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Artificial intelligence (AI) transforms medical images into high-throughput mineable data.
Machine learning algorithms, which can be designed for modeling for lesion detection,
target segmentation, disease diagnosis, and prognosis prediction, have markedly
promoted precision medicine for clinical decision support. There has been a dramatic
increase in the number of articles, including articles on ultrasound with AI, published in only
a few years. Given the unique properties of ultrasound that differentiate it from other
imaging modalities, including real-time scanning, operator-dependence, and multi-
modality, readers should pay additional attention to assessing studies that rely on
ultrasound AI. This review offers the readers a targeted guide covering critical points
that can be used to identify strong and underpowered ultrasound AI studies.
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INTRODUCTION

By looking into pixels not readily visible to the human naked eyes, artificial intelligence (AI) has led
medical imaging into the era of big data (1). Articles using conventional machine learning (ML)
algorithms and deep learning, especially convolutional neural networks (CNN), have also become
more numerous over the past several years. Studies have reported the use of AI in X-rays,
computerized tomography (CT), magnetic resonance imaging (MRI), ultrasound, and other types
of scans, and they have reported superior performance of AI to that of conventional methods in
disease detection, characterization, and patient prognosis prediction (2–4).

Working groups of the Consolidated Standards of Reporting Trials-Artificial Intelligence
(CONSORT-AI) and the Standard Protocol Items: Recommendations for Interventional Trials-
Artificial Intelligence (SPIRIT-AI) have developed an extension to the core CONSORT 2010 items
and 2013 SPIRIT statement that serves as a guidance for medical AI studies (5, 6). Given the rapid
expansion of the literature published, JAMA has provided a reader’s guide to assessing clinical AI
articles (7), which reviewed the basics of machine learning and aspects of the clinical
implementation of AI. The editorial board of Radiology also highlighted several crucial
considerations meant to formalize AI methodology in medical imaging studies (8). However,
when AI is used with ultrasound, issues become complicated for the current existing guides.
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Ultrasound uses the reflection of the ultrasonic beam to reveal
tissue structure. It is one of the most widely used methods of
imaging in clinical practice. It serves as a mainstay in
obstetricians, cardiology, interventional therapy guidance and
post-treatment surveillance (9). Ultrasound-based radiomics
studies, called ultrasomics (10), follow the standard three-step
AI process for medical imaging: data preparation, model
development and testing, and evaluation of clinical
effectiveness (11). However, given ultrasound’s unique
properties of real-time scanning, operator-dependence, and
multi-modality, some specific issues may influence the
performance of AI models and the generalizability of a study’s
results. For example, operator dependence may influence the use
of expert-dataset-based model training to the resident-dataset-
based model testing and use in primary hospitals. In this
minireview, we aim to provide the readers with an overview of
how to assess medical imaging AI articles, including some
specific points regarding ultrasound AI studies.
OBJECTIVE: IS THE CLINICAL SCENARIO
CLEARLY DEFINED?

The objective of a medical imaging AI study should comply with
two principles: first, it must be derived from clinical practical
needs, and second, it must be applicable to AI technique. For
example, un-enhanced ultrasound is recommended for
monitoring populations at high risk of liver cancer (12), so it
would be a risk stratification tool. An unenhanced ultrasound AI
tool would ideally increase the detection rate of liver lesions and
assist in risk assessment. When transformed into AI tasks, target
recognition and classification are both technically feasible.
MATERIALS AND METHODS: IS THERE
AN INDEPENDENT TESTING DATASET
BESIDES THE TRAINING AND
VALIDATION SETS?

AI models are prone to overfitting. Both conventional ML and
CNN algorithms can vary greatly in performance across different
data sources (13). After a model is trained using the training set,
its hyperparameters must be tuned in the validation set (also
called the tuning set) for better generalizability. If multiple
models had been trained, the validation set could also be used
to select models. Once a model is finalized, its performance must
be evaluated in a testing set, which has no overlap with the
training or validation sets. Ideally, the testing set comes from
other centers, which involves data from different ultrasound
devices and vendors, and patients with different demographic
characteristics. A study that reports generalizable results in an
independent testing dataset would be much more valuable than a
study that relies on internal validation or single-dataset-based
cross-validation.
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MATERIALS AND METHODS: IS THE
IMAGE PROCESSING PROCEDURE
CLEARLY DESCRIBED?

A clear description of the image processing procedure is vital for
the assessment of study repeatability and reproducibility.
Readers should pay attention to the ultrasound data
acquisition process and the validity of the data range.
Questions below should be raised when acquiring such
information. Is the data collected retrospectively or
prospectively? Which modality does the study apply? Is it
radio frequency signal, grayscale, elastography, doppler
imaging, contrast-enhanced ultrasound (CEUS), or transferring
between modalities (14, 15)? Also, the number of pictures per
patient enrolled for the training or testing and whether the
patients’ clinical data are involved in the AI development
should be inspected.

In terms of ultrasound data preprocessing, each step should
be presented clearly. Ultrasound images are derived from various
devices produced by different radiologists. Ultrasound is highly
operator-dependent (16, 17), which causes variations in image
quality, target lesion identification, and selection of
representative sections. Cropping is widely adopted in image
processing in medical AI studies, and it filters out most
irrelevant, non-lesion information, and for the ultrasound,
reduces image heterogeneity by adjusting size and depth.
Augmentation can enrich data diversity, and it can simulate
the common causes of image heterogeneity as observed under
real-world conditions in ultrasound examinations (18, 19). For
example, resizing reduces resolution variation of different
devices, rotation simulates scanning from different angles and
sections, and contrast adjustment simulates variation in gain and
dynamic range.
MATERIALS AND METHODS: IS THE
ALGORITHM FOR MODELING SUITABLE?

Conventional ML algorithms such as logistic regression, support
vector machine (SVM), random forest, and Naïve Bayes have
much fewer parameters than deep learning algorithms. For
example, SVM has only 13 parameters to be adjusted, while
the ResNet-50 has an amount of 2.3×107 parameters. Thus,
conventional ML algorithms require far less training than deep
learning algorithms do (20). With a limited sample size, such as a
set of only hundreds of images (not videos), conventional ML
algorithms are preferred (21). However, with thousands or
millions of images, deep learning algorithms, principally CNN
in imaging analysis, are recommended. The minimum number
of training images needed varies across different tasks
and algorithms and may only be determined by evaluating
the relationship between its increase and changes in
model performance.

Algorithms’ clinical intelligibility, which means the level of
understandability of an algorithm in a clinical way, should also
be considered. There has not been any ultrasound-specific
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imaging analysis algorithms reported. Instead, model algorithm
selection is primarily based on the type of task. Ultrasound has
multiple modalities. CEUS videos record a lesion’s hemodynamic
information revealed by the dynamic perfusion of microbubble
contrast agents. Multi-phase image features can be extracted by
simply analyzing frames from each phase but the time
sequencing features were missing. Recurrent neural networks
(RNNs) such as long short-term memory (LSTM) or gated
recurrent units can be incorporated to these time-dimension-
related tasks (18). Previous studies using LSTM in CEUS
reported excellent performance (22, 23). The application of
clinically explicable AI algorithms to modeling renders the
study findings more clinically acceptable.
MATERIALS AND METHODS: IS THE AI
ALGORITHM PUBLICLY AVAILABLE?

Even being generalizable among different datasets in a given
study, especially for studies carried out in a single center, AI
performance still needs a broad verification. The existing public
medical imaging data sets are minimal (24), and no public
ultrasound dataset exists. Authors are encouraged to make
their AI models publicly available via such websites as GitHub
(https://github.com/) to allow independent validation, fine-
tuning, and updating. A study reporting publicly available AI
algorithms may improve its results’ reliability in this way.
RESULTS: HOW DO THE RESULTS
PRODUCED BY THE AI MODEL
COMPARE TO THOSE PRODUCED BY
EXPERT RADIOLOGISTS?

Medical AI must be evaluated against the performance of
radiology experts (8). The value of a prospectively designed AI
performance testing procedure can be determined by comparing
its performance to that of human experts under real-world
conditions. In retrospectively designed studies, missing data,
and data mismatch regarding the target lesion are unavoidable
in datasets collected from clinical practice, considering which is
beyond AI’s ability (25). Radiologists make ultrasound diagnosis
in real time during face-to-face examinations, where they receive
far more information than retrospective image review does. The
common study design usually underestimates radiologists’
performance and renders meaningful evaluation of medical
AI difficult.

Combing clinician experience and AI’s advantages can render
imaging more efficient and accurate than either alone (26).
Because ultrasound offers diagnosis in real time and is heavily
dependent on the operator, ultrasound AI’s performance should
be compared to that of radiologists with varied experiences to
develop a viable human-AI interaction strategy (27). Ideally, this
strategy would involve dynamic assessment during an ultrasound
Frontiers in Oncology | www.frontiersin.org 3
examination. A specific application scenario based AI developing
and testing study would have considerable practical value.
RESULTS: ARE THE EVALUATION
INDEXES SUITABLE?

For detection and classification purposes, an AI model is first
evaluated by the receiver operating characteristic curve (ROC) or
precision-recall curve (PRC), and further by its accuracy, error
rate or F1 value. However, in medical imaging analysis programs,
performance is assessed based on indicators of clinical
significance, such as sensitivity and specificity for diagnosis
and prediction programs (28, 29), detection rate for disease
screening and lesion detection (30, 31), k and dice coefficient
for inter-annotator agreement and overlapping in radiotherapy
planning (32, 33). For example, for a screening task model,
detection rate and sensitivity would be the primary indexes for
model evaluation, while for diagnostic tasks, high specificity or
positive predictive value would be the top priority. A specifically
preferred high evaluation index can be achieved using an
appropriate cutoff value for AI outputs but not necessarily by
the default of 0.5 or the Youden index.
DISCUSSION: ARE THE
RESULTS COMPARED TO
STATE-OF-ART REPORTS?

AI results should be compared to state-of-art reports, both the
previous studies of the same design and these using other imaging
modalities, traditional methods, or guideline recommendations.
Readers should keep in mind that results without independent
tests or internally validated results are not comparable to studies
reporting independently tested results, no matter how good the
statistics are relative to state-of-art results. A well-designed study
with practical results is much more valuable than studies with
flawed design but with good statistical results.
DISCUSSION: WHAT IS THE UNSOLVED
PROBLEM OF THE PRESENT WORK?

Limitations of medical AI studies are often the challenge of future
work. For example, what situation wouldn’t the AI system be
implemented when considering that AI performance errors and
failure cases could influence clinical practice decision-making?
What are the latent factors keeping AI systems from generalizing
to other centers and populations, given the hardware requirements,
algorithm versions, data quality, and processing procedures? How
can these be solved in further study? Is the sample size large enough
to build a robust model? The relationship between the training
dataset size and model performance should be evaluated, as
Dunnmon et al. (34) in the research reporting that the AI
performance benefited little after a certain number of images were
used for training.
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CONCLUSION

Given ultrasound’s unique properties, readers should pay additional
attention when assessing an AI study that relies on ultrasound than
those that rely on other imaging modalities. Here, we list several
crucial points to help readers distinguish strong ultrasound AI
articles from underpowered articles. With more formalized
standards for medical AI studies published in the future,
ultrasound AI studies may better benefit the clinical practice.
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