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Protective Mechanism of Humanin
Against Oxidative Stress in Aging-
Related Cardiovascular Diseases
He Cai , Yunxia Liu , Hongbo Men and Yang Zheng*

The Cardiovascular Center, First Hospital of Jilin University, Changchun, China

Physiological reactive oxygen species (ROS) are important regulators of intercellular signal
transduction. Oxidative and antioxidation systems maintain a dynamic balance under
physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to
oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related
cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart
failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation
in mitochondria is the main source of ROS. Increasing evidence demonstrates the
relationship between ACVD and humanin (HN), an endogenous peptide encoded by
mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from
oxidative stress, highlighting its protective role in atherosclerosis, ischemia–reperfusion
injury, and heart failure. Herein, we reviewed the signaling pathways associated with the
HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/
nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA),
c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK),
adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-
kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator
of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox
signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug
for ACVD.

Keywords: humanin, oxidative stress, aging-related cardiovascular diseases, redox signaling pathways,
metabolic abnormalities
INTRODUCTION

With the increase of an aging population, aging-related cardiovascular diseases (ACVDs) confer a
heavy economic burden on society (1, 2). Oxidative stress is involved in the pathogenesis of ACVD
(3–5), such as atherosclerosis (6), myocardial infarction (7), and heart failure (8), by contributing to
apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source
of reactive oxygen species (ROS). Increased ROS levels destroy the dynamic balance between
oxidative and antioxidation systems, leading to oxidative stress damage. Thus, suppressing ROS
generation is a potential strategy for the treatment of ACVD.
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Humanin (HN), an endogenous active peptide encoded by
mitochondrial DNA, has been shown to be related to ACVD (9)
(1): the serum HN level negatively correlates with age (10, 11);
(2) HN reduced H2O2-induced oxidative stress damage in
myocardial cells and isolated myocardial mitochondria by
promoting the expression of antioxidant defense system
proteins (12) and inhibiting the activity of complexes I and III
of the electron transport chain (13); (3) HN reduced ROS
production, protecting endothelial cells from oxidative stress
damage induced by abnormal glycolipid metabolism (14–16);
(4) HN restored chaperone-mediated autophagy (CMA) by
regulating heat shock protein 90 (Hsp90) and decreasing ROS
production, thereby protecting cardiomyocytes and fibroblasts
from oxidative stress damage (17); (5) HN upregulates the
expression of antioxidant enzymes, preserving the heart
function after myocardial infarction in an ischemia–
reperfusion injury model by reducing myocardial cell death
and the area of myocardial infarction (18–20). Of note, there
are only a few studies that investigated the redox signaling
pathways associated with HN. Moreover, there is no detailed
review about the redox signaling pathways involving HN in
ACVD. Herein, we reviewed the regulation of HN expression
and the main downstream signaling pathways involved in
oxidative stress and discussed the relationship among HN, the
redox signaling pathways, and ACVD. Finally, we propose that
HN may be a candidate drug for ACVD.
THE ORIGIN AND FUNCTIONS OF HN

Mitochondrial DNA encodes mitochondria-derived peptides
(MDPs). MDPs include HN, mitochondrial ORF of the twelve
S c (MOTS-c), and small humanin-like peptides (SHLPs) 1–6.
HN was first discovered in patients with Alzheimer’s disease
(AD). HN suppresses neuronal cell death, suggesting it may be a
candidate drug for AD (21, 22). HN is transcribed from a 75-bp
open reading frame sequence of the large 16S mitochondrial
ribosomal RNA (rRNA) in the cytoplasm, generating a 24-
amino-acid peptide with the sequence, Met-Ala-Pro-Arg-Gly-
Phe-Ser-Cys-Leu-Leu-Leu-Leu-Thr-Ser-Glu-Ile-Asp-Leu-Pro-
Val-Lys-Arg-Arg-Ala (22–24). However, HN mRNA is
translated into a 21-amino-acid peptide in mitochondria,
without the last three amino acid residues found in the HN
translated in the cytoplasm. Notably, both variants contain basic
amino acids in the N-terminal and C-terminal with similar
functions (21, 25, 26). HN mediates a variety of intracellular
and extracellular signaling pathways and plays multiple
protection functions. It inhibits the translocation of
proapoptotic proteins, such as Bax, Bid, and tBid, into
mitochondria by binding to them. Furthermore, HN
suppresses cytochrome C release and the formation of
apoptotic bodies, thereby inhibiting mitochondria-dependent
apoptosis (27, 28). The Golgi apparatus and endoplasmic
reticulum are required for HN release (22), and released HN
binds to two kinds of receptors on the cell membrane, the cell
membrane trimer comprising CNTFR, WSX-1, and the 130-kDa
Frontiers in Endocrinology | www.frontiersin.org 2
gp130, and formyl peptide receptor-like 1 (FPRL1) (29, 30). After
binding to the trimer receptor: (1) HN activates AMP-activated
protein kinase (AMPK), further suppressing the mammalian
target of rapamycin (mTOR) and nuclear factor kappa B
(NF-kB) signal ing pathways; (2) HN activates the
phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)-
Janus kinase 2 (JAK2)/signal transducer and activator of
transcription 3 (STAT3) signaling pathway; and (3) HN
inhibits the c-jun NH2 terminal kinase (JNK)/p38 mitogen-
activated protein kinase (MAPK) signaling pathways,
protecting cellular and mitochondrial functions (31–37).
Moreover, HN activates FPRL1 receptor and extracellular
signal-regulated kinases (ERK1/2) (30). HN has many
protective functions, such as anti-aging, inhibition of
myocardial fibrosis, regulation of mitochondrial homeostasis,
anti-inflammation, improving metabolism, regulation of the
redox system, and autophagy promotion. It protects the retinal
segment epithelium from oxidative stress-induced aging (38) and
inhibits myocardial fibrosis in aged mice (39). HN promotes
mitochondrial biogenesis and regulates mitochondrial
homeostasis (40) and it decreases the expression of tumor
necrosis factor alpha (TNF-a), interleukin (IL)-1b, and IL-6, to
inhibit inflammation (41). Additionally, HN has potential in the
treatment of diabetes by improving b-cell survival (32),
promoting insulin secretion (42), and improving insulin
resistance (10). HN also promotes chaperone-mediated
autophagy (17), decreases ROS production, promotes the
expression of antioxidant proteins and maintains the redox
system balance (12).
HN AND OXIDATIVE STRESS

Regulation of HN Expression Under
Oxidative Stress
Oxidative stress contributes to ischemia–reperfusion injury (43).
The expressionofHN is increased after ischemia–reperfusion injury
in mice, indicating the association of HN expression with oxidative
stress (44). HN levels in the skeletal muscle and in the plasma of
humans and mice negatively correlate with the increase in age (10,
45). HN levels in the peripheral blood are regulated by insulin-like
growth factor (IGF) and IGF-binding protein (IGFBP). IGFBP-3 is
the main component of IGFBP in the peripheral blood, with high
affinity toHN(46, 47). Thedecrease inHNin theperipheral bloodof
AD patients suggests that HN in the peripheral blood may have
protective effects on the nervous system (48). IGFBP-3 may
transport HN through the blood–brain barrier, thereby reducing
ROS production and further protecting nerve cells (49, 50). Growth
hormone down-regulates HN levels in the peripheral blood through
high expression of IGF-1 (51). Mitochondrial stressors, such as
serum deprivation and chemotherapeutic drugs, can increase HN
expression (52–54). In contrast, antiapoptotic factors decrease HN
expression. Tripartite motif protein 11 (TRIM11) degrades
intracellular HN through the proteasome pathway (49, 55).
Therefore, HN levels under oxidative stress may be regulated by
increasing IGFBP-3 levels or inhibiting IGF-1 levels (Figure 1).
June 2021 | Volume 12 | Article 683151
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HN Regulates Redox Signaling Pathways
HN promotes the expression of antioxidant enzymes that inhibit
ROS production through intracellular and/or extracellular
pathways (56, 57). Intracellularly, (1) HN protects mitochondrial
function by inhibiting electron transport chain complexes I and III
and decreasing ROS formation; (2) HN activates the Kelch-like
ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-
related factor 2 (Nrf2) signaling pathway and the expression of
antioxidant stress elements of nuclear genes through the reverse
signal transduction between mitochondria and nuclei; (3) HN
activates CMA through HSP90, promoting the absorption of
oxidation products and further reducing ROS production.
Extracellularly, HN binds to receptors on the cell membrane,
triggering downstream signaling pathways, including the JNK/p38
MAPK, AMPK, and PI3K/AKT-JAK2/STAT3 signaling pathways,
thereby promoting autophagy, reducing ROS production, and
protecting the function of cells and mitochondria (Table 1).
Understanding these signaling pathways is essential for
understanding the antioxidant effect of HN in ACVD

HN Regulates the Expression of the Keap1/Nrf2
Signaling Pathway Through Mitochondria-Nuclear
Retrograde Signal Transduction
Nrf2 is a redox-sensitive transcription regulator found in various
cells. Under physiological conditions, Keap1 promotes the
ubiquitination and proteasome degradation of Nrf2. Under
Frontiers in Endocrinology | www.frontiersin.org 3
oxidative stress, the conformation of Keap1 is changed by cysteine
sulfhydryl modification. Moreover, autophagic degradation of
Keap1 is promoted by autophagy-related proteins, thereby
increasing free Nrf2 levels in the cytoplasm. After being
transferred to the nucleus, Nrf2 binds to antioxidant response
elements (AREs), enhancing the expression of antioxidant genes
(63, 64). Of note, increased age is associated with decreased Nrf2
stability and reduced antioxidant capacity under oxidative stress (65,
66). Additionally, mitochondria can regulate the expression of
nuclear genes through the mitochondria-nuclear retrograde signal
transduction pathway. In response to oxidative stress, mitochondria
adapt by changing protein expression, resulting in the
mitochondrial unfolded protein response (UPRmt) (67, 68).
UPRmt regulates the expression of nuclear antioxidant genes
through the mitochondria-nuclear retrograde signal transduction
pathway. UPRmt can be triggered by excessive protein misfolding
(67), inhibition of mitochondrial transcription and translation (69),
impaired electron transport chain activity, and increased ROS levels
(70). Under physiological conditions, the N-terminal of activating
transcription factor associated with stress 1 (ATFS-1)/activating
transcription factor 5 (ATF5), which is a mitochondria-targeting
signal, efficiently mediates the import of ATF5 into the
mitochondria. In contrast, the ATF5 import efficiency of
mitochondria decreases when they are under stress. The C-
terminal of ATFS-1/ATF5 acts as nuclear localization signal,
enhancing the ATFS-1/ATF5 import into the nucleus, which
FIGURE 1 | Regulation of HN expression under oxidative stress. HN levels in peripheral blood are regulated by IGF and IGFBP. IGFBP-3 is the main component of
IGFBP in peripheral blood, with high affinity to HN. IGFBP-3 may transport HN through the blood–brain barrier (Blue dotted arrow), thereby reducing ROS and further
protecting nerve cells. Growth hormone down-regulates HN levels in peripheral blood through the high expression of IGF-1. Mitochondrial stressors, such as serum
deprivation and chemotherapeutic drugs, increase HN expressions. Anti-apoptotic factors decrease HN expressions. HN levels under oxidative stress may be
regulated by increasing IGFBP-3 levels or inhibiting IGF-1 levels.
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promotes the expression of antioxidant enzyme genes in the
nucleus, the synthesis of mitochondrial polypeptides, and the
recovery of mitochondrial function (71, 72). MOTS-c was the first
mitochondrial polypeptide found to regulate nuclear gene
expression through a retrograde signal transduction pathway (73).
A recent study revealed that HN activates the expression of nuclear
antioxidant genes through the Keap1/Nrf2 signaling pathway. In
this study, patients with polycystic ovary syndrome were
investigated, and a rat model of polycystic ovary syndrome was
established. Compared with the control group, the expression of
superoxide dismutase (SOD), catalase (CAT), heme oxygenase 1
(HO-1), NADPH quinine oxidoreductase 1 (NQO1), and Nrf2 in
the serum, ovarian tissue, and a human ovarian cell line increased;
the level of ROS and Keap1 decreased in the group that was treated
with the HN analog, HNG (58). Moreover, in a mouse AD model,
HNG reduced p62 expression, upregulated autophagy-activating
kinase 1, restored the function of cathepsin D, and promoted
autophagy in mouse hippocampus tissues. Because Keap1 is
ubiquitinated in a p62-dependent manner, it is speculated that
HN does not degrade Keap1 by promoting autophagy. Whether
HN activates Nrf2 by affecting the conformation of Keap1 needs
further study (74, 75) (Figure 2).

HN and Autophagy Signaling Pathways
Autophagy depends on lysosomal catabolism, which is one of the
degradation processes for products of oxidative stress.
Autophagy is classified into macroautophagy, microautophagy,
and CMA (76, 77). In CMA, the cytosolic heat shock cognate
chaperone of 70 kD (HSC70) is involved in recognizing substrate
proteins containing a pentapeptide motif, forming a substrate–
chaperone complex. The complex is then recognized by
lysosome-associated membrane protein type 2A (LAMP-2A),
contributing to the transformation of single-span LAMP-2A into
a multimeric translocation complex (78, 79). HSP90 at the
cytosolic side of the lysosomal membrane facilitates the
substrate binding, enhancing the stability of LAMP-2A in
the transformation from the monomeric to the multimeric
form (78, 79). The luminal chaperone, Lys-HSC70, assists the
delivery of the substrates into the lysosome after formation of the
translocation complex. Interestingly, oxidative stress and
hypoxia are the classical stimulators of oxidation-induced
CMA activation that removes oxidized proteins to restore cell
homeostasis (80). Impaired CMA leads to the accumulation of
oxidative products, increasing oxidative stress damage (81, 82).
However, CMA function decreases with age, suggesting a
negative association between aging and the antioxidative stress
ability (83). Thus, improving the CMA function may be a
strategy for treating oxidative stress-related diseases in
older adults.

Intriguingly, HN is an endogenous activator of CMA in a
dose-dependent manner. One study found that HN protected
cells from oxidative stress. This study used NIH3T3 mouse
fibroblasts, H9C2 cardiomyoblasts, and MN9D dopaminergic
neuronal cells. When oxidative stress was induced, Hsc70
recognized the oxidized protein (substrate), transported it to
the lysosomal membrane, and bound to LAMP-2A receptor on
the lysosomal membrane. Furthermore, endogenous HN, which
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is located on the cytoplasmic side of the lysosomal membrane,
stabilized the binding of the substrate and the lysosome through
Hsp90. With the help of lysosomal cavity chaperone (Lys-
Hsc70), the substrate was transported to the lysosomal body
and the oxidized protein was removed to maintain cell stability.
Thereby, the cell damage caused by oxidative stress was reduced.
Moreover, exogenous HNG enhanced the Hsp90-mediated
binding of the substrate to the lysosome, upregulated CMA,
and reduced oxidative stress damage (17).

Cathepsin D is also implicated in the HN involvement in
autophagic degradation. Cathepsin D, as an intracellular
lysosomal restriction inhibitor, is an aspartic protease and
cysteine cathepsin. Gly-14 HN restores the activity of cathepsin
D through FPRL1, promotes the autophagic degradation of
oxidized low-density lipoprotein (ox-LDL) in endothelial cells,
reduces the ox-LDL-induced oxidative stress injury of
endothelial cells, and decreases the lipid and cholesterol
accumulation in endothelial cells (59) (Figure 3).

HN and the JNK/p38 MAPK Signaling Pathways
Mitogen-activated protein kinases (MAPKs), including ERK1/2,
JNK, and p38 MAPK, are evolutionarily conserved enzymes that
connect cell surface receptors and intracellular regulatory targets
(84, 85). MAPK inhibition protects cells from oxidative stress (86).
Previous studies have found that HN protected neurons by
inhibiting JNK and p38 MAPK (87–89). Furthermore, H2O2 was
used to establish an oxidative stress damage model in the murine
osteoblast cell line, MC3T3-E1; in this model the HN analog,
Frontiers in Endocrinology | www.frontiersin.org 5
HNGF6A, decreased ROS production and cell damage caused by
oxidative stress by inhibiting JNK and p38 MAPK phosphorylation
(60). In another study using the N-methyl-D-aspartate (NMDA)-
mediated excitotoxicity model of cortical neurons in vitro, HN
reduced the release of lactate dehydrogenase, reduced the level of
intracellular calcium, inhibited the activation of JNK and p38
MAPK, reduced ROS production by 45.7%, and reduced the
oxidative stress injury. The antioxidant mechanism of HN
depended on the level of intracellular calcium. Calcium overload
leads to increased ROS production, which aggravates the calcium
overload. HN weakens the intracellular Ca2+ influx, inhibiting the
calcium overload and promoting cell survival, indicating that
reducing intracellular calcium levels is also required for the HN
regulation of JNK and p38 MAPK (37) (Figure 4).

HN and the AMPK Signaling Pathway
AMPK is involved in the antioxidation effect of HN. AMPK is
one of the cell energy sensors in eukaryotic organisms (90);
decreased ATP levels activate AMPK, upregulating energy
metabolism (90, 91). AMPK keeps cellular metabolic
homeostasis by regulating mitochondrial ROS production (92).
Interestingly, mitochondria-derived ROS activate AMPK
indirectly (93). Compared with wild type mice, increased
superoxide and mitochondrial superoxide levels were observed
in the aorta of AMPK-knockout mice (94). Receptor activator of
NF-kB ligand (RANKL) induced differentiation of mouse bone
marrow cells, leading to decreased AMPK phosphorylation and
increased ROS levels. It has been shown that HN increased
FIGURE 2 | Regulation of HN on Keap1/Nrf2 signaling pathway under oxidative stress. HN promotes Keap1 degradation and release of Nrf2. Under stress
conditions, HN inhibits the expression of Keap1, promotes the dissociation of Nrf2 and Keap1, activates the expression of antioxidant genes (SOD, CAD, HO-1,
NQO1), and protects mitochondria from oxidative stress damage. Stress also triggers UPRmt, promotes the expression of antioxidant genes and the recovery of
mitochondrial function, further promoting the formation of HN.
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FIGURE 3 | Regulation of HN on CMA under oxidative stress. Under oxidative stress, Hsc70 recognizes the oxidized protein (substrate), transports it to lysosomal
membrane, and binds to LAMP-2 receptor on lysosomal membrane. The endogenous HN located in lysosomal membrane cytoplasmic assay stabilizes the binding
of substrate and lysosome through Hsp90, and transports the substrate to lysosomal body with the assistance of Lys-Hsc70 to remove oxidized protein. Exogenous
supplement of HNG enhances the binding of substrate and lysosome mediated by Hsp90, up-regulates CMA and further reduces oxidative stress damage. HN
restores the activity of cathepsin D through FPRL1, promotes autophagy and reduces the production of ROS.
FIGURE 4 | Regulation of HN on MAPKs, PI3K/AKT, and JAK2/STAT3 under oxidative stress. HN inhibits intracellular Ca2+ influx, inhibits ROS formation, activates
MAPKs inhibitors, inhibits the activation of JNK and p38 MAPK, and reduces oxidative stress damage; HN activates the PI3K/Akt signaling pathway, which further
activates the downstream JAK2/STAT3 signaling pathway, promotes the expression of antioxidant protein, reduces the level of ROS, and reduces the oxidative
stress damage.
Frontiers in Endocrinology | www.frontiersin.org June 2021 | Volume 12 | Article 6831516
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AMPK phosphorylation and inhibited the NF-kB pathway,
decreasing ROS production and enhancing cell activity (36).
HN also inhibited oxidative stress damage in aortic endothelial
cells induced by high free fatty acids by activating AMPK.
Furthermore, HN reduced the expression of NADPH oxidase 2
(NOX2) and ROS production, inhibited the activation of the
inflammatory body, Nod‐like receptor family protein 3 (NLRP3),
and thereby protected endothelial cells from oxidative stress
damage. NOX2 is the enzyme dedicated to ROS production. It
has been demonstrated that HN inhibited ROS production by
inhibiting NOX2 (61). AMPK and mTOR play a key role in cell
energy metabolism and cell survival. mTOR is a highly conserved
serine/threonine kinase, which is involved in regulating cell
survival and cell metabolism. mTOR has been reported to play
a pathogenic role in insulin resistance and adipogenesis in several
cell types. By increasing AMPK phosphorylation, HN inhibited
mTOR and regulatory element binding protein 1 (SREBP1) to
improve insulin resistance and reduce ROS production
(35) (Figure 5).

HN and the PI3K/AKT, JAK2/STAT3
Signaling Pathways
The JAK2/STAT3 cascade, which is regulated by PI3K/AKT,
plays a key role in cell proliferation, anti-apoptosis, anti-aging,
cancer development and migration (33, 95, 96). Under oxidative
stress, JAK2/STAT3 activity decreases and ROS production
increases, leading to increased mitochondrial membrane
Frontiers in Endocrinology | www.frontiersin.org 7
permeability and cell apoptosis (97). Previous studies have
found that HN reactivates the JAK2/STAT3 signaling pathway
through the PI3K/Akt pathway, which plays a neuroprotective
role (38, 98). Recently, HN has also been shown to reactivate
JAK2/STAT3 through the PI3K/Akt signaling pathway to reduce
oxidative stress. Furthermore, the neuroblastoma cell line, SH-
SY5Y, was used to establish an oxygen/glucose deprivation/
reoxygenation (OGD/R) model in vitro. In this model, the
JAK2/STAT3 signaling pathway was inhibited, the intracellular
malondialdehyde (MDA) level increased, and the SOD level
decreased. After HNG intervention, the JAK2/STAT3 signaling
pathway was activated, the SOD level increased, and the MDA
level decreased. Application of HNG + PI3K/Akt inhibitor
decreased the levels of JAK2 and STAT3, indicating that the
PI3K/Akt inhibitor completely counteracted the activation of the
JAK2/STAT3 signaling pathway by HN and suppressed
the protective effect of HN (62) (Figure 4).
HN REGULATION OF THE REDOX
SYSTEM IN ACVD

HN has protective effects against a variety of cardiovascular
diseases, including atherosclerosis (99, 100), acute myocardial
infarction, myocardial ischemia–reperfusion injury (45, 99, 101),
and myocardium aging (10, 39, 98). The mechanisms of these
protective effects all involve oxidative stress (Figure 6).
FIGURE 5 | Regulation of HN on AMPK/mTOR under oxidative stress. HN up-regulates the phosphorylation of AMPK, activates eNOS, inhibits mTOR, NOX2 and
NF-kB, to reduce the production of ROS, improve endothelial function.
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Arteriosclerosis
Atherosclerosis is an age-related disease. HN and its potent
analogs have beneficial effects against age-related diseases (23).
Endothelial dysfunction contributes to atherosclerosis (102).
Importantly, HN improves endothelial dysfunction through
antioxidation, because (1) HN inhibits NOX2, thereby
decreasing mitochondrial ROS production; (2) NLRP3
inflammasome activated by mitochondrial ROS leads to
endothelial injury; however, HN inhibits the activation of
NLRP3 inflammasome by activating AMPK (61).

Hypercholesterolemia is involved in atherosclerosis because
ox-LDL infiltrates the subendothelium to form atherosclerotic
plaques after endothelial cell injury (103). However, HN
prevents the progression of atherosclerotic plaques in
hypercholesterolemic mice with apolipoprotein E (APOE)
deficiency by reducing the level of nitrotyrosine (NT) and
increasing the expression of endothelial nitric oxide synthase
(eNOS), which are involved in oxidative stress (14). Ox-LDL is
formed by ROS-related oxidation of LDL, ultimately promoting
the formation and progression of atherosclerotic plaques by
increasing lipid and cholesterol accumulation. Ox-LDL increases
the expression of p62 and LC3-II and inhibits the function of
cathepsin D activity. HN inhibits the ox-LDL-induced lipid and
cholesterol accumulation by decreasing the LC3-II and p62 levels
and restoring the ox-LDL-induced cathepsin D functional
impairment, thereby reducing the formation of atherosclerotic
plaques (45, 104). Lectin-like oxidized low-density lipoprotein-1
(LOX-1) is the main receptor involved in absorption of ox-LDL by
endothelial cells. LOX-1 mediates the binding, internalization, and
proteolytic degradation of ox-LDL by endothelial cells (105, 106).
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The HNG-induced decrease in LOX-1 protein expression also
contributes to the inhibition of the formation and progression of
atherosclerotic plaques (15).

High glucose levels are also implicated in atherosclerosis,
leading to endothelial dysfunction. High glucose increases ROS
production and the expression of pro-inflammatory factors
(tumor necrosis factor-a and IL-1b), further promoting
endothelial cells to produce vascular cell adhesion molecule-1
(VCAM-1) and E-selectin. VCAM-1 and E-selectin mediate the
adhesion of circulating leukocytes to the endothelium, leading to
atherosclerosis development. Kruppel-like factor 2 (KLF2) is
involved in endothelial dysfunction induced by high glucose.
HN upregulates the KLF2 gene expression, inhibiting monocyte
adhesion to endothelial cells (107).

Coronary Heart Disease and Heart Failure
Oxidative stress is also involved in the pathogenesis of acute
myocardial infarction and ischemia–reperfusion injury. HN
protects cardiomyocytes from apoptosis through the
antioxidation pathway, reducing the myocardial infarction size
and improving cardiac function (108). HN also reduces the
necrosis area of myocardial infarction and improves the
cardiac function after myocardial infarction by reducing ROS
production, which protects the function of myocardial
mitochondria (18, 19). HN has been shown to protect isolated
myocardial mitochondria from H2O2-induced oxidative stress.
HN increased the levels of GSH, GPX, and SOD, reversing
myocardial ischemia–reperfusion injury (12, 20). HNG
upregulated the Akt/glycogen synthase kinase-3b pathway and
inhibited myocardial fibrosis in aged mice (39). It has been found
FIGURE 6 | Regulation of HN on redox system in ACVD. HN activates AMPK and PI3K/AKT, JAK2/STAT3 signaling pathways, induces CMA, promotes Nrf2
release, and inhibits JNK/p38MAPK pathway, inhibits oxidative stress damage and ACVD (inside the box: the red font represents the future research direction, the
blue thick arrow represents the influence of HN on the five signal pathways, and other signs form a signal network).
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that Nrf2 and Keap1 are necessary for increasing the expression
of SOD, CAT, GPX, and GSH. HN may promote the activation
of Nrf2 by inhibiting the expression of Keap1 during myocardial
infarction (58). In addition, the population study found that
compared with normal people, the level of humanin in patients
with coronary heart disease decreased and the level of lactic
acid increased, suggesting that the protective effect of humanin
on cardiovascular system is through antioxidant effect
(100). Humanin is positively correlated with coronary artery
endothelial function, which may be a target for the treatment of
coronary heart disease in the future (99).

Heart failure is the most common complication of myocardial
infarction. HN has been shown to decrease the incidence rate of
heart failure by inhibiting myocardial hypertrophy (108).
Endonuclease G deficiency induces cardiomyocyte hypertrophy
by increasing ROS production. Intriguingly, HN has been
demonstrated to inhibit cardiomyocyte hypertrophy induced
by endonuclease G deficiency (109).
RELATIONSHIP BETWEEN REDOX
SIGNALING PATHWAYS AND ACVD

HN reduces oxidative stress through the five above mentioned
signaling pathways. These signaling pathways interact with each
other and form a network, which is related to ACVD (Figure 6).
One study has found that Nrf2 deficiency led to aging of human
aortic endothelium and mouse aortic endothelium. The aging
process was related to autophagy damage. Upregulation of Nrf2
by inhibiting Keap1 activated autophagy and inhibited aging
(110). Furthermore, Keap1 upregulation and of Nrf2 inhibition
led to oxidative stress damage and aging of vascular smooth
muscle cells (111). In a D-galactose-induced mouse aging model,
Keap1 expression increased, Nrf2 expression decreased, and ROS
production increased (112). Nrf2 inhibits JNK phosphorylation,
stabilizes mitochondrial function integrity, and reduces oxidative
stress damage (113). In the aging heart, the activation of AMPK
and autophagy is impaired. Activation of AMPK induces
autophagy, inhibits cardiomyocyte aging, and protects aging
myocardium from oxidative stress (114, 115). AMPK activates
autophagy by inhibiting mTOR or phosphorylated UKL1 (116),
and it activates Nrf2 and protects the myocardium from
oxidative stress induced by high glucose (117). AMPK also
reduces oxidative stress injury by activating AKT2/Nrf2 (118).
Activation of PI3K/AKT by AMPK protects the myocardium
from ischemia–reperfusion (I–R) injury (119). Therefore, AMPK
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is another target for inhibiting myocardial aging (114).
Activation of the JAK2/STAT3 signaling pathway inhibits
ventricular remodeling after myocardial infarction (120, 121),
and it protects the aging heart from I–R injury (122). The JAK2/
STAT3 signaling pathway also inhibits cardiomyocyte apoptosis
by activating autophagy (123). JNK is the upstream regulator of
JAK2/STAT3. Inhibition of JNK activates JAK2/STAT3 and
protects the myocardium from oxidative stress induced by high
free fatty acids (124). Upregulation of p38 MAPK/JNK
phosphorylation promoted NF-kB translocation to the nucleus,
induced aging, and aggravated myocardial injury (125).
Inhibition of p38 MAPK and JNK phosphorylation protected
the heart from oxidative stress injury in aged rats (126). PI3K/
Akt inhibits MAPK and NF-kB activation, thereby protecting
cardiomyocytes from injury (127, 128). PI3K/Akt inhibits mTOR
and protects the myocardium from oxidative stress (129).
However, there are few studies on the mechanism of HN and
cardiac aging. It is necessary to explore whether HN exerts its
anti-aging effects on the cardiovascular system through the above
signaling pathways’ network.
CONCLUDING REMARKS
AND PROSPECT

Herein, we reviewed the signaling pathways associated with the
HN effects against oxidative stress, including the Keap1/Nrf2, the
autophagy, the JNK/p38 MAPK, the AMPK, the PI3K/Akt, and
the JAK2/STAT3 signaling pathways. We then summarized the
relationship among HN, the redox signaling pathways, and
ACVD, and pointed out the future research direction for HN
and ACVD. Finally, HN may be the target for ACVD treatment
by reducing oxidative stress.
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