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The gold standard to diagnose intracerebral lesions after traumatic brain injury (TBI)

is computed tomography (CT) scan, and due to its accessibility and improved

quality of images, the global burden of CT scan for TBI patients is increasing.

The recent developments of automated determination of traumatic brain lesions and

medical-decision process using artificial intelligence (AI) represent opportunities to help

clinicians in screening more patients, identifying the nature and volume of lesions and

estimating the patient outcome. This short review will summarize what is ongoing with

the use of AI and CT scan for patients with TBI.

Keywords: traumatic brain injury, artificial intelligence, computed tomography, segmentation,

classification, review

1. INTRODUCTION

Traumatic brain injury (TBI) is a leading cause of death and disability in young people. It affects
more than one European in 400 (1). It therefore has a strong human and financial impact on society
(2). If the initial aggression induces primary lesions that are instantaneous and unavoidable, it can
also cause delayed lesions, named secondary injuries, which strongly influence the neurological
outcome. Therefore, the critical care management of TBI patients is to limit secondary brain
injuries with therapies that are adapted to patients’ severity (3).

Assessment of severity of TBI relies on clinical examination and initial brain imaging. Clinical
examination is poor at the early phase of TBI and is based on the pupillary reactivity and the
Glasgow Coma Score (GCS) that classifies TBI in 3 stages: mild, moderate, and severe. As a result,
GCS categories cover a large pattern of TBI and are unable to differentiate specific evolutions such
as diffuse injuries or focal lesions (4). Brain imaging, mainly computed tomography (CT) scan
(5), is an additional tool to better classify TBI patients. Based on the radiological reading findings,
researchers have built imaging scores that describe and quantify brain lesions. Several scores have
been developed, i.e., the Marshall classification (6), the Rotterdam score (7), the Stockholm score
(8), and the Helsinki score (9). All scores are correlated with the neurological outcome defined as
the Glasgow Outcome Scale (GOS) (9–12).

However, there are some drawbacks with the use of these CT scan scores. One point is their
dichotomized answers, i.e., yes or no, that may underestimate the global effect of small intracerebral
lesions. Despite their relative simplicity, inter-observer variability should be considered with the
use of these scores. Chun et al. (13) measured this inter-observer agreement and found an average
Cohen’s Kappa coefficient of 0.57 for the detection of CT abnormalities, far from 1, corresponding
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to a full inter-observer agreement. Finally, categorizing each
patient within a CT scan score is demanding in human resources
thatmay explain why these scores are not used in clinical practice.
In this context, the development of automated approaches to
determine the nature and volume of traumatic brain injuries
from CT scans has gained interest among clinicians.

Due to the philosophical implications of intelligence’s
definition, the general definition of artificial intelligence (AI)
remains unclear. Nevertheless, one can use the expression “AI”
as defined in (14): a field of computer science dedicated to the
creation of systems performing tasks that usually require human
intelligence, and the term “machine learning” (ML) as: a sub-
field of AI that includes all those approaches that allow computers
to learn from data without being explicitly programmed. The
rise of computing power capacities at the beginning of the
2,000 and the creation of large database have revealed the
effectiveness of AI algorithms applied to medical images to
improve the clinical care (14). Among the three ways of learning
for ML algorithms (supervised, unsupervised, and reinforcement
learning), the main algorithms used on biomedical imaging to
predict outcome is the supervised learning, where input data
and the variable to predict are known and the algorithms learn
the relation between them (15). This expanding field of research
may help the quantitative analysis of CT images and offer new
perspectives in clinical care of TBI patients by following the
process presented in Figure 1A. This review presents studies
focusing on the classification and the segmentation of lesions
based on the manual or automated analysis of CT scans. The
main studies are summarized in Table 1. We will also cover the
current research gaps and potential perspectives of the use of AI
combined to CT scans in the TBI area.

2. CLASSIFICATION

2.1. Definition and Evaluation
Classification is the way for an algorithm to attribute a class to
each input object, which is defined by one or more data points.
There are different metrics to evaluate the performances of a
classification. Let us assume a classification algorithm aimed at
predicting a pathology and let us consider its evaluation on a
test database. One defines as TP the number of true positive
predictions, TN the number of true negative predictions, FP
the number of false positive predictions, and FN the number
of false negative predictions. The algorithm’s Accuracy (Acc),
which represents the percentage of good predictions, can be
computed as:

Acc =
TP + TN

TP + TN + FP + FN

To separate the cases of false prediction on healthy or
pathological subjects, one can define the Sensitivity (Se) and
Specificity (Sp):

Se =
TP

TP + FN
Sp =

TN

TN + FP

Modifying the discrimination threshold of a classification
algorithm allows to weigh the cost of predicting the pathology.

It is indeed more costly to predict normality for a patient than
pathology for a healthy subject. It allows to decrease FN, but
as a consequence, increase FP, and modify TP and TN. The
modification of this threshold leads to new values of TP, TN,
FP, and FN, and one can summarize these values by representing
Se in function of (1 − Sp), defining the receiver-operator curve
(ROC). The measure of the area under the curve (AUC) of
the ROC curve represents the aggregate performances of the
classification algorithm, whatever its discrimination threshold,
and is a metric widely used to evaluate classification algorithms.
An AUC of 1 describes a perfect classifier, and a value of 0.5
means that the classifier performs no better than chance.

2.2. State of the Art
2.2.1. Manual Quantification
The first studies involving AI tools aimed to predict the
outcome after TBI. Patient outcome at 6 and 12 months was
defined favorable vs. unfavorable outcome, i.e., death and severe
disability, according to the GOS score. From a methodological
point of view, these studies were based on the analysis of
heterogeneous metrics, representing demography (age, sex, etc.),
physiology (pupil response to light, GCS score, blood glucose
concentration, etc.), and brain CT scan metrics manually
quantified by radiologists using imaging scores. These metrics
were aggregated to build prognostic models using multivariate
logical regression approaches as reviewed by Perel et al. (31).
Two large datasets of TBI patients produced predictive models:
CRASH (18) and IMPACT (19, 32, 33). These models were
subsequently externally validated with a good performance in
predicting mortality and unfavorable outcome (AUC between
0.65 and 0.87) (34). The prevalence of the metrics was estimated,
and if the main predictors are age or GCS (35), CT characteristics
manually quantified also carry crucial information able to predict
TBI outcome (18, 36, 37). CT characteristics were also evaluated
individually, and showed important prognostic ability in TBI
outcome, as reviewed by Zhu et al. (38), but imaging scores were
only able to predict outcome with an AUC between 0.56 and 0.82
(9, 11, 12).

More recently, instead of multivariate logical regression
(MLR), complex algorithms were evaluated. In 2018, 9 ML
algorithms were tested upon 232 TBI patients in order to
predict outcome and mortality from 14 predictors including
radiological reading findings at admission and at the following
day (20). The best models were obtained using Random Forest
(RF), providing an AUC of 0.895 for outcome prediction and
using ridge regression, providing an AUC of 0.875 for mortality
prediction, both on a dedicated test set.

Some other benchmarks of ML algorithms included artificial
neural network (ANN) experiments (39). ANN-based models
showed contrasted performances in classifying the outcome
from manual quantified metrics, with studies obtaining results
outperforming the state-of-the-art models, showing an AUC
= 0.946 predicting the dichotomized GOS (21) or an Acc =
0.92 predicting 6-month mortality (22), and studies showing
lower performances predicting in hospital mortality (AUC =
0.706) (23) or dichotomized outcome (AUC = 0.78) (24). These
differences can be explained by the gap between the number of
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FIGURE 1 | (A) Contribution of computed tomography (CT) scan analysis by artificial intelligence to the clinical care of traumatic brain injury (TBI) patients. References

and terms are defined in Table 1. (B) Example of the use of artificial intelligence (AI) algorithms on clinical routine. CT scans of two patients (P1 and P2) at D0 were

quantified with state of the art algorithms. On the right, CT scans of the same two patients acquired at D1 are shown. P1 and P2 had different clinical care. P1

underwent a decompressive craniectomy and not P2. Biggest extra axial hemorrhage (EAH) lesion was segmented with Brain Lesion Analysis and Segmentation Tool

for Computed Tomography (BLAST-CT) (16) and radiomic metrics on this region of interest (ROI) were extracted as in (17). At first sight, the two lesions have the same

profile, with equivalent volumes and means, but the variance of P1 is higher than twice the one of P2. That could for instance be a biomarker evaluated in further

studies to predict the need for craniectomy. ICH, intracranial hemorrhage; GCS, Glasgow Coma Score; MLR, multivariate logical regression; RF, random forest; ANN,

artificial neural network; GOS, Glasgow Outcome Score; CT scan, computed tomography image; Ref, References; HU, Hounsfield Units; ROI, region of interest; EAH,

extra axial hemorrhage; D, day.
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TABLE 1 | Summary of the main article cited in this review and their main properties.

Reference Taska Input Datab Output Datac Nb

subjects

Data selectiond Algorithm typee Validationf Evaluation

metricg

Performance Model

available

1) MRC CRASH Trial

Collaborators (18)

Cla Clinical data + RR dGOS 18517 GCS≤14 MLR External AUC 77% Yes

2) Steyerberg et al. (19) Cla Clinical data + RR dGOS 14781 GCS≤12 MLR External AUC 80% Yes

3) Raj et al. (9) Cla RR dGOS 869 Severe + moderate

+ mild complicated

TBI

MLR Internal AUC 75% No

4) Matsuo et al. (20) Cla Clinical data + RR dGOS 232 Abnormal RR RF Internal AUC 89.5% No

5) Hale et al. (21) Cla Clinical data + RR dGOS 565 Mild + severe

pediatric TBI

ANN Internal AUC 94.6% No

6) Rau et al. (22) Cla Clinical data + RR Mortality 2059 AIS≥3 MLR Internal Acc 93.5% No

7) van der Ploeg et al.

(23)

Cla Clinical data + RR Mortality 11026 Moderate + severe

TBI

MLR External AUC 76.4% No

8) Gravesteijn et al. (24) Cla Clinical data + RR Mortality 12576 Moderate + severe

TBI

GBM External AUC 83% No

8) Gravesteijn et al. (24) Cla Clinical data + RR dGOS 12576 Moderate + severe

TBI

ANN External AUC 78% No

9) Kim et al. (25) Cla CT-scan Severe/mild edema 70 Pediatric TBI Proportion of voxels

∈ [17, 24] HU + non

parametric tests

NI AUC 85% No

9) Kim et al. (25) Cla CT-scan Delayed/mild edema 70 Pediatric TBI Proportion of voxels

∈ [17, 24] HU + non

parametric tests

NI AUC 75% No

10) Rosa et al. (17) Cla CT-scan + lesions

segmentation

EDH + SDH +

Contusions

155 Presence lesion Radiomic features

extraction + PLS-DA

Internal Acc 89.7% No

11) Chilamkurthy et al.

(26)

Cla CT-scan ICH + fracture +

midline shift + mass

effect

313809 NI CNN External AUC 92.16 -

97.31%

No

12) Jadon et al. (27) Seg 2D CT-scan Hemmorhage 40000 NI CNN NI DSC 85.78 -

94.24%

No

13) Jain et al. (28) Seg CT-scan IC lesions 144 Center-TBI CNN Internal DSC 73% No

14) Kuo et al. (29) Seg CT-scan ICH 791 NI CNN External DSC 76.6% No

15) Yao et al. (30) Seg CT-scan Hematoma 828 GCS∈ [4, 12] CNN Internal DSC 69.7% No

15) Yao et al. (30) Cla Clinical data +

CT-scan

Mortality 828 GCS∈ [4, 12] RF Internal AUC 85.3% No

16) Monteiro et al. (16) Seg CT-scan IPH + EAH + PO +

IVH

839 Center-TBI CNN Internal DSC 36% Yes

16) Monteiro et al. (16) Cla CT-scan IPH + EAH + PO +

IVH

490 Center-TBI + CQ500 CNN External AUC 83% - 95% Yes

aTask: Cla, Classification; Seg, Segmentation. b Input Data: clinical data = metrics representing demography or physiology, RR, radiological reading metrics manually retrieved from CT scan and CT scan, computed tomography image.
cOutput Data: dGOS, dichotomized Glasgow Outcome Score, EDH, extra dural hemmorhage; SDH, subdural hemorrhage; ICH, intracranial hemorrhage; IC, intracranial; PO, oerilesional edema; IVH, intraventricular hemorrhage. dData

selection: GCS, Glasgow Coma Score; AIS, Abbreviated Injury Scale; NI, no information; Center-TBI and CQ500: public databases containing TBI CT scans. eAlgorithm type: MLR, multivariate logical regression; RF, random forest; ANN,

artificial neural network; CNN, convolutional neural network; GBM, gradient boosting machine; HU, Hounsfield Units. fValidation: NI, no information. gEvaluation metric: AUC, area under the curve; Acc, accuracy; DSC, Dice similarity

coefficient.

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

4
Ju

n
e
2
0
2
1
|
V
o
lu
m
e
1
2
|A

rtic
le
6
6
6
8
7
5

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Brossard et al. TBI CT-Scan Analysis by AI

subjects of the study (all datasets included) (565, 2059, 11,026,
12,576, respectively, to the order of citation), the proportion
of pathological and healthy subjects (6, 10, 26, and 47%) or
by the validation method (internal, internal, external, external).
These differences indicate that the methodology is a crucial
step to truly measure ML model performances and to trust its
predictions (40).

2.2.2. Automated Quantification
Besides clinical metrics, CT scan provides high spatial resolution
images of the brain that contain much more information than
that summarized in imaging scores. Several researchers recently
started to use automatic algorithms to exploit this large amount
of CT scans with the aim to find biomarkers able to predict
outcome in TBI.

2.2.2.1. Histograms
To our knowledge, the first article to study TBI on CT scan was
Kim et al. (25). Thanks to an automatic preprocessing pipeline
of brain extraction of head injured pediatric patients, the authors
showed that the proportion of brain voxel values ranging between
17 and 24 Hounsfield Units (HU) was a good predictor of edema
severity (AUC = 0.85). This work demonstrated that (i) CT scans
contain valuable quantitative information linked to the evolution
of the status of the brain and (ii) automatic tools may be used to
extract these quantitative features.

2.2.2.2. Radiomics
Distribution of voxels values, represented by a histogram, is a
simple metric to quantitatively characterize an image. One can
go further and extract more complex metrics to represent shape,
texture, or contrast of an image (41). This research field is called
Radiomic (42), and has proven its relevance in tumor diagnosis
(43), while its biological meaning is currently discussed (44).
Each radiomic metric can be calculated on a 2D or 3D region
of interest (ROI), leading to extract a large number of metrics
characterizing the ROI. This has been employed in TBI patients
(17), suggesting that extracting metrics of first-order statistics
(FOS), texture, and shape from ROI of segmented lesions could
discriminate the injury’s nature, among epidural hematoma
(EDH), acute subdural hematoma (ASH), and contusion, and
providing an Acc = 89.7. Another way to use radiomic is to
extract each metric from a sliding window moving on a CT scan,
leading to generate as many parametric maps as metrics used.
This method has been used by Muschelli et al. (45) to segment
hemorrhage. However, this has not been specifically used for TBI
yet to our knowledge.

2.2.2.3. Convolutional Neural Networks
Deep learning is a subset of ML methods based on ANN. There
are several types of networks among which recurrent neural
networks (RNN) or convolutional neural networks (CNN). In
computer vision, due to their ability to analyze pixels and their
neighborhood, CNN are the most used networks in classification
and segmentation tasks, and so in the biomedical imaging field
(46, 47). In TBI, to classify injuries from CT scans, Chilamkurthy
et al. (26) built several DL (and RF) algorithms each able to detect
the presence or the absence of one type of lesion in a CT scan.

Injury types contained different types of intracranial hemorrhage,
fracture, midline shift, and mass effect. These algorithms were
externally validated with an AUC from 0.92 to 0.97.

3. AUTOMATED SEGMENTATION

3.1. Definition and Evaluation
Segmentation is, in image processing, an operation aimed to split
an image in 2 or more ROI. Let us assuming a segmentation
algorithm aimed to segment a brain lesion and its evaluation on a
test database. To compare the output segmentationX to a ground
truth segmentation Y , one can computes the Dice similarity
coefficient (DSC), defined as, for |X| the number of pixels in the
segmentation X:

DSC = 2 ∗
|X ∩ Y|

|X| + |Y|

This coefficient measures the number of common pixels between
2 segmentations in relation to the global number of pixels of the
2 segmentations. Some algorithms are trained on images that
include images without lesion, therefore without ground truth
segmentation. In these cases, if the algorithm predicts a lesion,
even very small, the DSC is equal to 0 and strongly affects the
mean DSC, although the segmentation error is quite small. That
is why on some studies, DSC is only computed on large lesions,
leading to better DSC values than studies measuring DSC on
all lesions.

3.2. State of the Art
In computer vision segmentation, as well as in classification (see
section 2.2.2.3), CNN is the most used ANN subtype.

3.2.1. Segmentation
In TBI data, Jadon et al. (27) compared CNN architectures and
built 3 algorithms, each segmenting one type of injury among
(intraparenchymal hemorrhage [IPH], extra axial hemorrhage
[EAH], and hemorrhagic contusions) from 2D CT slice. DSC
ranged from 0.85 for EAH to 0.95 for IPH. On their side, Jain
et al. (28) built an algorithm based on the segmentation of WM,
GM, and CSF to segment acute intracranial lesions (DSC = 0.73)
and cisterns (DSC = 0.70 for cisterns larger than 5mL).

Kuo et al. (29) demonstrated the superiority of a training
on random patches of 240*240 pixels and evaluation on sliding
windows on a CT scan to detect and segment intracranial
hemorrhage against more classical CNN, which takes as input
a whole CT 2D image. The resulting algorithm provides an
AUC of 0.966 on external validation and a DSC of 0.72 on
internal validation.

As there are different ways to build a CNN, Yao et al. (30)
built a multiview CNN aimed to segment acute hematoma that
analyzes CT scan at different resolutions to help detecting small
lesions. It shows a DSC of 0.69 on an internal test set containing
20 subjects.

More recently, Monteiro et al. (16) made available a model
named Brain Lesion Analysis and Segmentation Tool for
Computed Tomography (BLAST-CT), aimed to segment and
classify four types of TBI injuries: IPH, EAH, intraventricular
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hemorrhage (IVH), and perilesional edema (PO). They built a
CNN, inspired from the architecture of Deepmedic (48), and
trained it on 839 TBI scans where the four former lesion types
had been delineated by trained personnel. The resulting model’s
segmentation have been validated on an internal cohort of 655
scans, providing a DSC of 0.36 (as mentioned before, DSC is very
sensitive to small volumes and might not be the best metric to
evaluate segmentation of small lesions), while the classification
has been validated on an external cohort of 490 scans, providing
an AUC between 0.83 and 0.95 for the different lesion types
to classify.

3.2.2. Quantification From Segmentation
Besides this type of segmentation, some researchers went
further in the quantification of CT images. Jain et al. (28)
explored the measurement of cistern volume and midline shift
because of a pipeline composed of CNNs and morphological
operations and provides an Acc of 0.89 for midline shift
estimation. Yao et al. (30) went, to our knowledge, the
furthest. They automatically measured hematoma volumes, their
localization, shape features representing the hematomas, and
trained a RF algorithm with these metrics and biological
information. Thereby, they were able to predict 6 months
mortality, achieving an AUC of 0.85 on internal validation on
828 patients.

4. DISCUSSIONS AND CONCLUSION

The development of ML algorithms offers new possibilities
in predicting TBI outcome. While these methods provide
few improvements in predicting outcome from clinical
variables and imaging scores compared to classic multivariate
logistic regression, they might change the paradigm about
image quantification. In addition to the automatization
and speeding up of the quantification, image processing
methods can help to detect humanly undetectable patterns
and, by represent early cerebral rearrangement, provide new
biomarkers of TBI evolution, especially in TBI’s modality of
choice: CT.

4.1. Current Research Gaps
In the coming years, human segmentation and quantification
of CT scans can probably be replaced by automated processing
of ML algorithms, but their incorporation in clinical routine
will be dependent on models and prediction’s explainability
and interpretability. Progress must be done on mastering
CNN’s theory to evaluate their capacities and limitations. A
preliminary step could be the development of saliency maps
(49), representing the voxels which have a strong impact on the
prediction. Each prediction from a CT scan could be presented
along with its saliency map, in order to explain the algorithm
decision and potentially check its relevance, as already proposed
by Kuo et al. (29).

Machine learning algorithms depend on their training
dataset’s nature. In order to deploy tools usable on multiple
sites, one should put efforts on reducing intermachine and
interprotocol variability. Indeed, the different models of scanner

and parameters of acquisition, such as reconstruction algorithms,
output resolution, voltage, or number of detectors, influence
output images properties (50, 51). While researchers studied
harmonization of metrics extracted from images (52), few studies
intend to reduce variability at image level (53, 54). Since deep
learning algorithms might be able to learn intersite variabilities
and take them into account if trained on heterogeneous cohorts,
efforts must then be made on the establishment of large and
multicentric cohorts to cover the spectrum of all secondary
injuries induced by TBI, as initiated by Maas et al. (55) or
Flanders et al. (56).

As ML models on medical imaging usually follow the same
pattern—metric extractions, features selection, training, validation
and the same evaluation metrics (AUC, Acc, DSC, etc.)—it seems
easy to compare them. However, these metrics strongly depend
on the methodology of the model training and evaluation. If
each study has its specifics, one must pay attention to the quality
of the dataset (number of patients, heterogeneity/homogeneity),
training and validation modalities (internal, external), and
metrics of evaluation (DSC computed on all lesions or only on
large lesions). An improvement in methodology’s robustness,
as well as in the availability of the mathematical models, will
surely benefit all the scientific community and help build stronger
studies, which are able to give birth to potential breakthrough in
the clinical care of TBI patients.

4.2. Potential Future Developments
Brain CT represents the brain’s density at the acquisition
time. CT scans are generally acquired at different times
to follow cerebral rearrangement after injuries or surgery.
To improve our comprehension of cerebral rearrangement
following heterogeneous secondary injuries, the establishment
of longitudinal cohorts and their quantification is crucial to
define different profile of evolution (5). Such profiles could
then be isolated, leading to specific mechanisms and maybe
specific treatments.

From a clinician point of view, the idea to combine clinical
data and CT metrics is strongly relevant. One can imagine
combining many variables from different nature, like most
of the models presented in section 2.2.1, but replace manual
quantification by automated and deep quantification of CT
images provided by modern ML algorithms. As evaluated by Yao
et al. (30), we also believe that in the field of TBI, localization
of lesions have a large impact on the patient outcome. The
development methods to register structural atlases on distorted
TBI CT scans and the incorporation of this spatial information on
prediction models might strongly improve their performances.

For research purposes, one might be soon able to predict
clinical data as the neurological outcome or the level of medical
care needed by a patient, as illustrated in Figure 1B. However,
since no study evaluated the relevance of AI algorithms in
the quantification of complex images, as mixed type injuries,
artifacts altered images, or cohabitation of different lesions
types as tumors or white matter diseases, their use in complex
case studies remains challenging. One can then imagine
that these algorithms will first be used in clinical routine
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for screening, triage, or indicative prediction in support of
human readers.

4.3. Conclusion
AI algorithms have shown promising results in the biomedical
field, especially in medical imaging. Their use on TBI CT
scans, for classification and/or segmentation, is expanding
and might become the reference methods in the next
years if some problematic but surmountable issues are
addressed. Their integration in clinical routine depends on
the confidence on their predictions that might be increased with
rigorous methodology.
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