/kaca Jisim TiO₂ yang dipegunkan diatas kaca

Celupan TiO₂/kaca Kaca yang dicelup berdasarkan bilangan celupan

E Tenaga

E_g Tenaga Luang Jalur

EPA Agensi pemuliharaan Alam Sekitar

HPLC Kromatografi Cecair Prestasi Tinggi

J.V Jalur Valensi

J.K Jalur Konduksi

k Pemalar Kadar Tindak Balas

"kepekatan" Kenaikan nilai serapan (A) bacaan UV spektrofotometer menjadikan

seolah-olah berlaku kenaikan nilai kepekatan larutan

JCPDS Gabungan Piawaian Pembelauan Serbuk

SEM Mikroskop Imbasan Elektron

t_{1/2} Masa Setengah Hayat

WHO Organisasi Kesihatan Sedunia

XRD Pembelauan Sinar-X

UV Cahaya Ultra Ungu

UV/Vis Cahaya Ultra Ungu / Cahaya Nampak

BABI

PENGENALAN

1.1 Pengenalan Pencemaran

Air bersih merupakan keperluan utama seperti juga udara, makanan dan tempat tinggal yang merupakan bahan asas dalam kehidupan seharian. Air bersih memainkan peranan yang penting dalam kehidupan manusia dan juga kepada kehidupan akuatik seperti ikan dan organisma akuatik lain. Oleh itu adalah penting menjaga, mengawal dan merawat air tercemar, dimana air bersih merupakan sumber air minum yang utama.

Punca bekalan air boleh dibahagikan kepada dua klasifikasi utama: air bawah tanah dan air permukaan termasuklah air hujan. Air bawah tanah terdiri daripada mata air, perigi, air dari batu dan pasir atau air wap panas dari perut bumi manakala air permukaan pula ialah sumber air dari laut, tasik, sungai, takungan, kolam, air mengalir (air terjun) (Salvato, 1982).

Walau bagaimanapun dalam mengejar kemajuan, kita tidak dapat lari daripada masalah pencemaran, terutamanya pencemaran air dan udara. Pencemaran sumber air biasanya dikaitkan dengan kehadiran sebatian toksik dan logam berat yang tidak diingini, yang berpunca daripada aktiviti manusia sendiri. (Amin dan Jayson, 1996). Penggunaan detergen, racun serangga dalam bidang pertanian, penggunaan bahan api melalui pengangkutan dan pembakaran, tumpahan minyak akibat kemalangan dan perlanggaran kapal tangki serta pembuangan bahan merbahaya yang tidak terkawal memburukkan lagi

