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Dynamic causal modeling (DCM) is a widely used tool to estimate the effective

connectivity of specified models of a brain network. Finding the model explaining

measured data is one of the most important outstanding problems in Bayesian

modeling. Using heuristic model search algorithms enables us to find an optimal

model without having to define a model set a priori. However, the development of

such methods is cumbersome in the case of large model-spaces. We aimed to utilize

commonly used graph theoretical search algorithms for DCM to create a framework for

characterizing them, and to investigate relevance of such methods for single-subject

and group-level studies. Because of the enormous computational demand of DCM

calculations, we separated the model estimation procedure from the search algorithm

by providing a database containing the parameters of all models in a full model-space.

For test data a publicly available fMRI dataset of 60 subjects was used. First, we

reimplemented the deterministic bilinear DCM algorithm in the ReDCM R package,

increasing computational speed during model estimation. Then, three network search

algorithms have been adapted for DCM, and we demonstrated how modifications to

these methods, based on DCM posterior parameter estimates, can enhance search

performance. Comparison of the results are based on model evidence, structural

similarities and the number of model estimations needed during search. An analytical

approach using Bayesian model reduction (BMR) for efficient network discovery is

already available for DCM. Comparing model search methods we found that topological

algorithms often outperform analytical methods for single-subject analysis and achieve

similar results for recovering common network properties of the winning model family,

or set of models, obtained by multi-subject family-wise analysis. However, network

search methods show their limitations in higher level statistical analysis of parametric

empirical Bayes. Optimizing such linear modeling schemes the BMR methods are still

considered the recommended approach. We envision the freely available database of

estimated model-spaces to help further studies of the DCM model-space, and the

ReDCM package to be a useful contribution for Bayesian inference within and beyond

the field of neuroscience.
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1. INTRODUCTION

In recent years of neuroscience, increasing attention is drawn
toward brain connectivity studies. Non-invasive techniques,
like functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG), have gained popularity for this
purpose. Dynamic causal modeling (DCM) is a continuously
developing Bayesian framework for estimating effective neuronal
connectivity between brain regions. It models neuronal signal
alteration underlying the fMRI or EEG data for predicting
network connectivity, their modulations and the effects of
experimental inputs, while physiological parameters of the
measured data are also accounted for. Initially, DCM was a
hypothesis-driven method, useful to compare a small number
of models to test neurobiologically relevant questions (Friston
et al., 2003), and using Bayesian model selection to decide
which model has the highest evidence (Penny et al., 2004).
However, numerous studies focus on exploring a systematically
built model-space to find the best fitting model for the data,
and to draw an inference from it (Pool et al., 2014; Warren
et al., 2019). More recent DCM development enables the
comparison of model families of hundreds, or thousands of
models along common network properties, and inferencing the
parameters of the averaged model of the winning family using
Bayesian model comparison and subsequent averaging (Penny
et al., 2010). For group analysis the currently recommended
standard procedure involves the model inversion of a fully
connected DCM model and compute parametric empirical
Bayes (PEB) over subjects (Friston et al., 2016). Then,
we can test our hypotheses on model commonalities and
differences by estimating posteriors of any nested model with
a method called Bayesian model reduction (BMR), or perform
an automatic search among all nested models to discover
connections that most likely contribute to the final model
evidence (Zeidman et al., 2019b).

Methods for searching for the model that most likely explains

the measured data are also known as structure learning, which
is one of the most important outstanding problems in Bayesian

modeling. However, discovering large model-spaces is not a

trivial task, considering that the number of alternative models
grows exponentially with the number of network nodes and
external effects. For this reason searching for an optimal solution
is less advised in current research. A discovery method for
causal networks have already been developed, in the Bayesian
framework, to perform post-hoc model selection. This method
refers to the greedy search to find parameters to remove
from the pre-estimated fully connected model, which do not
contribute to the final model evidence (Friston and Penny,
2011). This procedure also exploits the efficiency of BMR. With
this technique it is only necessary to invert the full model
and then estimate any nested models in milliseconds, which
is useful when estimating large number of models (Friston
et al., 2016). Nonetheless, the standard approach to estimate
each model separately still remains relevant, because it is still
unclear whether BMR remains robust to nonlinearities, such
as the hemodynamic forward model DCM uses (Buxton et al.,
1998). Currently, searching methods to find the optimal model

structure through fully inverting DCMmodels have not yet been
thoroughly investigated for DCM.

A search algorithm aims to find an optimal solution within
the boundaries of a search space that meets or approximates
predefined criteria. An iterative search algorithm may start
with an initial structure within the search space (e.g., an
empty or a fully connected network). Then, we construct
topological alternatives to this network by adding or subtracting
edges between network nodes. Finally, we evaluate the set of
alternatives based on some approximation of the model evidence,
for example, Akaike Information Criterion (AIC) or Bayesian
Information Criterion (BIC) to select the best ones for the
next iteration. In DCM variational free-energy generally gives
a better approximation of the log evidence, and is preferred
over AIC and BIC (Penny, 2012). For Bayesian networks,
many procedures exist for the data-driven discovery of network
graph structures (Smith et al., 2011; Mumford and Ramsey,
2014). These include simple greedy equivalence search (GES)
methods (Ramsey et al., 2011), and more complex multi-level
algorithms combining greedy search with simulated annealing
(Adabor et al., 2015).

In the case of DCM, every model search method attempts to
find the model with the highest evidence based on fMRI data. As
DCMmodels can be represented as graphs, some commonly used
heuristic network optimization algorithms can easily be adapted
to search through the DCM model-space. The computational
difficulties limit the possibilities to develop searching methods
for DCM. In the literature, only a few optimization methods
are available to search for the best fitting model. Pyka et al.
(2011) investigated the effectiveness of genetic algorithms (GA)
compared to a fully randomized search. They demonstrated that
GA found better DCM models by estimating fewer models than
brute-force methods.

In DCM, one can choose from multiple possibilities for
network discovery. On the subject-level the most straightforward
path to follow is to directly invert each model alternatives along
the search path individually using the variational Laplace (VL)
algorithm (Friston et al., 2007). This method is the slowest and
it is possible for different models to fall into different local
minima during the estimation procedure. Alternatively, one can
apply Bayesian model reduction on any DCM in relation to
the fully connected model. This method also allows for using
post-hoc model selection to find an optimal solution in a more
analytic approach. The advantage of BMR is that it assumes
that all models are evaluated around the same minima of free-
energy. However, the approximation of model evidence is not
known exactly for DCMs, as BMR assumes that the reduced
posterior parameter distributions are Gaussian, which might not
be appropriate due to nonlinearities in the model (Friston et al.,
2016). Lastly, model search methods can be performed on the
group-level among nested PEB models.

In practice searching through a large model-space assumes
that each model is potentially equally likely a priori, while
some models are usually more plausible than others, which is
neglected during Bayesian model comparison. Furthermore, the
prior probability density in DCM are composed to decrease
the risk of overfitting the data. However, in large model-spaces
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it is possible to find a setting of priors that allows to fit the
data, possibly overfitting it. Finally, interpretation of results
of automatic searching methods without any hypothesis about
the model is difficult, and hardly reproducible with different
subjects or input data. For these reasons it is practical to form
model families (of hundreds or thousands of models), each
corresponding to a hypothesis about the underlying network,
and assign each model alternative to one of these families. In
this setup model search algorithms may prove useful if they can
recover properties of the winning family.

Considering the topological complexity of DCM models
and the underlying neurobiological modeling, as well, the
high computational demand of DCM still limits the efficiency
to explore large model-spaces. The algorithm for model
inversion, used by a variational Laplace scheme to estimate the
physiological and connection parameters of the causal model, is
computationally costly. This is especially true for DCM for fMRI,
because they integrate the neuronal and the hemodynamic states
of each region, as well. As an obvious solution to speeding up
DCM by graphical processing units, GPU-enhanced calculations
was accomplished previously for fMRI (Aponte et al., 2016) as
well as event-related potentials (Wang et al., 2013). For our
computations, we decided to follow the procedures of the original
algorithm. We introduce a complete reimplementation of DCM
facilitating efficient computing libraries to gain speed. We refer
to this version of the software as ReDCM in the following.

In this study, we aimed to create a computational framework
for developing and characterizing different DCM-adapted model
search methods, and investigate their uses in subject- and group-
level scenarios. To focus on different searching methods we
finessed the computational burden of DCM model inversion
by pre-computing model evidence of every possible model
in the model-space generated from the fMRI dataset used in
Zeidman et al. (2019a). This enables to compare an arbitrary
amount of DCM models without fitting them on the fly.
Looking up estimation results from a pre-computed database
helps efficient testing and development of search procedures.
Furthermore, knowing the best fitting model of the model-
space, we can easily measure the performance of the investigated
methods. We adapted three model search algorithms for DCM
that is available for network science. These are the above
mentioned GES and GA algorithms, and a variant of the
greedy method based on Hamming-distance of model structures.
We refer to this algorithm as GHD from now on. We also
looked into the possibilities to improve topological model
search procedures by taking into account the DCM parameter
estimates from previously reached models during the search.
Finally, we characterized and compared the efficiency of these
algorithms applied in relation to single subject analysis, family-
wise inference and group-level PEB modeling.

2. MATERIALS AND METHODS

2.1. Mathematical Background of Dynamic
Causal Modeling
We reviewed the DCM mathematics from the point of view
of full model-space generation and reimplementation. For

the generation of all DCM models, we examined how the
DCM implementation handles the topology of internal and
external interactions of the neuronal networks. Themathematical
background of this topology can be revealed in the neuronal state
equation of DCM.

DCM for fMRI models neural interactions between brain
regions of a specified network. At any time point, the state
of neuronal activity of each region depends on its neural
state x at the previous time point and can be perturbed by
experimentally driven stimuli u. In DCM the temporal change
of the neuronal state vector is modeled using a bilinear Taylor
series approximation, truncated to its linear terms (Stephan
et al., 2008). This scheme can model any nonlinear function
f (x, u) around the system’s resting point. These time-
dependent dynamics can be expressed as the differential
equation below:

f(x, u) =
dx

dt
≈ f (0, 0)+

∂f

∂x
︸︷︷︸

A

x+
∂
2f

∂x∂u
︸ ︷︷ ︸

B

xu+
∂f

∂u
︸︷︷︸

C

u, (1)

where the network dynamics are computed around the f (0, 0)
point. Jacobian matrices A, B and C are parameters of the
three different kinds of neuronal interactions modeled by DCM:
the endogenous connectivity of the network, the modulatory
effects of external input on the connections and the direct or
driving effects of the stimuli (input) on the regions, respectively.
These parameters define the model topology describing the inter-
regional connections, and the external stimuli induced regional
activity alterations and regional interaction modulations.

The temporal neuronal activation needs to be combined with
a modality-specific forward model to explain regional BOLD
(blood oxygen level dependent) fMRI responses. DCM for fMRI
uses a hemodynamic model based on the Balloon-Windkessel
(or simply Balloon) model (Buxton et al., 1998), that is adapted
and extended for DCM (Friston et al., 2000). In this model, the
hemodynamic states are a function only of the neuronal state
of the regions and represent the volume and deoxyhemoglobin
content of the flowing blood. The full forward model of neuronal
and hemodynamic state equations is used to predict the BOLD
signal h(u,2) of network regions, where 2 are the parameters
of the neuronal and the hemodynamic models. Because of
the nonlinearities in the Balloon-model, the differential state
equations need to be integrated numerically that can be extremely
demanding on computational power.

For parameter estimation, a Bayesian framework is used.
An iterative variational Laplace (VL) algorithm optimizes the
maximum a posteriori (MAP) estimate of the free model
parameters (Friston et al., 2007). By integrating out the
dependencies between parameters we obtain model evidence,
which can be used for model selection or comparison. In
DCM, variational free-energy (Fe) is used to approximate model
evidence. The free-energy balances between the fit of themodel to
the data and complexity, like the number of free parameters in the
model (Stephan et al., 2007). Hence, Fe is useful for comparing
models while eliminating the effects of overfitting the data on
model evidence.
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2.2. Optimized DCM Implementation
Considering the computational demands of DCM, originally
available as part of the Statistical Parametric Mapping (SPM,
http://www.fil.ion.ucl.ac.uk/spm/) Matlab toolbox, evaluating
large amounts of models requires unmanageable processor time.
To overcome this limitation we reimplemented the deterministic
bilinear DCM12 algorithm (build v6225) in the R package
ReDCM. (DCM12 refers to the actual implementation of the
DCM algorithm in the given SPM version). The whole estimation
procedure of variational Laplace and the DCM forward models
for fMRI (neural and hemodynamic states) is available in
ReDCM. The R programming language provided us a feasible
environment to implement the Bayesian estimation framework,
data analysis methods and model search algorithms as well.
Besides DCM for fMRI, ReDCM also implements BOLD signal
simulation, Bayesian model selection using fixed effects statistics
or random effects with Gibbs-sampling (Penny et al., 2010), and a
separate tool to observe hemodynamic response function (HRF)
for a set of Balloon-model parameters.

Previous studies have identified the computation bottlenecks
of DCM (Aponte et al., 2016), namely the integration of
differential state equations describing temporal neuronal and
hemodynamic changes, which needs to be optimized. These
parts of the code were ported into C language using the GNU
Scientific Library (GSL) (Galassi et al., 2006) for efficient matrix
calculations. Four virtual machines with 48 CPU cores each
were acquired in Microsoft’s Azure cloud platform (Copeland
et al., 2015) to utilize high-performance computing facilities for
estimating multiple DCMmodels simultaneously.

We measured the performance of ReDCM and DCM12
without any parallelization techniques to quantify the computing
efficiency we gained. For this analysis we generated synthetic
BOLD-signal data of varying scan length between 200 and
1,200 time points and DCM models with different model sizes,
containing 3, 5, and 7 interconnected regions of interest. We
show the average runtime of iterative VL cycles, measured with
both implementations, estimating parameters of each synthetic
model. Each model had two external stimulating effect to drive
regional state dynamics. For the BOLD time-series simulation
we used the ReDCM implementation of appropriate functions
from SPM.

2.3. Model-Space Generation for the
Semantic Decision Task
In the case of a neural network, the number of all mathematically
possible models (i.e., the cardinality of the full model-space,
Nms) increases hyper-exponentially, depending on the number
of regions and experimental inputs. As the parameter priors can
be expressed as binary variables (connected or not connected),
the number of possible bilinear models can be computed with a
simple expression:

log2Nms = (n2 − n)+ i ∗ (n2)+ i ∗ n, (2)

where n is the number of regions and i is the number of
input functions. The first additive term describes the endogenous
network connectivity (A), the second adds the number of possible

FIGURE 1 | Network scheme for semantic decision task. A DCM model

example to explain brain functions during semantic processing of words and

pictures, originally investigated by /Seghier 2011/. The experiment consists of

four frontal brain regions: left ventral (lvF), left dorsal (ldF), right ventral (rvF) and

right dorsal (rdF). This network is examined in a task designed to involve three

conditions: “Pictures” and “Words” includes onsets for the corresponding

semantic decision trials and “Task” includes all trials. We generated a

model-space of 65,536 models with every possible combination of

endogenous connectivity matrix A, along with their experimental modulation,

denoted by B1, B2, and B3. We fixed the direct effects, described by matrix C,

to “Task” driving each region as experimental input. On the figure the network

nodes are overlain on a coronal section of the brain captured from the average

brain template of the Montreal Neurological Institute (Grabner et al., 2006).

modulatory effects of inputs (B) and the third counts the
direct effects on each region (C). We subtracted the number
of regions from terms related to the A matrix, because self-
connections always represent self-inhibitory effects which need
to be estimated.

For test data, we used the fMRI BOLD dataset freely
available as supplementary data from Zeidman et al. (2019a),
which is used to investigate laterality of semantic processing
before (Seghier et al., 2011). This consists of the same specified
DCM model for 60 subjects, from which we used the first
10 for individual level computations, and data for group-wise
PEB model. The experimental design involves three conditions:
“Pictures,” “Words” includes onset for the corresponding
semantic decision trials and “Task” includes all trials. The
network architecture consists of four regions in the frontal cortex,
responding to language processing: left ventral (lvF), left dorsal
(ldF), right ventral (rvF), and right dorsal (rdF). For keeping
consistency with previous work, and for computational reasons,
we constrained the full model-space by fixing the C matrix
so that only the “Task” condition is used as driving inputs
for each region, while “Pictures” and “Words” are used for
modulatory effects. In accordance with Zeidman et al. (2019a),
Figure 1 shows the model considered as fully connected in this
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TABLE 1 | Model-space database description.

Name Abbreviation Description

Model identifier ID Unique numerical identifier of a model.

Free-energy Fe Estimated free-energy of a model.

Free-energy difference dFe Difference in free-energy relative to the best fitting model.

Hamming-distance Hd Hamming-distance of a model to the best fitting model.

Vectorized model priors Bitvector A bitvector representing the model structure topologically, constructed from the Vectorized

model priors of A, B, and C matrices.

Endogenous connectivity A Matrix of endogenous connection parameter estimates.

Modulatory effects B1, B2, B3 Matrices of connection modulation parameters for each experimental input.

Driving input C Direct or driving effect of experimental stimuli.

Connection probability pA Matrix of endogenous connection parameter probabilities.

Modulation probability pB1, pB2, pB3 Matrices of modulation parameter probabilities for each experimental input.

Input probability pC Probability of driving effect of experimental stimuli.

The database of the model-space consists of the parameter estimation results of each DCM model as a computer file that are connected to a summary table by a model identifier.

This table collects the basis of model comparison information in statistical (free-energy, connection matrix parameter estimates) and graph theoretical (Hamming-distance, model priors)

space.

experiment. Keeping the constraints described here in mind
this semantic decision network induces a model-space of 65,536
possible nested models to consider for each of the 10 subjects.

Group-level analysis is designed to inference on different
lateral responses between left and right regions during the
processing the semantic content of familiar words, quantified
by the “Laterality Index” (LI). In the group-level PEB analysis
several effects are modeled similarly to a general linear modeling
scheme. Most importantly the commonalities, or main effect
among all subjects and the LI to model subject variability.
Handedness, gender and age are also included to capture variance
no interest. Detailed description of the experiment is found in
Seghier et al. (2011).

Taking advantage of the ReDCM implementation and
high performance computing, we estimated all models of
the constrained model-space, and organized the estimated
parameters of all models into an easy to handle data table.
Description of this database is provided in Table 1. Alternatively,
we also estimated the model-space using BMR. To examine
both statistical and structural attributes of the model-space, we
expanded this table with the DCM models’ free-energy (Fe), and
their Hamming-distance (Hd) relative to the model with the
highest evidence. If we represent A, B, and Cmatrices as directed
cyclic graph structures, we can describe the topological difference
of any two models by their Hamming-distance. The Hamming-
distance of twomodels is defined as the number of different graph
edges that describe their connectivity.

2.4. Model Search Methods
Search algorithms aim to find the optimal model with the
combination of connectivity parameters that yield the highest
evidence of DCM model estimation on the fMRI data. We
adapted three different model search algorithms to DCM and
characterized their performance. As the connectivity parameters
of A, B, and C matrices define the model-space, searching
through it is actually about finding the optimal model with the
combination of connectivity parameters that yields the highest

evidence of DCM model estimation on the fMRI data. The
comparison of model search algorithms is based on two main
factors: the difference between the estimated Fe of the found
model and the best fitting model of the model-space (i.e.,
how optimal is the result of search), and also the number of
models estimated until convergence is reached (i.e., how fast
the algorithm converges to the optimum). Based on the applied
search method the number of models considered can still be
relatively high. However, replacing DCM computations with
looking up records from the already estimated model-space, as
depicted in Figure 2, makes developing and testing new search
algorithms faster.

Another way to improve model search efficiency is to omit
models from the current iteration of the algorithm, that differs
from previously computed DCMmodels only in parameters that
don’t effectively change model evidence based on the Bayesian
estimation procedure. Thus, we created optimized versions of the
following model search algorithms that skip DCM models that
adds or subtracts parameters that are receding or exceeding a
definite posterior parameter probability in previously estimated
models. Doing this we ensure that connections with high (or low)
average probability don’t get deleted (or added) by any alternative
models. This search space reduction method is outlined with
green on Figure 2. The optimization, informed by DCM model
estimation, may significantly reduce the number of reached
models during a search procedure. However, it needs to be
applied with caution as it may introduce possibilities to deflect
the search path into a local minima.

2.4.1. Greedy Equivalence Search—GES
Our greedy search algorithm is based on the Greedy Equivalence
Search described by Ramsey et al. (2010). It starts off by selecting
an initial, randomized dynamic causal model, and every model
with one removed connectivity parameter is evaluated with
DCM. Then we select the winning model structure with the
highest Fe. After that, we estimate each nested model obtained by
removing one possible connectivity parameter from the winning
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FIGURE 2 | Flowchart of model search algorithms for DCM. The flowchart on the left side panel depicts the most simple schematic of model search methods in a

DCM model-space. On the right side we show the changes to the regular procedure that may optimize the algorithm in terms of number of estimated models or

search results (green parts), and helps rapid characterization of model search methods using model-space lookup (red parts). In any case the algorithm starts with an

initially selected model (or set of models) M0 that is used to select models M1
0,M

2
0, . . . ,M

n
0 with an arbitrary method for DCM computation. Then we can select the

best fitting model (or models) M1 of the selected population with Bayesian model selection, which is used to generate the next set of models to compare in the next

iteration. This procedure continues until we cannot find an improved variation of the previously estimated models. As shown on the right side image, posterior

parameter estimates of previously reached models P1
0,P

2
0, . . . ,P

n
0 can also be used to reduce or manipulate the selected population and improve search efficiency.

model, keeping consistency with model-space restrictions. When
we reach a stage when removing the connections do not change
the winning model, a backward procedure is started that adds
connectivity parameters to the selected model. Forward and
backward steps alternate until no model can be found to improve
model evidence. The advantage of this method is it always
converges at a particular local maximum based on the initial
model; however, it cannot leap through them and may never find
the best model.

The optimized algorithm, denoted as GES’, takes the posterior
parameter probabilities into account when generating the set of

models to be estimated. Connection parameters can be removed
from the model only if their mean posterior probability is below
0.9. With this modification we fix all connections that have a
significant impact on model evidence.

2.4.2. Greedy Hamming-Distance Search—GHD
A more general case of GES considers the models as vectors
of binary connectivity parameters, rather than graph structures.
Similarly, the Hamming-distance based Greedy Search (GHD)
starts with a randomized initial model and estimates every model
that is at most 1 Hamming-distance far from that model. At
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the next stage, the model with the highest evidence is selected
to repeat the procedure. When no further winning model is
found, the algorithm terminates. The idea behind this algorithm
is that it is assumed that the models around the best fitting
model also have high model evidence (Pyka et al., 2011). Another
advantage of this method is that it incorporates forward and
backward search at the same time, as well. We applied the same
optimization for GHD’ that was applied on the GES’ algorithm.

2.4.3. Genetic Algorithm—GA
Genetic algorithm is a widely used concept for different
optimization and search problems otherwise challenging to solve
procedurally. The candidates of the solution (called individuals
or chromosomes) are represented as a set of attributes whose
combinations describe the individual. These attributes are
combined or swapped between individuals in a population of
candidates and simulate genetic operations, like crossovers or
mutations, to create more viable individuals. In our case, the
models are the individuals and its connectivity parameters are
the attributes.

The genetic algorithm we use is described in details by Pyka
et al. (2011). The genetic code of the models are represented as
binary bit vectors of connectivity parameters. First, the procedure
selects a random model from the search space and creates
three variations of it by randomly changing some bits in the
code. Second, using these four individuals, we generate 16 new
codes by crossover and mutation genetic operators. Crossover
is performed between two chromosomes by swapping a section
of the code between two randomly chosen crossover points. A
mutation occurs on the new genetic codes with a probability of
50% and changes two to eight randomly selected parameters.
If a created model does not satisfy the model-space constraints
described above or the code has already been considered during
the algorithm, a new model is generated until we have a
population of 20 models. Third, all models are estimated by
DCM, and Bayesian model selection (Penny et al., 2004) is
performed to select the best four models that enter the next
iteration of the GA. This particular use of model evidence or free
energy for a genetic algorithm provides a nice metaphor for an
natural selection as nature’s way of performing Bayesian model
selection. In other words, there are formulations of evolution in
terms of minimizing free energy or maximizing adaptive fitness,
where adaptive fitness is simply the marginal likelihood of a
phenotype (Campbell, 2016). This procedure stops when no new
model is selected in the last three iterations.

Similarly to previously specified search methods, our
modified GA’ algorithm is also informed by posterior parameter
probabilities. Each model that contains connections with average
probability p < 0.3 is replaced with a new model that is mutated
from the population.

2.5. Model Search Characteristics
Two routes of individual-level model search were followed. In
the first one we performed search among separately estimated
DCM models using the adapted algorithms. In this scheme
we can compare search efficiency of the GES, GHD, and GA
algorithms on theDCMmodel-space. Another approach involves

using BMR to derive model evidence and posterior parameter
estimates from the fully connected model. In this BMR model-
space the same search methods can be applied. Additionally,
post-hoc model search results can be compared with topological
search methods.

We analyzed each adapted graph-based model search method
from the aspects of model fit (Fe), graph structure of the found
model (Hd from the best model), and the number of estimated
models (N) until the algorithm converges. Note that the GES
and GHD procedures are inherently deterministic methods,
and always find the same model with the same initialization.
However, randomized initialization allows us to measure search
performance more accurately. The stochastic methods such as
GA, has a different convergence point each run regardless of the
initial set of models. Consequently, we derived the efficiency of
the implemented search algorithms from 20 consecutive runs for
each subject’s data, and assessed the model search characteristics
by computing the results’ mean and standard deviation.

2.6. Family-Wise Inference
The model families should be created to correspond to
hypotheses about network structure attributes that are of interest
by the experimenter. In case of BMS, both the null hypothesis
and alternative hypotheses are compared to each other to make
inference from the family that most likely to describe the
structure of the network.

In case of our dataset three meaningful separation of the
model-space can bemade (Zeidman et al., 2019a). In the language
related task of semantic processing of shown words and pictures
it is more likely that words will have more impact modulating
the connections in the network. Also, language processing is
considered to dominantly activate regions in the left hemisphere,
also with some right side activation, and it might be interesting
to see dorsoventral separation of brain function during task.
Along these observations three different separation of the model-
space can be made: (1) network connectivity is modulated
during processing words or pictures or both; (2) connectivity
of left side, right side regions, or both sides is modulated; (3)
and ventral or dorsal frontal regions are more involved during
task or both. The dataset contains 27 base modulation models
separated into three equally distributed sets of models for each
of the three questions asked. Along these different settings of
modulatory effects we assigned every combination of endogenous
connectivity parameters to the corresponding model family. This
means 28 = 256models assigned to each basemodels, as there are
eight free parameters found in the Amatrix. We then performed
a random effects analysis (RFX) of family-wise comparison along
the group of ten subjects using the same set of models.

Although these families do not cover the entire model-space
we can decide for eachmodel that to what extent theymay belong
to the base models. This is determined by comparing modulatory
effects in the found model structure to the modulations defined
by the 27 base models. The base model (or models) matching
with the highest percentage determines the model family we
assign model search results to. When more base models shares
the connectivity of the found model, then corresponding families
share the model accordingly. It is possible that the found model
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will show commonalities with more than one model family to
some extent. Finally, we summarize model search results for all
subjects to determine accuracy to recover family properties.

2.7. Search Over Nested PEB Models
For group-level analysis of DCM data the currently
recommended procedure is to perform a linear PEB analysis of
a fully connected network estimated for all subjects. A common
tool to discover network structure on the group-level is based
on the same greedy algorithm as post-hoc model selection, and
uses BMR to evaluate a large number or nested PEB models.
As reduced posterior probability can be analytically derived
from linear models, BMR is safe to use in conjunction with
PEB methods. Thus, using BMR estimated model evidence as
decision criterion we compared the implemented topological
search methods against the automatic search used in the SPM
software. We then show the connectivity parameters for both
commonalities and LI that are likely to contribute to the PEB
model on the group-level.

3. RESULTS

3.1. Performance Improvements to
Estimate Model-Space
The reimplemented model estimation procedure in ReDCM
achieves a significant improvement in computational
performance. We compared the variational iteration runtime
of ReDCM and DCM12 by estimating the 18 test models by six
different scan length (200, 400, 600, 800, 1,000, and 1,200 scans)
by three models of varying model size (3, 5, and 7 regions of
interest). Figure 3 shows the runtime comparison of every model
estimation with model size 5 and length of 400 time points.
Computation times of all 18 models are summarized in Table 2.
Using ReDCM, without any parallelization or high-performance
computing techniques, performance increased by 296–1,078%,
depending on size and length.

As ReDCM is intended to be an exact reimplementation of
the DCM algorithm, we did not perform validation using the
simulated data. Comparing posterior parameter estimates we
found that the average difference between the two versions is
lower than 1∗10−4. Precision differences originate from different
low level software libraries used for numerical methods.

3.2. Attributes of the Full DCM
Model-Space
Running ReDCM on computers 4 * 48 CPU cores, we were able
to estimate the full model-space of 10 subjects each containing
65,536models in 12 days.We organized the estimated parameters
of all models into an easy to handle data table. Description
of this database is provided in Table 1. Alternatively, we also
estimated the model-space using BMR. For investigating the
model-space we introduced two attributes: (1) measuring the
accuracy by dFe = Fe0 − Fe, where Fe0 denotes the free-
energy of the best model, and (2) the topological distance by
Hd. Based on the estimated model-space of 10 subjects the dFe
and Hd shows a significant, but moderate correlation with a
coefficient of r = 0.3(p << 0.001). This is partly in line with the

hypothesis of Pyka et al. (2011), that the higher the log evidence
difference between models is, the higher the Hamming-distance
between them should be on any model-space. This indicates
the usefulness of topological model search methods that use the
negative free-energy as their fitness function. We also found
that in the BMR model-space this correlation between model
characteristics is even higher with r = 0.45(p << 0.001). The
main reason could be that with BMR every model is evaluated
around the same minima of free-energy, which is the full model
of the model-space.

3.3. Subject-Level Characterization of
Model Search Algorithms
Results for model search in the DCM model-space are shown
in Figure 4. Averaged statistics for the 10 subjects can be found
on the left side of Table 3. In our model-space the GA method
slightly outperformed the deterministic GES andGHDby finding
models having dFe 10.59 relative to the best model in average.
However, GA estimates 202 models, roughly twice as much as
GES (77) and GHD (118) until the algorithm finishes. Also,
the stochastic method tends to find models slightly closer in
structure, and having lower Hd (3.71) on average, than the two
deterministic approaches (4.28 for GES and 4.07 for GHD).

Using the implemented modifications to the original methods
we managed to exploit DCM’s ability to estimate every
connection strength parameter. For each of the three search
procedures, the implemented modifications succeed to improve
efficiency. Simply fixing parameters based on previously
estimated model posteriors the optimized GA’ method found
the best model multiple times and reached an average of 7.37
dFe. Furthermore, each optimized algorithm need to compute
significantly less models until convergence.

Searching through the model-space using BMR allows us to
compare the developed methods to the post-hoc model search
implemented in SPM. Results are shown on the right side of
Table 3. Interestingly, GES and GHD methods perform better in
the BMRmodel-space than the other methods, but the optimized
algorithms become unreliable. Fixing connectivity parameters in
the BMR space with the same criteria used in the DCM space does
not improve search efficiency. In terms of Hamming-distance, the
post-hocmethod finds the models closest to the best model in the
model-space estimated by BMR. As an example Figure 5 depicts
model search results for one subject over the joint distribution of
dFe and Hd in both the DCM and the BMR model-space.

3.4. Family Inference and Model Search
As a step toward group-level analysis, family-level inference is
drawn from groups of models over the population. In many cases
the models need to be estimated for selecting the winning family.
Model search methods may be useful to recover the properties
of families. Figure 6 shows the RFX model selection of all three
partitioning of themodel-space. In each case model search results
showed commonalities with the winning family. The GA, GHD,
and post-hoc model selection algorithms performed similarly
between 75 and 99% accuracy to match task-based modulation
patterns of the winning families.
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FIGURE 3 | Runtime comparison of DCM12 and ReDCM. We measured the average one-threaded computation runtime of the variational update cycles for both

implementations. The comparison was based on varying scan length (200, 400, 600, 800, 1,000, and 1,200 frames) of a DCM model with five regions of interest

(ROIs), and different model sizes (3, 5, and 7 ROIs) fitting fMRI data with scan length of 400 frames. There is a linear dependence between scan length and runtime,

however, computations are exponentially longer with higher model sizes.

TABLE 2 | Summary of runtime comparison.

3 regions 5 regions 7 regions

DCM12 ReDCM DCM12 ReDCM DCM12 ReDCM

200 scans 7.44 0.69 19.17 3.61 53.8 17.19

400 scans 14.57 1.19 37.01 7.76 97.5 33.52

600 scans 21.59 1.57 53.96 11.36 136.37 46.27

800 scans 28.26 1.94 72.62 14.71 189.02 63.35

1,000 scans 34.94 2.34 90.06 17.83 233.77 78.83

1,200 scans 42.48 2.78 107.04 21.17 272.53 91.84

All 18 synthetic models of different model size and varying scan length were estimated with both DCM12 and ReDCM. This table summarizes the running time of one iteration of the VL

algorithm in seconds during parameter estimation.

3.5. Model Search on Population-Level
PEB Model
We compared methods for searching among nested PEB
models using the automatic greedy method (denoted as BMR
in Figure 7) used in SPM and the three topological model
search algorithms. In the case of the group-level model we
initiated GES and GHD methods with the full model and GA
with randomized connectivity. As topological methods are not
suitable to search group commonalities (group mean) and LI
(differences) simultaneously, we only compared model structure
in the group mean effect. We found that BMR removed only the
modulatory effect of “Words” task on rdF self-inhibition. The
GES and GHD methods also removed this effect along with the
effect of “Pictures” on lvF. The GA method returned the full
model in each of the 10 performed runs.

4. DISCUSSION

Investigating the neuronal interactions between brain regions is
encumbered by several technical and methodological challenges.
Dynamic causal modeling provides a methodological framework
to estimate the influence of one region on another, while it also

allows us to test our hypothesis on model structure and to decide
which models are more plausible than others considering the
data. However, little is known about optimal strategies for model
search in DCM.

One major hindrance in this field is the high computational
demand that parameter estimation poses. To use the algorithm
for model search purposes, performance improvements are
required. Some solutions, available for fMRI (Aponte et al.,
2016) and EEG (Wang et al., 2013) data, use the graphical
processing unit (GPU) to perform matrix operations applied
frequently. These methods usually utilize an alternative
parameter estimation procedure to complement their massively
parallel nature. We decided to implement the exact DCM12
algorithm from SPM to achieve the same estimation results of
the posterior parameter densities as the original algorithm does.
Using ReDCM with high-performance computing techniques
we were also able to estimate all 10*65,536 models in acceptable
time. We make the database of the entire computed model-space
freely available for any research group to develop model search
methods and to further investigate the properties of the DCM
model-space. In this study, we separated the DCM model
estimation from a model search to facilitate the development of
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FIGURE 4 | Summary of model search results for topological search algorithms. The accumulated number of estimated models, the dFe and the Hamming-distance

of each of the three model search methods are displayed for all 20 runs on each of the 10 subject data. Box-and-whisker diagrams show the median, first and third

quartiles of search results with the 95% confidence interval of the median. The improved version of the algorithms needed significantly lower number of models to

calculate during search, with p < 0.001 for each algorithm.

TABLE 3 | Summary of model search results within the model-space estimated by DCM and BMR.

DCM BMR

Method dFe Hd N dFe Hd N

GES 13.79 (sd = 24.04) 4.28 (sd = 3.17) 77 0.24 (sd = 0.46) 4.30 (sd = 2.19) 81

GES′ 11.15 (sd = 15.64) 4.23 (sd = 2.77) 36 20.98 (sd = 47.32) 5.43 (sd = 2.64) 30

GHD 11.45 (sd = 15.24) 4.07 (sd = 3.37) 118 0.25 (sd = 0.43) 4.35 (sd = 2.30) 129

GHD′ 8.76 (sd = 11.94) 4.29 (sd = 2.60) 53 7.66 (sd = 26.42) 4.73 (sd = 2.44) 42

GA 10.59 (sd = 13.74) 3.71 (sd = 2.68) 202 0.74 (sd = 1.38) 4.22 (sd = 2.10) 185

GA′ 7.37 (sd = 10.27) 3.83 (sd = 2.46) 140 5.54 (sd = 19.75) 4.51 (sd = 2.24) 97

post-hoc 16.96 (sd = 18.61) 4.80 (sd = 2.30) NA 0.73 (sd = 0.54) 2.10 (sd = 1.66) NA

Model search algorithms are characterized based on statistical (Fe) and topological or structural (Hd) properties of the found models and the number of models needed (N) to be

estimated until model search converges. Statistics are acquired and averaged for 10 subjects and 20 runs of each method. We included mean dFe, Hd and their standard deviation.

Optimized modifications of the base algorithms are denoted as GES’, GHD’, and GA’. Bold text highlights the best performing method regarding mean dFe and Hd.

search algorithms. Looking up results of a previously estimated
model-space provides an efficient framework that developers of
model search methods can exploit for testing and optimizing
searching procedures.

Another crucial point of DCM is that Fe is only an
approximation of the log model evidence. As it estimates the
log-evidence of a model under a Laplace approximation, this
measure depends on prior parameter densities that are chosen
to ensure the VL algorithm to converge. Hence the prior
parameters of a model are defined by the structure of the model,
and careful consideration is needed when comparing models
with different numbers of connection parameters (Penny et al.,
2004). To address this problem, DCM minimizes the Kullback-
Leibler divergence (Kullback and Leibler, 1951) between the prior
density and the approximate posterior (Friston et al., 2007).
This measure can be seen as the complexity of the model and
is required to compare models with different structures. For

searching models, our methods used Fe to compare models
with different structures (and complexity), but we can also
obtain useful information from a model’s posterior connection
parameter estimates. Here we demonstrated that model search
algorithms can be improved by analyzing individual parameters
of a model besides considering their free-energy.

However, finding the one model with the highest Fe may
not be meaningful. Even if the best balance between model
fit and complexity is found and lower complexity models are
more preferred than dense model structures, we cannot be sure
whether the models are overfitting the data or not. In practice,
it is encouraged to form a hypothesis about a network feature,
and split the model-space into two (or more) groups or families
around the tested connectivity patterns. In this study we showed
that topological model search methods can successfully identify
patterns of the winning model family constructed by a priori
hypothesis about network structure.
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FIGURE 5 | The joint distribution density of dFe and Hd of an example subject. Joint density images reveal any topological structure over the model-space by

characterizing the distance between graph structure, as scored with the Hamming-distance, in terms of differences in model evidence or free-energy. The joint density

for the model-space estimated by DCM is shown on (A), and the distribution in the BMR space on (B). In cases where there are no relationship between topological

structure and model evidence, the joint distribution would look more evenly distributed over Hd in any range of dFe. In this shown example model structure appears to

be correlated to model evidence by r = 0.33 in the DCM model-space and by r = 0.68 in the BMR space. This reflects the assumption of Pyka et al. (2011), being

models with higher Fe are also close to the topological structure of the best model. On the (0,0) coordinates the best model of their corresponding space can be

found. Model search results are labeled according to their description. As the Bayesian post-hoc model selection is not available in the fully estimated DCM

model-space, we indicated the model with the same ID on both panels.

The model search algorithms we used to find the best model
are based on iteratively changing the structure of the models
to improve model fitting. This approach assumes that models
close to the best one in Fe are also close in structure (or
Hamming-distance in this case). This assumption holds to some
extent, but it is still unclear how free-energy and Hamming-
distance are distributed over an arbitrary dataset and how these
characteristics are related to each other. We found that these
methods can be applied to achieve useful models, although
they are not always reliable. A limitation of using topological
search algorithms, generally used for graph discovery, is the
questionable generalizability for any input data or different
model structures.

A method for post-hoc model selection, described in the
work by Friston and Penny (2011), finds an optimized reduction
for any base model using a greedy approach removing free
parameters from the model. While it efficiently and quickly
optimizes model evidence by reducing connection parameters
to shrinkage priors, it strictly remains in the Bayesian
framework without considering graph structural aspects of
network modeling. As the optimized models can violate model-
space restrictions we set, it should be used on subject-level
data with care. In most cases it means that even those
endogenous connections (i.e., self-connections) can be removed
from the model that are still modulated by any experimental
input. However, reenabling these parameters later for easier
interpretation or tomatchmodel-space restrictions moves results

from their local minima, reducing search efficiency compared
to topological methods. In contrast, the linear model of group-
level PEB can be efficiently reduced with BMR, while topological
methods are limited to search variations among parameters for
common group effects rather than all parameters for explanatory
variables within the PEB framework. For this reason BMR
on PEB models can be considered the ‘gold standard’ and
currently recommended way for group-level hypothesis testing
and network discovery method. To mitigate limitations for
structural issues one could extend model search algorithms to
search over PEB model parameters rather than model structures
defined by first-level DCMs.

In summary, we characterized three graph theory based
model search algorithms adapted for DCM and compared
their efficiency based on free-energy difference and Hamming-
distance relative to the best model in the model-space and the
number of estimated models during search. We included the
BMR-based post-hoc model selection in the comparison, and
discussed advantages and disadvantages of different approaches.
We found that topological algorithms often outperform analytic
(BMR) methods while searching for the optimal model structure
on the subject-level. Furthermore, each algorithm performs well
in finding models that share properties described by the winning
family in a family-wise model selection scheme. However,
topological methods reveal their limitations in searching through
nested PEB models, which confirms BMR to be the currently
recommended way to optimize group-level models. To develop
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FIGURE 6 | Family-wise inference and family matched by model search methods. The top row shows random effects (RFX) family-wise model selection results over a

group of subjects according to laterality, dorsoventral differences and task based differences. The bottom row shows percentage of model search results matching

each of the families. The genetic algorithm (GA), the greedy Hamming-distance search (GHD), and post-hoc (PH) methods have the highest chance to match

properties of the winning model family.

FIGURE 7 | Model search in group-level PEB. The BMR method removed only the modulatory effect of “Words” on the self-inhibition of rdF region. The GES and GHD

algorithms also removed the modulatory effect of “Pictures” from lvF self-connection. The GA method found the fully connected model each time regardless of the

initial model.

and test model search methods efficiently, we separated DCM
computations from generating model alternatives, replacing
model inversion with time efficient database lookups. We share
model-space data used in this study, and the ReDCM R package,
which reimplements deterministic bilinear DCM to support
high-performance computing facilities. We hope that our work
will help further studies of the DCM model-space and the
ReDCM package will be a useful contribution for Bayesian
inference in the field of neuroscience.
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