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There are no effective strategies for the successful treatment of glioblastomas (GBM).
Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal
GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high
migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance
is mostly driven by tumor cell plasticity: a concept associated with reactivating
transcriptional programs in response to adverse and dynamic conditions from the
tumor microenvironment. Autophagy, or “self-eating”, pathway is an emerging target for
cancer therapy and has been regarded as one of the key drivers of cell plasticity in
response to energy demanding stress conditions. Many studies shed light on the
importance of autophagy as an adaptive mechanism, protecting GBM cells from
unfavorable conditions, while others recognize that autophagy can kill those cells by
triggering a non-apoptotic cell death program, called ‘autophagy cell death’ (ACD). In this
review, we carefully analyzed literature data and conclude that there is no clear evidence
indicating the presence of ACD under pathophysiological settings in GBM disease. It
seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly
from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that
autophagy is an emblematic example of the ‘dark-side’ of a rescue pathway that
contributes profoundly to a pro-tumoral adaptive response. From a standpoint of
treating the real human disease, only combinatorial therapy targeting autophagy with
cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development
of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and
enhance the sensibility of glioma cells to conventional therapies.

Keywords: autophagy, glioblastoma, intratumoral heterogeneity (ITH), drug resistance, cell invasion, pro-tumoral
INTRODUCTION

Glioblastoma (GBM, grade IV astrocytoma) is the most frequent, life-threatening malignant brain
tumor and one of the most resilient of all human malignancies. Those tumors are classified and
subtyped based on histopathological traits, clinical presentation, and molecular status (1). The
current treatment for GBM includes gross neurosurgical resection with the oral use of alkylating
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agent temozolomide (TMZ), which is given concurrently with
radiotherapy (RT) and as an adjuvant monotherapy. Despite
aggressive treatments, patients have a low median survival of ~12
months (2–4).

One of the key factors in GBM’s aggressiveness and resilience
is their high cell plasticity: a concept associated with phenotype
switching, based on the reactivation of transcriptional programs
related to the acquisition stem cell properties and the migratory
phenotype (5). In the context of anti-glioma therapies, cell
plasticity enables tumor cells to change to a cell phenotypic
identity, enabling them to survive the dynamic changes of the
tumor microenvironment (TME) and to escape surgery and
radiotherapy margins by migration. A remarkable example of
this plasticity in GBM cells was conceptualized in the “go-or-
grow” dichotomous concept in gliomas. It is based on the notion
that phenotypically distinct GBM cells (at the “go” or “grow”
states) coexist and cooperate to promote tumor growth and
clinical relapse: chemoradiation effectively eliminates the bulk
population of highly proliferative cells (at the “grow” state),
leaving behind a subpopulation of dormant/migratory cells (at
the “go” state). “Go” and “grow” states are completely reversible
insofar as GBM cells change their phenotypes without genetic
mutations. This plasticity is controlled by different signaling
pathways that drive adaptive responses and emerge as a non-
genetic source of functional intratumoral heterogeneity that,
ultimately, mirror tumor resiliency and high patient mortality
(2, 6, 7).

Autophagy (greek “self-eating”) is a good example of
signaling pathway associated with the phenotype switching and
metabolic flexibility of GBM cells. It is primarily a degradative
pathway characterized as a fast route by which damaged
cytoplasmic materials (collectively named ‘cargo’) are delivered
to the lysosomes for recycling. Autophagy can be categorized
into 3 subtypes called, micro-autophagy, macro-autophagy, and
chaperone-mediated autophagy (for more detailed insights into
the different autophagic pathways see (8–10).

Macroautophagy (hereafter referred to as autophagy) must
take place on a baseline in each cell to withdraw damaged and
functionless organelles, providing metabolites to synthetic
pathways and sustaining energetic homeostasis. In the brain,
baseline autophagy is important as a clearance mechanism of
disease-related proteins in neurons and also in astrocytes, and
autophagy dysfunction may contribute to the progression of
neurodegenerative diseases (11). However, a selective activation
of autophagy can be observed in various pathophysiological and/
or stress situations (12–15). For example, in normal brain Beclin-
1 (BECN1), a gene with a central role in autophagy induction
(16), was not expressed by neurons or glial cells, but showed
strong cytoplasmic overexpression in primary GBM cells (17).
Moreover, in response to standard of care in patients with GBM
(radio- and chemotherapy), the autophagy pathway is
upregulated giving tumor cells an advantage for survival. In a
series of clinicopathological studies, cancer cells exhibit an
increased autophagy activity linked with poor prognosis and
aggressive clinical behavior (17–19). Those are emblematic
examples of the ‘dark-side’ of autophagy, acting as a therapy-
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responsive mechanism associated with a pro-tumoral adaptive
response (20–25).

On the other hand, there are numerous reports, mostly from
in vitro cell-based studies, showing an anti-tumoral function of
autophagy. Those reports have clearly shown that excessive
activation of the autophagy by prolonged or supraphysiological
doses of stress signals, may lead to massive removal of cytosolic
material, leading to a specific type of non-apoptotic cell death,
named type II programmed cell death, or autophagic cell death
(ACD). ACD is characterized by large-scale autophagic
vacuolization of the cytoplasm in the absence of chromatin
condensation and can be specifically blocked by the inhibition
of autophagy-related genes (ATG) (26, 27). Due to this ‘dual’ role
in human cancers cells, autophagy is, therefore, often been
described metaphorically as a ‘double-edged sword’ in cancers.
Importantly, the studies that explore the mechanisms of ACD are
mostly from in vitro cell-based approaches, which provide us a
precious source of mechanistic insights, but are of limited
translational relevance. Of note, there is no doubt that GBM
cells activate autophagy shortly before or during their death in
according to the external cues or internal stimuli received, but it
is still controversial whether this activation contributes to cell
death or rather represents a last attempt of survival.

So, to understand the real effect of autophagy in GBM disease is
necessary to analyze cancer cells under normal pathophysiological
conditions and therapeutic doses. In the next sections, we will focus
on the specific extracellular signals that surround tumors and play
an important role in controlling autophagy in GBM cells. Important
is the notion that our particular emphasis was given to studies that
evaluate the relationship between autophagy and GBM from a
perspective of understanding and treating human disease.
Therefore, studies using in vitro cell-based models, inducing ACD
by excessive stress signals, were not fully considered here, except for
the mechanistic data.
AUTOPHAGY ACTIVATION AS A
RESPONSE TO PATHOPHYSIOLOGICAL
STRESS

Necrosis and acidic stress are the most important stress signals in
GBM microenvironment related with autophagy activation.
Tumor necrosis is a histological hallmark of grade IV
astrocytic tumors with prevalence in almost 90% of patients
with GBM (1, 28, 29). Necrosis appears as either multifocal areas
(micronecrosis) or broad necrotic areas surrounded by
hyperproliferative zones of tumor cells, called perinecrotic
niches (PNN), which is visible as a soft, gray rim surrounding
necrotic areas by magnetic resonance imaging (MRI). During
disease progression and treatment response, GBM cells have to
change their metabolism to survive in PNN, characterized by
intermittent hypoxia (defined by low oxygen levels, pO2 < 3%)
and starvation conditions due to poor functional vasculature (30,
31). This configuration is indirectly linked to poor patient
outcome and associated with radio and TMZ resistance (32,
33). Hypoxia, per se, is well known to create radiation and
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chemotherapy resistances (34). As part of the physiological
adaptive response, the PNN stimulates the stabilization of
hypoxia-induced factors (HIFs), HIF1a and HIF2a, resulting in
a driving force for activation of anti-apoptotic and pro-migratory
transcriptional programs, supporting angiogenesis (35, 36), and
re-expression of markers and properties typical of glioma stem
cells (GSCs) (30, 37–42). Interestingly, hypoxia, starvation and
conventional anti-glioma therapies stimulate the onset of
autophagy above baseline levels in GBM cells.

Hypoxic conditions also shift GBM cells towards aerobic
g l y co l y s i s , r a t h e r t h an m i t o chond r i a l o x i d a t i v e
phosphorylation, promoting an acidic environment, potentially
favoring tumor invasion by pH-dependent activation of
proteinases (e.g. heparanases and cathepsins) (43). Heparanase
(HPSE) is an endo-b-D-glucuronidase that has both enzymatic
and non-enzymatic functionalities in a pH-dependent manner.
HPSE expression is intrinsically correlated with GBM
progression, worse prognosis (44), and cell invasion (45).
Intriguingly, autophagy is one of the cellular mechanisms
regulated by heparanase activity in various tumors, including
brain tumors (46). Notably, autophagy induced by starvation in
GBM cells was prevented by the use of a potent heparanase
inhibitor. Moreover, in these cells the pro-tumorigenic function
of heparanase is mediated by autophagy activation, enhancing
chemotherapy resistance in nutrition-stressed environments.
The mechanism underlying heparanase-induced autophagy is
not fully understood but appears to involve mTOR1 inhibition,
which plays a pivotal role in nutrient-sensing and autophagy
regulation in vitro (47).

Cathepsins belong to a class of cysteine proteinases that is
mainly expressed by GSC subpopulations of IDH wild-type
GBM patients (48). Cathepsins can be secreted into the
extracellular space and have an optimum activity on acidic
environments to further activate MMP proenzymes (49), with
have an important role in controlling tumor cell invasion, stem
cell phenotypes (50–53) and tumor progression (54). Cathepsin
D levels, for example, are strongly and positively correlated with
LC3A and LC3B expression in GBM patients (markers for
autophagosome levels) (17). Moreover, inhibition of Cathepsin
D attenuates autophagy, leading to increased radiosensitivity in
GBM cells. In radioresistant cells, Cathepsin D has been
positively correlated with LC3-II and negatively correlated with
p62 (55), a protein that targets specific cargoes for autophagy
(56). The expression levels of another member of family, the
Cathepsin L, are higher in GBM compared to low-grade gliomas
(57), exerting an important role in migratory phenotype (51, 52,
58, 59) and g-radiation-induced GBM cell invasion (59).
Interestingly, autophagy inhibition by trifluoperazine induces
radiosensitivity in GBM cells mediated by Cathepsin L
downregulation (60).

Interestingly, at PNN (i.e. under physiological hypoxia),
autophagy activation via BNIP3/BNIP3L is a survival
mechanism that promotes GBM progression and resistance to
anticancer therapies in vivo (61). Recently, a global analysis
conducted by Bronisz et al. that included 41 GBM patient’s
cohort identified the autophagy pathway as the unique de-
Frontiers in Oncology | www.frontiersin.org 3
regulated pathway in PNNs of primary GBMs (32). These
analyses indicate that poorly perfused tumor regions are likely
to have increased baseline autophagic levels and, therefore, under
hypoxic conditions, the increased autophagic flux may play an
adaptive role (62, 63). Under hypoxia, autophagy is activated by
BECN1 phosphorylation via the HIF-1a/BECN1 signaling
pathway, one of the initial steps in the assembly of
autophagosomes from pre-autophagic structures (64–66).
Moreover, PNN in GBM disease also show the overexpression
of interleukin 6 (IL6), an inflammatory cytokine that is essential
for hypoxia-induced autophagy and induction of invasive
programs in GBM cells (67–71). At this point, is important to
notice that under in vitro prolonged hypoxic stress (48-72h, <1%
pO2), the gene BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting
protein 3), a pro-apoptotic Bcl-2 family member, is upregulated,
leading to hypoxia-dependent ACD in GBM cells (72).
Mechanistically, BNIP3 upregulation releases BECN1 from the
complexes with Bcl-2 or Bcl-xL, allowing BECN1 to activate
autophagy (73). It becomes especially critical to note that the
nature of the autophagic response to hypoxia - a cytoprotective
or cytotoxic output - depends on the extent and duration of the
microenvironmental stressor, on the experimental design, as well
as, on the genetic background of the tumor cells.

Alternative forms to GBM cells to adapt or to avoid poor
oxygenation and hostile microenvironment are through the
vasculogenic mimicry (VM) phenomenon (74) and the
activation of migratory programs by altering the composition
of the TME (75–77). VM represents an impressive example of a
higher phenotype flexibility of GBM cells. GBM cells capable of
VM formation organize themselves into functional vascular-like
structures, ensuring tumor blood supply independently of
normal blood vessels or angiogenesis. In this scenario, it has
been shown that VM formation in glioma patients was associated
with the expression of BECN1 (16).

Moreover, as a part of adaptive programs, VM formation is
also promoted by Bevacizumab (BVZ)-induced autophagy in
GSC, an anti-VEGF antibody that received accelerated approval
by the FDA to treat recurrent GBM (78), which is associated with
tumor resistance to antiangiogenic therapy (see below) (79). VM
was also associated with high expression of HIF-1a (80) and
upregulation of the IL-8/CXCR2 pathway (81). It is also
conceivable that autophagy may contribute to the increased
production of multiple pro-invasive cytokines, including
interleukin-6 (IL-6) and -8 (IL-8), which, in turn, may
reactivate a pro-invasive and GSC transcriptional programs,
leading GBM cells to the “go” state, allowing them to migrate
away from cytotoxic niches towards a support ive
microenvironment (69, 82).

Decorin (DCN), a member of the small leucine-rich
proteoglycans (PGs) family, has a vital role in the hypoxia-
dependent activation of autophagy and anti-glioma therapy
resistance, mainly due to their binding to VEGFR2 expressed
by vECs, particularly in PNNs of glioma samples, or with the
binding to c-Met and EGFR receptors expressed by GBM cells
(83, 84). High levels of c-Met or DCN correlate with shorter
progression-free survival (PFS) and overall survival (OS) in
June 2021 | Volume 11 | Article 652133

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jandrey et al. Autophagy and GBM Resilience
patients with GBM (85–88). The high-affinity DCN/receptor
interaction leads to increased expression of paternally expressed
gene 3 (Peg3), that physically associates with BECN1, recruiting
LC3 into autophagosomes (89, 90). Complementarily, in GSC-
enriched environments, GBM cells produce a high amount of
PGs, such as DCN and Lumican, promoting chemotherapy
resistance and cell survival (91). Curiously, as observed in
several types of non-central nervous system tumors (92, 93),
soluble DCN potently induces autophagy in GBM cells and
contributes to an impairment of GBM cell migration in vitro
experiments (94). Other extracellular matrix (ECM) proteins,
such as endostatin, perlecan, and endorepellin, can influence
tumor progression by regulating autophagy levels in endothelial
cells, controlling vessel formation and neo-angiogenesis in
response to hypoxia (95, 96).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO PHYSIOLOGICAL SIGNALS

Once PNN and other stress signals reactivate migration
programs to drive plasticity and invasiveness in GBM cells,
invasive growth along specific anatomical structures, especially
at the vasculature and white matter tracts, is regarded as the main
cause of poor therapeutic outcome of patients with GBMs. The
migration occurs at perivascular niches (PVN), besides PNN,
and considered the preferred and fastest route for GBM cell
invasion through brain tissue (97). PVNs are fluid-filled spaces,
continuous to the subarachnoid space, surrounding all blood
vessels in the brain, including capillaries and arterioles. Based on
histological information and in situ experiments, a widely
accepted idea is that GBM cells actively seek out PVNs and
migrate along with them (98, 99). For example, bradykinin,
produced by cerebral vascular endothelial cells (vEC), acts as a
strong chemotactic signaling peptide, guiding GBM cells toward
PVN. Therefore, when injected into mice brain, the vast majority
(over 85%) of human GBM cells move into contact with a blood
vessel (100). At PVN, cerebral vECs are in the closest proximity
to tumor cells. This heterotypic interaction induces a GSC
transdifferentiation, which is critical for the malignant traits of
the disease and supports the notion that stemness is a temporary
reversible trait of GBM cells. The GSC phenotype is maintained
by vECs via mediators, such as nitric oxide (NO), cyclic
guanosine monophosphate (cGMP), and Notch1 ligands (97,
101–104). The stemness phenotype has been recently associated
to autophagy activation and is one of the most important
processes in the PVN responsible for the maintenance of GSC
status besides PNN (105, 106). Additionally, the interaction
between GBM cells and pericytes at PVN leads to chaperone-
mediated autophagy in normal pericytes, building an
immunosuppressed microenvironment that induces GSC
phenotype and tumor growth (107). Interestingly, activation of
protective autophagy in cerebral vECs is one of the essential
physiological processes responsible for maintaining vascular
homeostasis, and playing an important role in vECs
proliferation, migration, and tube formation (108, 109). Other
Frontiers in Oncology | www.frontiersin.org 4
types of vEC-derived molecules also promote autophagy and
correlate with stemness in GBM cells. For example, osteopontin
(OPN), derived from the vEC, plays an oncogenic role and
initiates a stem-promoting cascade and enhances autophagy
through an integrin-CD44 dependent activation of HIF genes
at PVNs (110, 111). OPN-elicited autophagy could promote
cancer cell survival, resistance to chemotherapy drugs, and has
been associated with increased glioma grade and migratory
potential (112).

The melanoma-differentiation associated protein 9 (MDA-9,
also called Syntenin-1) is another ECM protein that sponsors
tumor invasion mainly by regulating the cell surface receptor
Syndecan (113). In GBM, MDA-9 expression is an important
regulator of cell invasion (114), stemness phenotype, and
survival of GSCs through STAT3 and Notch1 pathways,
respectively (115). Interestingly, the MDA-9 is responsible for
activating protective autophagy in GSCs in vitro through the
EGFR/FAK and EGFR/PKC axis, inhibiting anoikis (a
s u s p en s i on - i ndu c ed f o rm o f a pop t o s i s ) b y t h e
hyperphosphorylation of Bcl-2 (116). In this scenario,
autophagy often is activated in these cells as a compensatory
pro-survival adaptation to detachment stress. In such cases,
autophagy precedes (and usually avoids) anoikis by removing
pro-apoptotic proteins in the cytosol. For example, depletion of
ATG5 or ATG7 inhibits detachment-induced autophagy and
enhances anoikis (117, 118). A higher expression of MDA-9 has
been linked to higher glioma grade and short-term
survival (119).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO ANTI-GLIOMA THERAPIES

RT plus concomitant and maintenance TMZ is the gold standard
treatment and represent a major advance in the field of therapy
for high-grade gliomas (7, 120). The addition of BVZ to standard
treatment revealed an improvement in progression-free interval
but had no effect on OS (121). Intriguingly, virtually all glioma
therapies, including RT, TMZ and/or BVZ, are stronger inducers
o f au tophagy pa thway : s e v e r a l p r e - c l i n i c a l and
clinicopathological studies indicate that increased autophagy
activity help to desensitize GBM cells to treatment and it is
linked with poor prognosis in different cancers (21). Inversely,
others observations shown that excessive intensification of
autophagic process lead to cell exhaustion and death (26, 62,
72, 122). So, despite the potential ‘dual’ role of autophagy has
been clearly observed in cell-based studies, in ‘real’ disease, the
predominant data conduct to the idea that therapy-induced
autophagy is acting as an adaptive response and a protective
mechanism in GBM cells instead of eliciting cell death.

The study of Natsumeda et al. (2011) is probably the first to
show the induction of autophagy by TMZ in glioma cells and in
reactive astrocytes of glioma patients by immunohistochemical
analysis, indicating some type of stress response in tumor and
normal cells (22). The addition of chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ) – both inhibitors of
June 2021 | Volume 11 | Article 652133
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autophagy by blocking autophagosome fusion and degradation -
to TMZ-treated glioma cells attenuates autophagy flux, induces
accumulation of the proautophagy proteins (LC3-II) and
promotes endoplasmic reticulum stress and cleavage of PARP
(a marker of apoptosis) (123). Many other studies observed that
blocking autophagosome formation enhances TMZ cytotoxicity,
indicating that the autophagy pathway may protect GBM cells
from TMZ-induced cytotoxicity (25, 123). For example, it has
been demonstrated that CQ plus TMZ significantly increased the
amounts of cleaved PARP (a marker for apoptosis) over those
cells treated with TMZ alone. The pharmacological inhibition of
autophagy by CQ also negatively dictates the migratory capacity
of GBM cells, corroborating the role of autophagy with other
aspects of adaptive phenotype and cell plasticity (124). While
other authors have suggested that autophagy is the main
component of TMZ-induced cytotoxicity and that inhibition of
the autophagy significantly influences the antitumor effect of
TMZ in vitro (20).

Ionizing radiation is the gold-standard adjuvant treatment for
GBM. Radiotherapy also results in enhanced autophagy in GBM
cells in vitro (125). When irradiated, many GBM cells undergo
cell death by apoptosis, whereas GBM cells that do not undergo
apoptosis activate autophagy, suggesting a protective mechanism
(24, 125).

It has also been demonstrated that CQ treatments can increase
radiosensitivity in GBM cells (25). Moreover, CQ worked
synergistically with radiotherapy for induction of apoptosis in
GSC; thereby acting as a protective mechanism (126). Another
study showed that DNA-protein kinase-deficient GBM cells (DNA-
PK), an enzyme that plays a critical role in DNA double-strand
breaks repair, underwent massive ACD even after low doses of g-
radiation in cell lines in vitro. Intact DNA-PK pathway prevented
ACD, but cells still exhibited a low apoptotic tendency, indicating
that genetic background takes a leading role on the sensitivity of
treatment and cell fate determination (127).

Another example of therapy-induced autophagy occurs after
the use of antiangiogenic therapies in GBM. The addition of BVZ
to conventional chemoradiation improved the PFS but did not
affect OS (121). At the TME level, BVZ induces a hypoxic niche
that results in protective autophagy sponsoring GBM cell
resistance and survival. Alternatively, BVZ induced autophagy
directly in GBM cells by suppressing the Akt-mTOR signaling
pathway (128). Furthermore, BVZ-mediated autophagy is also
dependent on interferon regulatory factor 1 (IRF1) expression in
gliomas (129). Moreover, GBM cells expressing the stem cell
markers CD133 and Sox2, and residing in the PVN, internalize
BVZ through micropinocytosis, leading to autophagy activation
and cell survival (130). Autophagy inhibition by ATG7 silencing
rescued GBM sensitivity to BVZ treatments (131).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO INTERNAL STIMULI

Autophagy in GBM cells is triggered in response to external or
internal stimuli. Internal stimuli is manifested directly by
Frontiers in Oncology | www.frontiersin.org 5
alterations in ATG or indirectly by oncogenic proteins
commonly found aberrantly expressed in GBM and lower-
grade gliomas. The following subsections cover the most
important genetic events for gliomagenesis and their specific
genetic aberrations associated with autophagy activation.

There are 16 known ATG in humans, four of which (ATG2B,
ATG5, ATG9B and ATG12) are frequently mutated in gastric
and colorectal cancers, and in hepatocellular carcinoma, and
may be causally associated with cancer development by
deregulating the autophagy process (132, 133). Large-scale
genomic analysis indicates that core autophagy genes are
generally not mutated in patients of 11 human cancers,
including GBM, suggesting that the autophagy machinery is
functional in cancer types investigated (134, 135). At a clinical
perspective, several ATG signatures have been emerging as
important prognostic factors for GBM patients, and autophagy
high scores have been related to worse outcomes (136–138). For
example, Wang and colleagues described that a robust 14-mRNA
prognostic signature was an independent prognostic factor
associated with OS in GBM’s patients (HR=1.9, 95% CI =
1.013-3.644, p value = 0.045) (136). Moreover, several other
research groups have correlated the higher expression of ATGs
with glioma aggressiveness, including patient’s poor survival and
tumor progression (139–143). Despite their prognostic
relevance, for future clinical applications, it is also important to
integrate with other types of s ignatures (such as
protein signatures).

Large-scale genomic studies showed that primary GBM arises
from defects in three main molecular signaling pathways
involving p53, Rb, and phosphoinositide 3-kinase (PI3K)
(144). The phosphatidylinositol 3-kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) cascade is recognized
as an important sensor of nutrient/growth factor availability and
a major pathway regulating autophagy in human cancers. In a
permissive microenvironment, active PI3K/Akt/mTOR cascade
constitutively suppresses autophagosomes biogenesis by
inactivating the ATG1/ULK1 complex or by sequestration and
inactivation of BECN1, both considered key initiators of the
autophagic pathway (145, 146). Inhibitors of Akt/mTOR activity,
such as rapamycin analogs, intensify the autophagic process
(147). However, under stressful conditions, PI3K/Akt/mTOR
cascade is normally inactivated through extracellular signals,
like intermittent hypoxia and depletion of nutrients, leading to
the extrinsic activation of protective autophagy. Nevertheless, in
GBM samples, activation of PI3K/Akt/mTOR cascade is
observed in almost 90% of the cases, and caused by the
overexpression of upstream activators, like epidermal growth
factor receptor (EGFR) or c-Met, activating mutations of PI3CA
(p110) or PIK3R1 (P85) (148–150), and inactivating mutations
in the phosphatase and tensin homolog (PTEN), a negative
regulator of PI3K activity (loss-of-function mutations in PTEN
are present in almost 60-85% of GBMs) (151, 152). Moreover,
the use of a potent PI3K inhibitor promotes autophagy activation
at the expense of invasion and angiogenesis impairment in GBM
cells. Furthermore, PI3K inhibition also restrained tumor growth
and significantly prolonged mouse survival (153). In addition,
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GBM cells harboring mTOR hyper-activation, showed an
increment of autophagy after the use of rapamycin (154).

The deregulation of the tumor protein p53 (TP53) pathway
accounts for approximately 85% of GBMs, including alterations
on CDKN2A, MDM2 and TP53 genes (155). Members of this
signaling pathway have been described as modulators of
migration, invasion, proliferation, and stemness, leading to
poor prognosis in GBM patients (155). Regarding autophagy
activation, nuclear p53 induces the expression of the ATGs:
DRAM, and Sestrins 1/2. Indeed, DRAM1 is considered the
regulator of the autophagy activation mediated by nuclear p53
(156–158), promoting migration and invasion of glioma stem
cells (141). Interestingly, cytoplasmic p53 inhibits autophagy, but
external stressors, such as nutrition starvation, induces the
destruction of cytoplasmic p53, sustaining autophagy
activation (159, 160). More recently, it has been shown that
combined therapy with TMZ and CQ synergistically reduces cell
proliferation and enhances apoptosis in p53-wild type cells.
Overexpression of mutant p53 abolishes the autophagic
vacuoles (161).

The Retinoblastoma gene (RB1) is a tumor suppressor gene
commonly mutated or deleted in GBM and correlated with lower
survival rates in astrocytomas patients (162, 163). Functionally,
Rb inhibits cell cycle progression and promotes cell survival by
controlling the function of the E2F transcription factor (164).
Besides cell cycle transition control, Rb also influences tumor cell
differentiation, senescence, apoptosis, and autophagy (165).
Indeed, Rb downstream effector E2F1 directly mediates the
expression of the autophagy-related genes LC3, ATG1, and
DRAM (166). In GBM cells, it has been shown that Rb binds
to E2F, repressing its activity, and leading to autophagy
induction. Indeed, Rb activity or E2F1 silencing induced
autophagic flux through increased autophagosome formation
(167). Interestingly, while the binding of Rb to E2F promotes the
activation of autophagy, Rb phosphorylation represses its
binding to E2F and leads to apoptosis activation (168). In this
scenario, it has already been shown that the Rb-E2F axis
regulates the expression of the BNIP3 gene, an essential gene
that mediates hypoxia-induced autophagy, promoting
autophagosome formation in nutrient-deficient environments
(169). Rb-induced autophagy is considered a resistance
mechanism in GBM cells treated with etoposide or cisplatin
(170, 171).

The most relevant and frequent oncogenic alterations in
GBM patients involve the Epidermal growth factor receptor
(EGFR), comprising 57% of patients. These alterations include
mutations, rearrangements, amplifications, and splicing variants
that lead to enhanced tumor growth, angiogenesis, survival, and
stemness (148, 172). Intriguingly, due to the functional impact of
EGFR alterations on tumor aggressiveness, lower- grade gliomas
harboring EGFR amplification are considered “GBM-like
tumors” due their aggressive phenotypic behavior (173).
Beyond the known pathological role of EGFR on GBMs, their
functions in autophagy regulation are emerging, indicating that
it directly acts as a controller of the autophagic flux by mTOR
signaling modulation (174, 175). EGFR-mediated autophagy
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exerts relevant roles in gliomagenesis, tumor progression, and
therapy resistance (176). Clinically, GBM patients with low levels
of EGFR and high expression of BECN1 have a median overall
survival of 30 months, presenting a favorable response to
radiotherapy (177). Therapeutically, the combination of
tyrosine kinase inhibitors (TKI), such as erlotinib, with CQ
increases the antineoplastic effect of the TKI on apoptosis-
resistant GBM cells (178). Surprisingly, another EGFR
inhibitor, called BIBU, impaired Akt and STAT3 activation,
induced apoptosis death, and activated protective autophagy
(179). The constitutively active mutant allele of EGFR, known
as EGFRvIII is an important mediator of autophagy (180). It
occurs in 20–30% of all human GBM, making it the most
common EGFR mutant in GBM (181, 182). EGFRvIII-
expressing GBMs are intrinsically resistant to apoptosis
induced by radio- and chemotherapy (183, 184). Interestingly,
these tumors have autophagy over-activation under hypoxic
conditions and patients benefit from the use of CQ (180).
Intriguingly, GBM cells harboring EGFRvIII alterations are
more sensitive to the pharmacological inhibition of mTOR (185).

c-MET (also called HGFR) is a type of Receptor Tyrosine
Kinase mutated in 6% and amplified in 4% of patients with GBM,
leading to constitutive activity. Patients harboring c-MET gain-
of-function alterations present a shorter survival and poor
response to treatment (186). The enhancement of c-Met
activity induces GBM cell survival, proliferation, invasion,
angiogenesis, and stemness (187). The intracellular pathway
triggered by c-MET is PI3K/Akt signaling. Additionally, cell
invasion mediated by c-MET relies on Focal Adhesion Kinase
(FAK) activity (188). Interestingly, c-MET expression was
correlated with autophagy activation in GSCs, positively
regulating their migratory and invasive capacity (141). c-MET
expression abrogation by epigenetic silencing in glioma cells
suppresses Akt pathway activation and up-regulates the
expression of the autophagy-related protein Atg5, resulting in
tumor growth reduction (189).

Isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations are the
most important molecular markers in diffuse gliomas due to
their high impact on patient survival improvement and tumor
development (190, 191). IDH1 mutations (IDHmut) are present
in more than 80% of low-grade gliomas (grades II-III) and in
secondary GBMs, but are rare in primary GBMs (190, 192).
Mutations in IDH2 have been found in fewer than 3% of glial
tumors. Patients with lower-grade gliomas (grades II-III) and
glioblastoma show significantly longer OS in the presence of
IDH1 or IDH2 mutations (192). The prognostic importance of
IDHmutation is independent of other known prognostic factors,
including age, grade, and MGMT methylation status. IDH
mutations promote a metabolic reprogramming mainly due to
the accumulation of the oncometabolite 2- hydroxyglutarate (2-
HG), which, in turn, induces the epigenetic silencing of several
genes from the glycolytic pathway (193, 194). Moreover,
IDH1mut is associated with a distinct hypoxia/angiogenesis
transcriptome signature and stabilization of HIF-1a levels in
glioma cells (195), important autophagy regulators (see above).
Recently, four different groups identified distinct autophagy
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signatures with prognostic value in GBMs. High autophagy risk
signatures were correlated with patients’ worse outcomes.
Besides the absence of gene intersection between the
signatures, all four achieve the same results: patients with
IDHmut tumors presented a lower autophagy-related risk
signature compared to IDH wild-type (IDHwt) gliomas,
denoting an increased autophagy activation in IDHwt GBMs
(136, 137, 196, 197). In the same direction, beyond the gene
signatures, it has been shown that higher expression levels of the
ATG proteins: LC3, Beclin-1, and p62 are more prevalent in
IDHwt gliomas in than IDHmut gliomas (139).

Promoter methylation of the O-6-Methylguanine-DNA
Methyltransferase (MGMT) gene is a prognostic marker in
patients with glioma because MGMT methylation leads to better
response to alkylating agents, such as TMZ (198). Indeed, patients
harboring MGMT-methylated GBMs had a 10-month and 4-
month higher median overall and PFS, respectively, compared
with MGMT-non-methylated patients (199). Interestingly, two
different groups showed that MGMT-methylated gliomas
presented a lower autophagy risk score compared with MGMT-
non-methylated patients (136, 137). In agreement with these data,
GBM cell lines that naturally do not express MGMT, highly activate
autophagy after TMZ treatment. However, when cells were stably
transfected with MGMT, the number of autophagic vacuoles was
abrogated after TMZ treatment (122).

Finally, beyond the role of oncogenes, tumor suppressor genes
and their downstream signaling molecules, the control of autophagy
activation in GBM also relies on the signaling pathways involved in
stemness (200). These pathways are mainly involved in the
acquisition and maintenance of the GSC phenotype, including
Notch, Wnt/b-catenin, and Hedgehog pathways. In gliomas, the
activation of Notch signaling correlates with more aggressive tumor
phenotypes (201). Besides activation of the Notch pathway, its
members and ligands are rarely mutated in GBMs (202). The
connection between the Notch pathway and autophagy was first
described in U87MG and U251 GBM cell lines. When the Notch1
receptor was genetically silenced in these cells, they showed reduced
proliferation and viability. GBM growth impairment was correlated
with the augmented expression of the autophagy-related proteins
Beclin-1 and LC3-II in NOTCH1-silenced cells (203).
Complementarily, when autophagy was induced in GSCs by
mTOR inhibition, the Notch1 receptor was degraded. Indeed, the
impairment of Notch1 signaling induced by autophagy activation
led to a decreased tumorigenicity and self-renewal capacity of GSCs
(204). Interestingly, the degradation of Notch1 by autophagy is
mediated via autophagosome-precursor vesicles positively
expressing the autophagy-related protein ATG16L1 (205), and by
the direct binding of p62 to Notch1 Intracellular Domain (NICD)
(206). In contrast, the pharmacological blockage of Notch1 induces
cytoprotective autophagy in GBM cells. However, when these cells
were exposed to the combination of Notch1 and autophagy
inhibitors, treatment resistance was overcome, thus augmenting
apoptotic cell death (207). Interestingly, Notch1 signals can be
regulated by autophagy activation via ATG16L1-positive
autophagosomes, modulating stem cell development, and
neurogenesis (205).
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Wnt signaling plays a critical role in GSC phenotype,
therapeutic resistance and invasiveness (208, 209). Mutations
in the members of Wnt signaling pathway are not common, but
epigenetic alterations are frequently observed in GBMs (210).
The inhibition of Wnt signaling by the IWR-1 inhibitor leads to
an augment of the expression of the autophagy-related proteins,
LC3-II, and Beclin-1 (211). Complementarily, another group
showed that the silencing of the intracellular players of Wnt
signaling, TCF4, and CTNNB1/b-catenin, induced the up-
regulation of SQSTM1/p62, increasing the autophagy flux.
Interestingly, Wnt pathway inhibition sensitizes GBM cells to
autophagy inhibition with CQ (212). Regarding chemotherapy
response to TMZ, the blocking of theWnt/b -catenin pathway by
the activity of the DAB2IP protein is responsible for TMZ
resistance through the expression of the autophagy-related
protein ATG9B. Interestingly, the combination of TMZ with a
Wnt signaling inhibitor can overcome this resistance (213).
Indeed, autophagy activation mediated by nutrient starvation
in GBM cells down-regulates several mediators Wnt signaling,
including activated b-catenin (214).

Hedgehog (Hh) signaling enhances the migratory and invasive
capacity of cells through the activation of PI3K/Akt pathway in
GBM cells (215). Moreover, it stimulates the growth and
tumorigenicity of gliomas, mainly by controlling stemness status
(216). Besides the lack of mutations on Hh pathway components in
GBMs, it has been shown that the glioma-associated oncogene
homolog 1 (GLI1) zinc-finger transcription factors, terminal
effectors of the Hh pathway, presents two tumor-specific splicing
isoforms, which directly influences tumor malignancy (217).
Intriguingly, the activation of Hh signaling is correlated with the
modulation of autophagy in several cancer types. Indeed, the
inhibition of the Hh pathway negatively controls tumor
proliferation by activating autophagy (218). In GBM cells, the use
of GANT-61, a specific inhibitor of Gli1 and Gli2, activates
autophagy, inducing LC3-II expression, and by negatively
modulating the expression of stemness markers and tumor
proliferation (219). Pharmacologically, the use of GANT-61
enhances the cytotoxic effect of TMZ by the increment of acid
vesicles and Beclin-1 expression (220). Furthermore, the regulatory
domain of PTCH1, the main receptor of the Hedgehog pathway,
interacts physically with the autophagy-related protein ATG101 in a
nutrient starvation microenvironment, inhibiting the autophagic
process (221). Additionally, GBM cells overexpressing the stem
marker SOX3 showed an upregulation in Hh pathway activity and
suppression of autophagy, leading to an increment in proliferation
and invasion (222).
THE LAST FRONTIER: THE THERAPEUTIC
POTENTIAL OF AUTOPHAGY INHIBITORS
FOR THE TREATMENT OF GBM

GBM retains a poor prognostic value and remains incurable.
Despite our growing understanding of the mechanisms
underlying drug resistance, the standard therapy has not
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changed over the last 16 years (7). Up to date, no new therapies
improve OS when added to standard therapy, with an exception
for the recent Tumor Treating Fields (TTFields) in GBM (223).
As we see above, under pathophysiological circumstances,
autophagy is a key driver of GBM resistance, allowing cellular
adaptive survival towards extrinsic (e.g. hypoxia, drugs or
ionizing radiation) or intrinsic (genetic aberrations) stress
stimuli (Figure 1). Accordingly, from a standpoint of treating
GBM disease, targeting autophagy emerge as a new potential
therapy and it has been considered a potential candidate to
improve the treatment of patients with GBM (224, 225). In this
scenario, the use of the autophagy inhibitors, such as CQ or
HCQ, has been explored in clinical studies. Those trials mainly
focused on the therapeutic potential of autophagy inhibition
combined to standard therapies for GBM patients.

A small phase III trial observed a median overall survival of 24
months for patients treated with CQ plus conventional therapy
(i.e. surgery, radiotherapy, and carmustine-based chemotherapy)
compared to 11 months for patients treated with conventional
therapy (226). In a single institutional study with 123 patients,
the same authors showed that the addition of CQ to surgery,
radiotherapy, and carmustine-based chemotherapy consistently
FIGURE 1 | Autophagy can be triggered by intrinsic and/or extrinsic GBM cells signa
resistance to therapies. Thus, autophagy may function as a mechanism of tumor cell
activating autophagy in GBM consist of specific gene expression levels alterations (lik
rise to the active mutant EGFRvIII) and/or specific signaling pathways perturbations (s
activation in GBM cells are: 1) the perinecrotic niches (PNN), composed by highly pro
cellular adaptive response to hypoxia; 2) the perivascular niche (PVN), where the vasc
stemness phenotype of those tumor cells; 3) the brain extracellular matrix (bECM), wh
which can activate autophagy as a cytoprotective mechanism.
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exerts an adjuvant effect, adding more than 13 months in
patients’ median survival in comparison to control patients
(227). However, despite the favorable results in GBM patients
treated with CQ combined to surgery, radiotherapy, and
carmustine, a phase I/II trial combining HCQ with
radiotherapy and TMZ-based chemotherapy showed that the
maximum tolerated dose of HCQ was unable to consistently
inhibit autophagy and showed no improvement in patient OS
(228). To transpose those issues, a new phase I/II trial
(NCT02432417) was designed to compare patients treated with
concurrent ionizing radiation and TMZ- based chemotherapy
with patients treated with this combination plus a most
appropriate CQ dose. Indeed, recent data published by the
group showed that 200 mg of CQ is a feasible dose to use in
those patients, since 400 mg of CQ induced several severe
adverse events. Moreover, preliminary data analysis showed an
improvement of more than 9 months in the OS of GBM patients
harboring EGFRvIII alterations compared with patients without
this genetic variant (229). The International Cooperative Phase
III Trial is an active clinical trial that evaluates the use of CQ or
Valproic acid as an adjuvant to conventional therapy in high-
grade gliomas (NCT03243461).
ls, contributing to tumor cell proliferation (grow state), invasion (go state) and
survival and progression in a hostile microenvironment. The intrinsic signals
e in the cMET gene), mutations (like the mutation in the EGFR gene that gives
uch as in the Wnt pathway). The extrinsic signals associated with autophagy
liferative GBM cells and where the autophagy activation may function as a
ular endothelial cells can interact with the GBM ones, inducing autophagy and a
ose components may regulate autophagy; and 4) the anticancer therapies,
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Due to these positive results in the early clinical trials, it is
essential to invest in studies to evaluate CQ effects on GBM
patients’ survival using larger cohorts. Moreover, it is also
necessary to determine HCQ efficacy and tolerated doses and
invest in discovering new drugs with similar action mechanisms.
FUTURE DIRECTIONS: CROSSING THE
VALLEY OF DEATH

The discrepancy between pro- and anti-tumor functions of
autophagy, modulating GBM cell plasticity or alternative
mechanism of cell death, emphasizes a question that has
emerged as critical in translational science: how wide gap exists
between basic and clinical biomedical data? The establishment of
interdisciplinary research institutes stimulating collaborations
between clinicians, physician-scientists, and basic biologists are
critical to bring these areas together, but the importance of the
critical interpretive reviews of literature data is also fundamental.

By examining carefully the literature we realize that
explanations for the controversies of whether the autophagy
pathway promotes survival or death are still elusive. Sometimes
the balance between autophagic-dependent pro-survival or pro-
death signals depends greatly on the quantitative relationship
between them: over to moderate level of autophagy activation is
cytoprotective, whereas high levels of autophagy are cytotoxic.
Sometimes there are even conflicting reports with the same drug
treatment in the same experimental model. Pre-clinical and
clinical data indicate that autophagy is an emblematic example
of a rescue pathway that contributes profoundly to a pro-tumoral
adaptive response. On the other hand, high levels of activation
lead to cytotoxic autophagy, which seems to be exclusively
induced by excessive and homogeneous stress signals from in
vitro cell-based studies.

From a standpoint of understanding the real GBM disease,
the spatial and temporal heterogeneity of the external and
internal stimuli must be considered. Steep gradients in pO2,
pH, nutrient availability and drug perfusions ranging from
Frontiers in Oncology | www.frontiersin.org 9
pathological/therapeutic conditions to those found in normal
tissues, added to the high levels of genetic intratumoral
heterogeneity, are hallmark features of GBM. Thus, it implies
that the levels of autophagy activation may also show extensive
spatial heterogeneity in subpopulations from the same tumor
determining divergent cell fates.

Despite the ability of many compounds, like CQ and HCQ,
to inhibit autophagy and demonstrated good efficacy in
preclinical studies, clinical trials for GBM continue showing no
significant survival or clinical benefit, due to sparse anti-glioma
activity or severe side effects. Thus, the last frontier to test
the therapeutic potential of autophagy pathway in GBM
awaits the development of compounds that can achieve more
consistent inhibition.

Finally, only combinatorial therapy targeting autophagy with
cytotoxic drugs in the adjuvant setting for GBM patients,
associated with the development of less toxic and higher
specific autophagy inhibitors, may inhibit adaptive response
and enhance the sensibility of glioma cells to conventional
therapies. In the context of an incurable human disease,
pharmacological inhibition of autophagy would represent a
promisor therapeutic target for radio- and chemosensitization
of GBM cells.
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