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DDX60, an interferon (IFN)-inducible gene, plays a promotional role in many tumors.
However, its function in glioma remains unknown. In this study, bioinformatic analysis
(TCGA, CGGA, Rembrandt) illustrated the upregulation and prognostic value of DDX60 in
gliomas. Immunohistochemical staining of clinical samples (n = 49) validated the DDX60
expression is higher in gliomas than in normal tissue (n = 20, P < 0.0001). It also could be
included in nomogram as a parameter to predict the 3- and 5-year survival risk (C-index =
0.86). The biological process of DDX60 in glioma was mainly enriched in the inflammatory
and immune response by GSEA and GO analysis. DDX60 expression had a positive
association with most inflammatory-related functions, such as hematopoietic cell kinase
(HCK) (R = 0.31), interferon (R = 0.72), STAT1 (R = 54), and a negative correlation with IgG
(R = −0.24). Furthermore, DDX60 expression tends to be positively related to multiple
infiltrating immune cells, while negatively related to CD56 dim nature killer cell in glioma.
Some important immune checkpoints, like CTLA-4, PD-L1, EGF, CD96, and CD226,
were all positively related with DDX60 (all Pearson correlation R > 0.26). The expression
and correlation between DDX60, EGF, and PD-L1 were confirmed by western blot in
clinical samples (n = 14, P < 0.0001) and GBM cells. These results indicated that DDX60
might have important clinical significance in glioma and could serve as a potential immune
therapeutic target.

Keywords: DDX60, glioma, biomarkers, immune checkpoints, PD-L1
Abbreviations: GBM, glioblastoma multiforme; OS, overall survival; MHC I, major histocompatibility complex class I; GO,
Gene ontology; BP, biological processes; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; CTLA-4,
cytotoxic T-lymphocyte-associated antigen-4; Rembrandt, Repository for Molecular Brain Neoplasia Data; TCGA, The Cancer
Genome Atlas; HRs, hazard ratios.
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INTRODUCTION

Glioma is the most common malignancy in the brain, representing
more than 70% of all central nervous system (CNS) malignancies
(1). Glioblastoma multiforme (GBM), the most aggressive and
malignant form of glioma, has a median survival of fewer than 21
months (2) despite the progress of neurosurgical resection,
chemotherapy, radiation therapy, and novel approaches such as
immunotherapy. Intratumoral heterogeneity widely exists in GBM
(3) and has become an obstacle for molecular targeted therapy (4).
To counteract the heterogeneity, therapies targeting the cytosolic
innate immune receptors retinoic-acid inducible gene I (RIG-I)
have been employed to gain a good response (5).

Acting as the upstream of RIG-I in the innate immune response,
DDX60 is a novel DEAD-box RNA helicase and first identified
through microarray research of genes induced by measles’ virus
infection in dendritic cells (DCs) (6). Through the helicase domain
and ATP-binding site, DDX60 can detect abnormal intracellular
nucleic acids and then induce RIG-I-dependent type I interferons
(type I IFNs) and other inflammatory cytokines (6–8). Besides,
DDX60 induced RIG-I-independent antiviral responses have also
been demonstrated (8). Involved in RIG-I-dependent and
independent innate immune responses, DDX60 has been proven to
be associated with the development of tumors (9–11). It was
upregulated in oral squamous cell carcinoma and correlated with
poor disease-free survival (10), while downregulated in colorectal
cancer and related with the initiation and progression of the disease
(11). Therefore, DDX60 represents a potential target for tumor
therapy. Immunotherapy and particularly immune checkpoint
inhibitors, such as programmed death-ligand 1 (PD-L1) inhibitors,
have revolutionized the treatment landscape of glioma (12).
However, because of the heterogeneity and immunosuppression of
glioma, some of the checkpoint inhibitor therapies fail to get a
positive effect (1, 13), and new biomarkers for immune therapies are
urgently needed. Herein, we assume that DDX60 is a novel immune
therapeutic target for glioma and explore its prognostic value and
biological function in glioma.

This study demonstrated that DDX60 is highly expressed in
GBM and predicts poor prognosis of glioma by the Cancer Genome
Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Repository
for Molecular Brain Neoplasia Data (REMBRANDT), and
Gravendeel databases. Then, the correlation between DDX60
expression and inflammatory responses, immune-related
molecules, infiltrating immune cells as well as checkpoint protein
in glioma was also established.
MATERIALS AND METHODS

Data Collection
Glioma patient’s clinical information and gene expression data in
the TCGA, CGGA, Rembrandt, and Gravendeel databases were
downloaded from GlioVis (http://gliovis.bioinfo.cnio.es/) (14). The
results shown here are in whole or part based upon data generated
by the TCGA Research Network: https://www.cancer.gov/tcga. The
expression information for DDX60 in tumor and normal tissues in
Frontiers in Oncology | www.frontiersin.org 2
multiple cancers was acquired from UALCAN (https://ualcan.path.
uab.edu/).

Bioinformatics Analysis
The nomogram and calibration plots were constructed using the
RMS package of R software. Pearson correlation and correlograms
were generated using the circlize package and the corrgram package,
respectively (15). Gene ontology (GO) analyses were employed to
verify the biological processes by the R package of enrichplot and
clusterProfiler (16). Gene set enrichment analysis (GSEA, http://
software.broadinstitute.org/gsea/index) was performed between the
DDX60 high expression group and low expression group (17). The
significant difference for GSEA was verified by the normalized
enrichment score (NES) and false discovery rate (FDR). The
related gene pathways with P <0.05 and FDR <0.1 were visualized
by Cytoscape 3.7.2 version. The R package GSVA was used to search
the enrichment status of inflammatory response-associated
metagenes (18). Gene set associated with the immune function was
extracted from the AmiGO 2 website (http://amigo.geneontology.
org/amigo) to demonstrate the role ofDDX60 in the immune system
in glioma. Genes with high correlation coefficients (R > 0.3 and P <
0.05) with DDX60 were selected for heatmap displays. Metagenes of
immune infiltration cells were downloaded from a previous study
(19) and ssGSEA analysis was conducted viaGSVAR package. Venn
diagrams, boxplots, and heatmaps were generated using the Venn
diagrams, ggplot2, and pheatmap packages in R software.

Clinical Samples
Glioma tissues were gathered during 2019 to 2020 from patients
(n = 60) who experienced craniotomy in the Department of
Neurosurgery, Huashan Hospital of Fudan University. Normal
brain tissues (n = 23) were obtained from traumatic brain injury
patients who underwent partial resection as decompression
treatment. These experimental protocols were approved by the
Human Ethics Committee of Huashan Hospital and informed
consent was collected from all patients.

Knockdown
SiRNA targeted human DDX60 (siRNA#1, CCAUCUGCCUC
UUUCUCAATT; and siRNA#2, GGAUUUGAUGAGUU
GGCAATT) and control siRNA were obtained from Hanbio
(Shanghai, China). SiRNA knockdown of DDX60 was performed
with Invitrogen Lipofectamine 2000 and standard procedures (20).

Immunohistochemical Staining
IHC staining was performed as described previously (10). The
sections were incubated with rabbit anti-human DDX60 Ab
(1:200, Abcam) as the primary antibody. Immune reactive
score (IRS) was conducted as described (21).

Western Blot
The glioma and normal brain tissues were minced by scissors and
homogenized in RIPA lysis buffer with proteinase inhibitors, and
the homogenate was centrifuged at 13,000 g, 4°C for 10min,
and the supernatant was collected. Cell protein was extracted
using RIPA lysis buffer for 20 min at 4°C. Then the 5× loading
buffer was added, and the sample was boiled for 5min. Western
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blot was performed as previously described (11). The primary
antibodies include rabbit anti-human PD-L1 Ab (1:1,000, Abcam),
anti-DDX60 Ab (1:1,000, Abcam), and anti-GAPDH (1:50,000,
Proteintech). The data analysis as well as statistics was performed
through ImageJ as described previously (22).

Statistical Analysis
R language 3.6.2 version was employed to perform statistical
analysis. A Student’s t-test was conducted to evaluate DDX60
expression differences. ‘Survival’ and ‘survminer’ packages in R
were used for survival analysis. Continuous variables of the DDX60
expression were dichotomized by conducting the best cutoff values
detected by the “surv_cutpoint” function of the “survminer” R
package (23). the statistical significance was calculated by the log-
rank test (24). Univariate and multivariate Cox proportional
hazards models were performed to search hazard ratios (HRs) by R.
RESULTS

The Overexpression of DDX60 Is
Correlated With Malignancy in Gliomas
The expression of DDX60 was upregulated in multiple cancers
comparing with normal tissues, including GBM (Figure 1A).
Frontiers in Oncology | www.frontiersin.org 3
TCGA and Rembrandt dataset analysis showed that DDX60 is
overexpressed in glioma (P < 0.001, Supplementary Figures 1A, B).
As expected, TCGA analysis demonstrated that DDX60 in GBM is
higher than in lower-grade glioma (LGG, grades II and III, P <
0.0001 and P = 0.032, respectively, Figure 1B). The CGGA and
Rembrandt dataset also confirmed the lower levels of DDX60 in
LGG (Supplementary Figures 1C, D). Additionally, DDX60
favored its expression in mesenchymal and classical subtype
(Figure 1C and Supplementary Figure 1E), MGMT
unmethylated (P < 0.001, Figure 1D), ATRX wild-type (P <
0.001, Figure 1E), TERT promoter mutated (P < 0.001, Figure
1F), and IDH wild-type gliomas (P < 0.001, Figure 1G,
Supplementary Figure 1F). All the in silico analyses
demonstrated the correlation between DDX60 and the
malignancy of gliomas.

IHC analysis (Figures 1H, I) verified that DDX60 expression
in normal tissue (mean IRS = 2.15, n = 20) was lower than in
glioma tissue (mean IRS = 5.33, n = 49) (P < 0.0001). DDX60 was
predominantly expressed in the cytoplasm of glioma cells and
expressed distinctively in different WHO grades. The expression
of DDX60 in grade II (mean IRS = 3.09, n = 22) was significantly
lower than that in grade III (mean IRS = 6.38, n = 16, P < 0.0001)
and in grade IV (mean IRS = 8.27, n = 11, P < 0.0001), while no
statistical difference was found between grade III and grade IV
A B
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FIGURE 1 | DDX60 expression upregulated in glioma and was correlated with glioma biomarkers. (A) The expression information for DDX60 in tumor and normal
tissues in multiple cancers in UALCAN. Blue represents the normal tissue and red represents the tumor tissue. (B) DDX60 expression level increase along with WHO
grade in the TCGA database. (C) Comparison between different subtypes of GBM in TCGA. (D–F) DDX60 was upregulated in ATRX wild-type group, MGMT
unmethylated group and TERT expressed group based on TCGA dataset. (G) DDX60 was significantly overexpressed in IDH wild-type glioma based on TCGA dataset.
(H) Representative IHC staining of DDX60 in normal brain tissue and WHO grade II–IV gliomas. (I) Immune reactive score (IRS) of DDX60 in normal brain tissue and
different WHO grade gliomas, Normal (n = 20), Grade II (n = 22), Grade III (n = 16), Grade IV (n = 11). *P < 0.05, ***P < 0.001 and ****P < 0.0001. NS, not significant.
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(P = 0.077). In summary, DDX60 expression was higher in
glioma than in normal tissue and increased with malignant
escalation of glioma.
DDX60 Could Predict a Poor
Prognosis of Gliomas
We further assessed the prognostic value of DDX60 in both LGG
and GBM based on TCGA, CGGA, and Rembrandt datasets.
Higher DDX60 expression seemed to portend a poor prognosis
for GBM in TCGA (P = 0.001, Figure 2A). Likewise, a strong
correlation between higher expression of DDX60 and worse OS
for GBM patients was detected in CGGA and Rembrandt datasets,
respectively (P = 0.0042 and P = 0.075, Figures 2B, C). Survival
data in LGG were consistent with those in GBM in TCGA,
CGGA, and Rembrandt, respectively (all P < 0.0001, Figures
2D–F). These outcomes demonstrated DDX60 as a negative
prognostic indicator in gliomas.

Univariate (HR = 1.623, P < 0.0001) and multivariate
(HR = 1.1937, P = 0.024) Cox regression analyses were then
performed, and factors related to the prognosis of gliomas were
selected (Table 1). The prognostic nomogram with a risk
classification system for 3- and 5-year survival rates of glioma
based on TCGA was established (n = 596, Figure 3A). This
nomogram integrated all significant independent variables
including DDX60, and the C-index for OS prediction was 0.86.
The calibration plot for the probability of survival at 3 or 5 years
based on the two independent cohorts of CGGA (n = 960) and
Gravendeel (n = 216) showed optimal conformity between the
prediction by nomogram and actual observation (Figures 3B–E).
The demographics and clinical characteristics of patients with
glioma in primary and validation cohort were in Supplementary
Table 1.
Frontiers in Oncology | www.frontiersin.org 4
DDX60 Seems to Contribute to Multiple
Biological Processes in Gliomas
DDX60 is known as an IFN-inducible gene (6). To verify the
function of DDX60 in gliomas, 775 genes were identified in the
intersection of the three datasets through Pearson’s correlation
(|R| > 0.3, Figure 4A, Supplementary Table 2). Gene ontology
(GO) analysis illustrated that DDX60 was involved in multiple
biological processes, including immune response, defense
response to other organisms, cytokine-mediated signaling pathway
(Figure 4B). Meanwhile, GSEA verified the gene signatures were
mainly enriched in the inflammatory response and immune
response (Figures 4C–E). The Cytoscape of enrichment map
displayed that enriched terms are centrally attached to the
immune response as well as inflammatory response (Figure 4F).
DDX60 Is Highly Related to Inflammatory
Responses and Immune Functions
To better understand DDX60-related inflammatory responses in
glioma, seven metagenes including 105 genes (Supplementary
Table 3) associated with multiple types of inflammation and
immune functions were chosen (25). Clustering based on TCGA
and CGGA showed that all clusters have a positive correlation with
DDX60 expression level apart from IgG (Figures 5A, B). Correlograms
show that DDX60 expression level had a positive association with
hematopoietic cell kinase (HCK), interferon, lymphocyte-specific
protein tyrosine kinase (LCK), major histocompatibility complex
class-I (MHC-I), major histocompatibility complex class-II
(MHC-II), and STAT1, while it had a negative correlation with
IgG (Figures 5C, D). Among the gene set associated with the
immune function, 103 out of 105 genes in TCGA and 145 out of 149
genes in CGGAwere significantly positively associated withDDX60
(Supplementary Figure 2, Supplementary Tables 4 and 5).
A B

D E F

C

FIGURE 2 | DDX60 predicts poor prognosis of glioma patients. (A–C) Higher DDX60 expression portended poor prognosis for GBM in TCGA database, CGGA
dataset and Rembrandt dataset. (D–F) LGG patients with increased expression of DDX60 also get poor prognosis in TCGA database, CGGA dataset and
Rembrandt dataset.
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Collectively, a strong association between DDX60 expression
patterns and immune functions has been found in glioma.

Metagenes (Supplementary Table 6) (19) were delineated in
heatmaps to show the correlation between DDX60 expression
and 28 infiltrating immune cell populations (Figures 6A, B and
Supplementary Figure 3A). The top five DDX60-related
immune cells in TCGA were effector memory CD8 T cell
(CD8+ TEM), natural killer cell (NK), natural killer T cell
(NKT), plasmacytoid dendritic cell (pDC), and activated
dendritic cell (aDC) (Figure 6C). Correlation matrixes of the
top five most related immune cells in the CGGA and Rembrandt
dataset were also displayed (Figure 6D and Supplementary
Figure 3B), and all the Pearson’s correlation coefficient (R)
Frontiers in Oncology | www.frontiersin.org 5
and P-values were listed (Supplementary Table 7). In summary,
DDX60 expression tends to be positively related to most
infiltrating immune cells, while negatively related with CD56
dim nature killer cell in glioma.
DDX60 Is Strongly Correlated With
Immune Checkpoint Proteins
The correlation between DDX60 and some important checkpoint
proteins like CTLA-4, PD-L1, EGF, CD226, and CD96 was
assessed in the TCGA and CGGA datasets. Circos plots
showed the strong positive association between DDX60 and
these five immune check point-related genes in all grade
A B D

EC

FIGURE 3 | DDX60-related prediction nomogram. (A) Nomogram for predicting 3- or 5-year survival in glioma patients. The top row represents the point value for
each variable. Rows 2–5 display the variables included in the nomogram. Each variable fits to a point value based on glioma characteristics. The Total Points axis
equals to the sum of the point values, and the lines downward to the total points is used to establish the liability of 3- or 5-year survival. (B, C) Calibration curves for
predicting patient survival in CGGA dataset at 3 and 5 years. (D, E) The Gravendeel Dataset was also used as the validation cohort to show calibration curves for
predicting patient survival at 3 and 5 years.
TABLE 1 | Univariate and multivariate analysis of overall survival in the TCGA database.

Variables Multivariate Univariate

HR Lower Upper P HR Lower Upper P
0.95 0.95 0.95 0.95

DDX60 1.1937 1.0236 1.392 0.024 1.623 1.417 1.859 <0.0001
Gender
Female Reference Reference
Male 1.0008 0.7543 1.328 0.99549 1.169 0.8911 1.533 0.26
Age 1.0324 1.0199 1.0451 <0.0001 1.069 1.058 1.08 <0.0001
WHO Grade
Grade II Reference Reference
Grade III 1.9525 1.2418 3.07 0.00376 2.898 1.9 4.419 <0.0001
Grade IV 3.6728 2.1263 6.3442 <0.0001 18.232 11.99 27.721 <0.0001
IDH Status
Wild-type Reference Reference
Mutation 0.2704 0.1758 0.4158 <0.0001 0.09983 0.07469 0.1334 <0.0001
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gliomas (Figures 7A–D). The correlation coefficients (R)
between DDX60 and immune checkpoint genes were shown in
Table 2. Among these genes, PD-L1 showed the strongest
positive correlation with DDX60 in the TCGA dataset (glioma
Frontiers in Oncology | www.frontiersin.org 6
R = 0.54, GBM R = 0.45). Western blot analysis with clinical
samples and DDX60 knockdown glioma cells demonstrated that
DDX60 protein expression was correlated with PD-L1 (P <
0.0001, R = 0.86) and EGF (P = 0.002, R = 0.56) (Figures 7E–H).
A B

D

C

FIGURE 5 | DDX60-related inflammatory responses in glioma. (A, B) Heatmap of the correlation between DDX60 and metagenes based on TCGA and CGGA.
(C, D) Correlogram showed the association between DDX60 and seven inflammatory-related metagenes in TCGA and CGGA datasets.
A B

D E
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FIGURE 4 | DDX60-related biological processes in glioma. (A) 775 related genes of DDX60 were chosen in glioma from the TCGA, CGGA, and Rembrandt
databases based on Pearson’s correlation analysis (|R| > 0.3). (B) The term of immune response enriched most through gene ontology (GO) analysis on biological
processes (BP). (C–E) GSEA employed to verify the gene signatures, mainly included inflammatory response, adoptive immune response, and innate immune
response. (F) The cytoscape of enrichment map results. Nodes represent gene-sets, which were automatically arranged so that highly similar gene-sets are placed
close together, and node size represents the number of genes in the gene-set.
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The relatively density of PD-L1 and EGF of western blot for
glioma tissue were shown in supplementary Figure 4. Results
predicted the possible synergistic effects of DDX60 with these
checkpoint genes.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Although novel therapies such as immunotherapy have been
used, less progress has been made in overall survival (OS) in
A B D

E
F

G H

C

FIGURE 7 | Relationship between DDX60 and checkpoint markers in glioma. (A–D) The associations between DDX60 and immune check point-related genes
including CTLA-4, PD-L1, EGF, CD96, and CD226 based on TCGA and CGGA datasets were presented. (E) The level of DDX60, PD-L1 and EGF protein
expression in normal brain tissue, WHO grade II–IV glioma tissue and DDX60 knockdown glioma cells were shown by western blot. (F) The relative density of DDX60
of western blot. (G) A strong association between DDX60 and PD-L1 (R = 0.86, P < 0.0001) according to the gray-scale analysis of the western blot. (H) The
expression correlation between EGF and DDX60 (R = 0.56, P = 0.002).
A B

D

C

FIGURE 6 | DDX60 is closely correlated with immune cells in the glioma microenvironment. (A, B) Heatmap based on TCGA and CGGA dataset visualizing the
relationship between DDX60 and 28 infiltrating immune cell populations. (C, D) Correlation matrixes of the top five most related immune cells with DDX60 in TCGA
and CGGA datasets. ***P < 0.001.
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GBM patients (26). Within-tumor heterogeneity is a major
driver of progression, recurrence, and therapeutic resistance of
GBM (27). Therefore, more biomarkers are needed to be
identified to accurately access the prognosis of GBM patients
and individualize treatment strategies.

DDX60 is a DEAD-box RNA helicase and has been proved
upregulated in melanoma (28) and oral squamous cell carcinoma
(OSCC) (10) while deregulating in colorectal cancer (11). Herein, we
demonstrated that higher expression of DDX60 was correlated with
high-grade glioma. Moreover, we observed that DDX60 was
significantly overexpressed in glioma with IDH wild-type, ATRX
wild-type,MGMT unmethylated as well as TERT promoter mutated.
These findings suggest that gliomas with high DDX60 expression
have increased malignancy and insensitive to chemotherapy (29).

A previous study has shown that high expression of DDX60 was
significantly associated with poor survival in lip squamous cell
carcinoma (10). As expected, this study demonstrated that high
DDX60 expression was associated with poor prognosis both in LGG
and GBM. As the nomogram could show better performance than
conventional staging systems andmore precise prognostic forecast in
some tumors (30, 31), we identified DDX60 as a prognostic marker
of glioma and built a nomogram with a risk classification system.
The four parameters included in the nomogram complied with
clinical relevance and Cox analysis (32). Studies have shown that
gender, age,WHO grade, and IDH status are related to the prognosis
of glioma (33–35). However, our univariate and multivariate Cox
analyses did not find a correlation between sex and prognosis of
glioma. Thus, gender was excluded from the visualization of the
nomogram. The calibration plots of the two external validation
cohorts were highly fitted, illustrating that the nomogram performed
well in predicting 3- or 5-year survival for glioma patients.

GO and GSEA of DDX60 in this research showed that immune
and inflammatory responses were the most enriched terms. It has
been indicated that inflammation regulates various stages of the
tumor process, such as promotion and invasion (36). Different
proinflammatory mediators induced by inflammation promote
tumor progression by regulating chemokines, cascades of
cytokines, adhesion, and pro-angiogenic activities (37). DDX60 is
an IFN-inducible gene, and its ectopic expression can promote RIG-I
RNA-binding activity, causing RIG-I-mediated type I IFN
expression (6). Type I IFNs (IFN-alpha and IFN-beta) are a family
of cytokines with a diverse cellular processes such as regulation of
inflammatory and immune responses (38). Through mediating type
I IFNs, DDX60 can also activate STAT1and upregulate MHC-I (39);
these results are compatible with our findings. Furthermore, we also
found that DDX60 was positively associated with LCK and HCK
while negatively associated with IgG response; these results refined
the mechanism of DDX60 in the inflammatory response of glioma.
Frontiers in Oncology | www.frontiersin.org 8
Multiple non-neoplastic cells exist in the GBM microenvironment,
such as infiltrating immune cells (40). The immune surveillance of
these immune cells would be converted to detrimental function when
the immune system is overwhelmed by cancer burden during tumor
development (40). The high correlation between infiltrating immune
cells andDDX60 expression has been demonstrated in this study, such
as type 17 T helper cell (Th17) and macrophages. Previous research
had verified that Th17 cells in the GBM microenvironment may
participate in immune suppression via TGF-b1-induced IL-10
secretion (41). Tumor-associated macrophages (TAMs) in GBM
have been proven to be the dominant infiltrating immune cell
population and engaged in interactions with tumor cells to aid
tumor infiltration and proliferation (42). These results suggest that
DDX60 might involve in immunosuppression by mediating immune
cells in glioma.

CNS used to be considered as “immunologically privileged” in
the past decades. However, as more and more researchers have
verified that the leukocyte lymphatics not only be present in CNS
but also have the ability to transport antigens to cervical lymph
nodes (43–46), researchers agree that CNS is more likely
“immunologically unique” rather than “immunologically
privileged”. These provide a basis for glioma immunotherapy.
Undoubtedly, immunotherapy holds a bright future for the
treatment of glioma. However, it seems difficult to achieve stable
and better outcomes for immunotherapy in clinical. This can be
mostly attributed to the tumor heterogeneity of glioma (47, 48).
New biomarkers which can predict and monitor immunotherapy
response have become urgently needed. In this study, DDX60 was
not only a prognosis prediction for glioma patients but also an
indicator of the immune microenvironment of glioma and might
become a novel biomarker and potential therapeutic target.

Checkpoint inhibitors, advancing rapidly in recent years, have
been the immunotherapy most advanced in clinical use. Among
them, death protein 1 (PD-1) and PD-L1 are the most broadly
studied (49). PD-L1 is widely expressed on the GBM infiltrating T
cells and is a negative prognosticator for GBM outcome (50). PD-1
combining with PD-L1, negatively modulates T cell receptor-
induced signaling transduction, blocks the activation of cytotoxic
T cell, and inhibits the producing of inflammatory factors, causing T
cell inability (49). Many clinical trials in GBM are evaluating anti-
PD-L1 agents such as Durvalumab, Atezolizumab, Avelumab, alone
or combined with other therapies (51). However, not all the research
studies on anti-PD-L1 agents come out with a meaningful benefit
(51). Thus, new biomarkers that can accurately predict the efficacy
of PD-L1 inhibitor therapy are urgently needed. In this study, we
demonstrated that the correlation coefficients (R) between PD-L1
and DDX60 were 0.54 in the TCGA glioma dataset and 0.61 in the
CGGA glioma dataset. We further performed western blot both in
TABLE 2 | The R values between DDX60 and immune checkpoint genes.

Immune checkpoint gene TCGA-Glioma TCGA-GBM CGGA-Glioma CGGA-GBM

PD-L1 0.54 0.45 0.61 0.58
CTLA-4 0.33 0.26 0.30 0.35
EGF 0.38 0.47 0.52 0.55
CD226 0.45 0.33 0.62 0.60
CD96 0.46 0.42 0.44 0.43
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patient tissues and glioma cell lines to verify the strong correlation
between PD-L1 and DDX60 (P < 0.0001, R = 0.86). The mechanism
of the positive correlation between DDX60 and PD-L1 might lie in
the IFN/PD-L1 axis. As an IFN-inducible gene, the ectopic
expression of DDX60 can improve RIG-I RNA-binding activity,
causing RIG-I-mediated IFN expression (6). A previous study has
shown that IFN was a crucial factor of PD-L1 expression in the
glioma model (52). Thus, the upregulation of DDX60 might lead to
a higher expression level of PD-L1. These results implied that
glioma patients with higher DDX60 expression might benefit
more from PD-L1 blocker therapy.

Besides, the correlation between DDX60 and some other
immune checkpoint genes such as cytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4), epidermal growth factor (EGF),
CD226, and CD96 was shown (Figure 7, Table 2). As the
correlation coefficients (R) between EGF and DDX60 were >0.5
in both CGGA glioma and CGGA GBM database, western blot
was then employed to demonstrate the strong association between
EGF and DDX60 (P = 0.002, R = 0.56). Thus, these results
illustrate the predictive significance and potential synergistic
responses of DDX60 to immune checkpoint treatments.

There have been reports that DDX60 was overexpressed in
other types of cancers (10, 11), but most of them did not further
explore the intrinsic mechanisms. Thus, the novelties of this
paper lie not merely in the findings of prognostically significant
of DDX60 in glioma, but also in the mechanism of DDX60 on
glioma. Our research verified the strong association between
DDX60 and glioma immune microenvironment, clarified the
mechanism of DDX60, and proposed that DDX60 might become
a novel biomarker for immunotherapy.

In conclusion, these results would widen our knowledge of the
expression and prognostic value ofDDX60 in gliomas. Furthermore,
as a potential therapeutic target,DDX60 is positively correlated with
PD-L1 and other checkpoints. Thus, these findings will help to
optimize the immunotherapy in glioma.
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