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THE QUESTIONS

Drug resistance represents an ultimate challenge for cancer treatment. The initial rationale behind
using chemo-treatment was the preferred elimination of fast-growing cancer cells, and the drugs’
killing power became the priority. Enormous efforts have been made to develop new types of
increasingly potent drugs, improve drug delivery, and test various combinations of therapeutic
methods (Heng et al., 2010; Heng, 2015). With the identification of many gene mutations and
their molecular pathways, encouraged by the success of using imatinib in treating chronic myeloid
leukemia (CML) (Horne et al., 2013), molecular targeting offered a curative solution. Currently,
immunotherapy further brings new hopes after the increased disappointment of specific targeting
therapy, as the success of imatinib for the chronic phase of CML remains a wonderful exception.

Regardless of the wide array of drug therapies available, drug resistance is a universal reality.
Even worse, treatment can promote metastasis and cancer lethality (D’Alterio et al., 2020; Pienta
et al., 2020a,b). There are many viewpoints/assumptions to explain the mechanisms of drug
resistance: multiple drug resistance, cancer stem cells, cellular adaptation and collaboration,
epigenetic regulation, cancer heterogenicity, persistent cancer cells, exosomal non-coding RNAs,
acquired immune-resistance, and tumor micro-environments including tumor-stromal cross-talk
(Heng et al., 2010; Holohan et al., 2013; Keating et al., 2013; Niero et al., 2014; Restifo et al., 2016;
Cho and Kim, 2020; Guo et al., 2020; Shen et al., 2020; Swayden et al., 2020; Bhattacharya et al.,
2021). Among them, new genemutations and, in particular, selection of preexisting variants by drug
treatment are the most popular mechanisms of cancer drug resistance (Khong and Restifo, 2002;
Aktipis et al., 2011; Heng, 2015, 2019). This explanation fits well with neo-Darwinian evolutionary
understanding, where the initial killing power is most important. With fewer surviving cancer cells
after treatment comes a longer period for the residual cancer cells to grow back and less opportunity
for new gene mutations to emerge and then accumulate. However, this concept fails to explain
many puzzling issues: why does the treatment often make cancer more aggressive and ultimately
untreatable? why the initial benefit of treatment (reducing cancer size) can quickly be lost when the
disease becomes out of control and deadly? Can cancer treatment itself elevate the speed of cancer
evolution so that the same treatment can harm patients in the name of killing cancer? To effectively
address these questions, a new evolutionary framework is needed to discuss: (1) Can cancer cells
go through massive and rapid macroevolution immediately following drug treatment, rather than
a slow, gradual stepwise micro-evolution (if yes, what is the built-in genomic mechanism for rapid
evolution)? (2) Are cancer cells capable of actively selecting a strategy to fight back rather than
passively being selected by the treatment (if yes, can smart treatment strategies be developed to
eliminate cancer’s choice)? Answering these questions also can examine many predictions from
some non-neo-Darwinian theories (Shapiro and Noble, 2020).
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GENOME ARCHITECTURE THEORY
OFFERS EXPLANATIONS

The pattern of cancer evolution is rather different from the
neo-Darwinian prediction. This realization comes fromwatching
cancer evolution in action experiments (Heng et al., 2006,
2008). By tracing karyotype progression in an immortalization
model, the cellular phenotype (growth status, cellular crisis,
and population growth), genotype [both clonal chromosome
aberrations (CCAs), and non-clonal chromosome aberrations
(NCCAs)], were compared longitudinally. These experiments
covered main phase transitions of spontaneous immortalization
and drug resistance (before, during, and after). What resulted
were many surprising observations: 1. Cancer evolution is
a two-phased process: karyotype change-mediated punctuated
macroevolution and gene mutation-mediated microevolution;
2. The phase transition is triggered by the high level of stress
and system instability; and 3. Various NCCAs are important for
cancer evolution, and can be used as an index for measuring
internal and induced CIN.

As these initial observations were obtained from in vitro
models (it is challenging to watch evolution in action using an in
vivomodel), extra cautions were taken to explain their biological
meanings. First, despite some differences comparing to in vivo
models, culture cells are truly biological systems, which follow
the laws of somatic evolution. Second, the above observations
have been confirmed by various in vitro and in vivo models
of different types of cancers and patient samples (Heng, 2019).
Third, the two-phased evolution model explains organismal
evolution, solving many confusions. Fourth, there is an increased
realization that cancer evolution does not fit with neo-Darwinian
predictions (Pisco et al., 2013; Ling et al., 2015; Pellestor
and Gatinois, 2020; Shapiro and Noble, 2020). Fifth, drastic
genomic changes (e.g., big bang, genome chaos) followed by gene
mutations have been observed in the majority of cancer types,
illustrated by current cancer genome projects (Navin et al., 2011;
Sottoriva et al., 2015) (Table 1). Sixth, metastasis is also being
linked to chromosome-mediated macroevolution, supporting
our prediction (Bloomfield and Duesberg, 2016; Gao et al., 2016;
Bakhoum et al., 2018). Finally, a new type of inheritance above
individual genes, called karyotype coded system inheritance,
has been introduced to illustrate why karyotype change is of
ultimate importance in somatic evolution. System inheritance,
which organizes the genetic interaction network, is coded by the
physical locations of genes and structural elements along and
between chromosomes of a given species (Heng, 2019; Ye et al.,
2019a).

Together, a mechanism of drug-induced rapid and massive
resistance can be explained by stress-induced macroevolution.
To validate this explanation, different chemo-drugs, representing
different killing strategies, and different cancer models
representing different cancer types and with different degrees of
CIN, were used to investigate the mechanism of drug resistance.
The following are some conclusions:

1. Different drugs (chemo-drug or target-specific drug),
regardless of their mechanisms (e.g., targeting DNA

replication or cell dividing machinery), can all eliminate
many cancer cells. At the same time, these can also
induce genome chaos, a rapid and massive process for
re-organizing the genomes, resulting in the emergence of
resistant clones with altered karyotypes following a few weeks
in culture.

2. The common feature for the survivor cells was the altered
karyotype and transcriptome profiles. Initially, the treatment-
induced chaotic genomes are highly dynamic, coupled with
massive cell death. Later on, many survivor cells are
relatively stable, reflected by clonal karyotypes. Comparing the
products of multiple runs of parallel experiments resulted in
survivor cells that shared similar phenotypes but displayed
different karyotypes.

3. The highly diverse types of chaotic genomes detected
immediately following drug treatment indicate that different
mechanisms can contribute to genome re-organization
including structural and numerical genome chaos (Heng et al.,
2013; Liu et al., 2014).

4. Despite that it took a much longer time to detect genome
chaos in the immortalization model than in the drug-resistant
model, the overall pattern was rather similar: high-level stress
triggers genome chaos; leading to genome re-organization
and macroevolution, followed by microevolution. Rapid
drug resistance is not mainly caused by preexisting gene
mutation, but drug treatment-induced new cellular species
(see Table 1 for more information regarding the two-phased
cancer evolution).

POLYPLOID GIANT CANCER CELLS: THE
NEW KID ON THE BLOCK

The clinical implication of treatment-induced resistance is highly
significant. However, the research community has paid little
attention to it as “these induced chaotic genomes are too
extraordinary to be true, they must be non-survivable thus not
important” (from an anonymous reviewer).

Despite that drug treatment-induced karyotype chaos
mediated rapid resistance was previously reported (Heng et al.,
2008), without the Genome Theory, and equally important,
without the lesson from the cancer genome project where the
genomic landscape of cancer is highly dynamic and hard to
target, the field was not ready to accept the new mechanism of
drug resistance.

Fortunately, increased sequencing data has forcefully
supported the importance of large-scale genome re-organization
in cancer evolution, albeit using different terms such as
chromothripsis, chromoplexy, chromoanagenesis and
Chromohelkosis to describe different subtypes of genome
chaos (Stephens et al., 2011; Baca et al., 2013; Iourov et al., 2020;
Pellestor and Gatinois, 2020). Then, interest emerged in the field
of polyploid giant cancer cells (PGCCs).

PGCCs and micronuclei clusters have been classified as
numerical NCCAs reflecting the chromosome instability (Heng
et al., 2008; Stevens et al., 2011). They were linked to
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TABLE 1 | Explanations of key concepts, terminologies, and original observations.

Genome chaos

a. Definition: Genome chaos, a process of complex, rapid genome re-organization, leads to the formation of new genomes with altered karyotypes. It was originally

described by karyotype analyses in 2006 and later confirmed by sequencing data (Heng et al., 2008; Liu et al., 2014). Chaos, as a behavior of complex adaptive

systems, does not simply mean random disorder. Since different types of triggers can reliably initiate the same cellular emergence mechanism, the initiation of genome

chaos is likely a programmed and non-random process. However, the stressors and resulting chromosomal variation subtypes are stochastic: many different molecular

mechanisms can achieve a state of genome reorganization within a selective evolutionary context (Heng and Heng, 2020).

b. Mechanism: Various stress conditions can trigger genome chaos. Genome chaos acts as an evolutionary survival mechanism under crisis. When the reorganization of

the genome creates new karyotype coding, new genomic information, the system inheritance, is created, which provides the precondition for macroevolution (Horne

et al., 2014; Heng, 2015, 2019; Ye et al., 2019a).

c. Biological significance: Genome chaos represents an effective means for creating new genomic information essential for evolution (both cellular adaptation and

organismal speciation). Drug treatment-induced drug resistance represents a good example. PGCCs, which are a numerical chaotic genome subtype, can be effectively

induced by drugs, and the rapidly reorganized genomes become new systems that are no longer drug-sensitive.

d. Genome chaos vs. other types of genetic variations: It is increasingly appreciated that many solid tumors display a significant proportion of triploid or tetraploid

karyotypes, offering diverse evolutionary potential. Drug-induced PGCCs, which are not present in primary tumors, often display much higher chromosomal numbers

than tetraploid. The key to understanding the power of PGCCs is not just their number of chromosomes, but the capability of creating new karyotypes through the

chaotic genome reorganization mechanisms. By rapidly bursting into small cells with different karyotypes, they can quickly deliver macroevolutionary success by

providing survivable karyotypes. PGCCs also can produce tetraploid karyotypes.

Karyotype chaos has a rather complicated relationship with genetic changes at the SNV/indel level. While in general, karyotype chaos often occurs during the

macroevolutionary phase, and gene-level changes dominate the microevolutionary phase, genome chaos also can lead to changes at the gene level. For example,

massive chromosomal rearrangement can produce many new fusion genes. Sequencing data also show the burst of gene mutation or copy number variations during

evolution. Further studies are needed to co-map different types of genomic alterations within the two-phased cancer evolution.

Accordingly, the above understanding will shine new light on diverse mechanisms of cancer drug resistance. Even though drug resistance comes in many flavors,

the time is ripe to pay attention to treatment-induced drug resistance and to compare different mechanisms (some of which co-exist) via the lens of two-phased cancer

evolution.

It is perhaps more important for the cancer research community to consider the realization that many gene-based mechanisms, such as gene amplification,

multidrug resistance, and non-genetic resistant mechanisms (Bell and Gilan, 2020), are responsible for drug resistance mainly developed within the microevolutionary

phase. By avoiding triggering the transition to the macroevolutionary phase, a treatment window can be created to moderately regulate cellular cancer populations

(rather than maximal killing that leads to macroevolution via genome chaos). Such a new frontier will lead to a truly balanced approach to fight cancer drug resistance.

Two phased cancer evolution

a. In contrast to the traditional views of the cancer evolution where stepwise clonal expansion dominates, the two-phased cancer evolutionary model divides cancer

evolution into two-phase cycles, each of which is comprised of a karyotype alteration-mediated punctuated macroevolutionary phase, followed by a stepwise

gene mutation-mediated microevolutionary phase. Each phase transition is co-mapped with a cellular crisis. Different types of cellular phase transitions, including

immortalization, transformation, metastasis, and drug resistance, follow the same pattern of two-phased evolution, although the genotypes of their end products

are highly stochastic. From an informational point of view, macroevolution is about new genomic information creation; microevolution is about genomic information

maintenance during population growth and information modification (by modifying the gene landscape).

b. The two-phased evolutionary pattern can explain organismal evolution well. The punctuated macroevolutionary phase is responsible for creating new systems (e.g.,

speciation events), while the microevolutionary phase is responsible for the population growth of the novel species.

Adaptive therapy

Adaptive therapy is a treatment strategy that aims to control cancer growth by adjusting treatment options based on evolutionary information (Gatenby et al., 2009;

Strobl et al., 2020). The idea was conceptualized based on the ecological consideration that cancer drug resistance could be reduced by leveraging intra-tumoral

competition between drug-sensitive and resistant cells. Rather than focus on maximally killing cancer cells, the rationale is to maintain a controllable stable tumor burden

by allowing a sizable population of treatment-sensitive cells to survive, which can suppress the growth of the less-fit resistant populations. It should be noted that based

on two-phased cancer evolution, the mechanism of how adaptive therapy works could be explained by an alternative idea: moderate drug treatment reduces

drug-induced genome chaos, which is responsible for rapid and massive drug resistance. Therefore, moderate killing power can constrain cancer growth without

triggering genome chaos-mediated macroevolution. If this explanation is correct, new strategies should be examined using a well-controlled evolutionary strategy for

drug treatment, such as selecting specific phases of evolution for treatment, as well as considering the dosage of drugs.

References for initial hypotheses and original observations

a. Genome chaos: PMID: 16688757; PMID: 18936532; PMID: 21215367; PMID: 23571381; PMID: 23622249; PMID: 24299711

b. Genome architecture theory (or genome theory): PMID: 18936532; PMID: 19334004; PMID: 21640814

c. Two-phased cancer evolution: PMID: 16688757; PMID: 19115235; PMID: 21399628; PMID: 25665006

d. PGCCs: PMID: 16314119; PMID: 16948503; PMID: 18936532; PMID: 23524583; PMID: 23571381; PMID: 27991913; PMID: 28436947

cellular immortalization and drug resistance via treatment-
induced numerical genome or karyotype chaos (Heng et al.,
2006, 2013; Liu et al., 2014). It was also observed that
some of the giant cells can generate viable cells (Erenpreisa
et al., 2005, 2020). The process can be linked to senescence,
polyploidy, and newly generated mitotic cells (Walen, 2005). The
exciting mechanisms of PGCCs in chemoresistance have become
clear. By reviewing the long-ignored history of the PGCCs
in laboratory observations, PGCCs have been purified and

cultured from cancer cells for characterizations, which illustrated
the dynamic relationship among stress, endoreduplication, cell
fusion, budded or burst cells, stemness, cancer evolutionary
potential, and chemoresistance (Zhang et al., 2014). Furthermore,
it was concluded that PGCCs may represent a fundamental
mechanism to initiate genome reorganization to generate new
cells in response to chemotherapy-induced stress and rapid
drug resistance (Niu et al., 2016), agreeing with the observation
that harsh treatment can induce genome chaos mediated
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drug-resistant phenotypes (Heng et al., 2008; Heng, 2015).
Finally, following the characterization of “the giant cell cycle,”
and the comparison of PGCCs with blastomeres, the relationship
between PGCCs, different types of cancers, and developmental
stages/hierarchy were synthesized, which laid out the strong basis
for PGCC studies (Niu et al., 2017; Liu, 2018, 2020). Meanwhile,
an exciting frontier of using PGCCs to study drug resistance has
emerged, involving diverse molecular mechanisms (Mirzayans
et al., 2018; Lin et al., 2019; Herbein and Nehme, 2020; Mannan
et al., 2020; Pienta et al., 2020b; Tagal and Roth, 2020; White-
Gilbertson and Voelkel-Johnson, 2020).

THE CRISIS CREATED NEW KARYOTYPE
INFORMATION: MECHANISM OF
TREATMENT-INDUCED
MACROEVOLUTION

Many individual molecular mechanisms are identified to
explain different ways of producing chaotic genomes including
chromothripsis, chromoplexy, and PGCCs, based on neo-
Darwinian’s gene-centric, microevolutionary principles.
According to the evolutionary mechanism of cancer, many
specific molecular pathways can be linked to stress-caused
genome dynamics. However, the evolutionary significance,
perhaps, is not about any given subtype(s) of the chaotic genome,
but rather the consequence of this stress-induced process
to create new genomes with new genomic information. For
example, these drug-induced giant cells are unstable, which
can generate drug-resistant cell populations with re-organized
genomes. The general model that integrates “high stress in
crisis,” “chaotic genome like giant cell,” “new karyotypes,” and
“drug-resistance” can be described as a three-stage-process based
on two-phased cancer evolution: (1) Under high stresses with
cell-killing power, a conservative developmental-related process
is active leading to polyploidization. (2) The self-organization
process generates large numbers of smaller cells with new
genomes selected by genome chaosmediatedmacroevolution. (3)
The survivor cells can further grow into dominant populations
via microevolution, often with help of diverse cancer genes. In
other words, high stress is the trigger factor, giant cells are the
transitional phenotype, genome chaos is the process for rapid
and massive genome re-organization, and the newly formed
karyotypes of the survivor cell populations are the genotype of
drug resistance. Alternatively, some cells can directly re-organize
their genome without going through the polyploidization
process. All roads lead to new information creation. This
explanation fits well with Genome Architecture Theory where
karyotype codes system inheritance, and re-organization of the

genome represents a powerful way to generate new genomic
information essential for cancer macroevolution. The formed
cancer systems could grow into dominant cell populations
with the help of gene mutation/epigenetic alteration-mediated
microevolution (Heng, 2009, 2019; Ye et al., 2019a,b; Heng and
Heng, 2020). A recent report that links genome chaos and then
gene amplification in drug resistance can be better explained by
the above two-phased model (Shoshani et al., 2021).

ACTIONS

The above understanding has diagnosed the conceptual
limitations of current treatment strategies, which are
mainly focused on killing cancer cells based on the stepwise
microevolution cancer model. Knowing that drug treatment
can paradoxically harm patients by promoting cancer
macroevolution through the creation of new karyotypes,
urgent actions are needed for the following priorities: First,
validation that drug-induced genome chaos-mediated drug
resistance is common in the clinical setting. It is important
to know to what extent can this phenomenon be avoided by
modifying treatment strategies. Second, we hypothesize that
reduced genome chaos might be the reason behind the success of
adaptive therapy (Gatenby et al., 2009; Heng and Heng, 2020).
We further anticipate that by using lower dosage specifically
within the microevolutionary phase, adaptive therapy will have
better results. Third, as a high level of chromosomal structural
abnormality can suppress the immune response to tumor cells,
it is important to investigate if treatment-induced genome
chaos represents a potential mechanism of escape from immune
therapy. Finally, accepting two-phased active cancer evolution
(not just passive selection) and applying different diagnostic
and treatment strategies accordingly holds the key for future
therapeutic success (Heng, 2015, 2019; Shapiro and Noble, 2020).
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