
SOFTWARE METAPAPER

ABSTRACT
Pymrio is an open source tool for Environmentally Extended Multi-Regional Input-
Output (EE MRIO) analysis developed in Python. It provides a high-level abstraction
layer for global EE MRIO databases in order to simplify common EE MRIO data tasks.
Among others, Pymrio includes parsers for several openly available EE MRIO databases
(EXIOBASE v1 – v3, WIOD, Eora26, OECD-ICIO) as well as methods for production and
consumption based accounts calculation, aggregation, stressor origin estimation
and visualization. The use of a consistent storage format including meta data and
modification history for MRIOs allows to exchange data with other analysis tools,
aiming for an increased interoperability of Industrial Ecology analysis software.

CORRESPONDING AUTHOR:
Konstantin Stadler

Developer of Pymrio,
Industrial Ecology Programme,
Norwegian University of
Science and Technology
(NTNU), NO

konstantin.stadler@ntnu.no

KEYWORDS:
Sustainability Analysis;
Multi Regional Input Output
Analysis; Footprinting;
Consumption Based
Accounting; EXIOBASE; WIOD;
Eora26; OECD-ICIO; Python

TO CITE THIS ARTICLE:
Stadler K 2021 Pymrio – A
Python Based Multi-Regional
Input-Output Analysis Toolbox.
Journal of Open Research
Software, 9: 8. DOI: https://doi.
org/10.5334/jors.251

KONSTANTIN STADLER

Pymrio – A Python Based
Multi-Regional Input-Output
Analysis Toolbox

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/429983832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:konstantin.stadler@ntnu.no
https://doi.org/10.5334/jors.251
https://doi.org/10.5334/jors.251
https://orcid.org/0000-0002-1548-201X

2Stadler Journal of Open Research DOI: 10.5334/jors.251

(1) OVERVIEW
INTRODUCTION
Environmentally Extended Multi-Regional Input-Output
(EE MRIO) tables describe economic relationships
within and between regions and their environmental
repercussions.

They capture the full life-cycle impacts of goods
and services across international supply chains and
allow researchers to understand the environmental,
social and economic consequences of consumption in
today’s globalised world. Research questions that can
be answered using MRIO tables range from calculating
the carbon footprint of nations [8, 30] and households
[6], to analysing the impacts of international trade on
biodiversity [9, 13, 33], to investigations of the material
requirements of the current global economy [37].
In addition, EE MRIO analysis is increasingly used to
inform policy makers about connections, trade-offs and
synergies across environmental and social issues [24, 25,
34, 38].

The MRIO framework
The basic building blocks of EE MRIO models are (1)
domestic input-output (IO) tables linked with (2) detailed
bilateral trade data and extended with (3) environmental
accounts [36].

The first building block, the domestic IO tables, depict
the inter-industry relationship within an economy. These
are typically square tables with column/row indices for all
industries within a country. One column in these tables
describes the inputs (products from other industries)
required by one specific industry (or more general
product production process) to produce its output.
Arranging these column vectors into a two-dimensional
matrix, the rows then depict all users of the output
of a specific industry. Thus, the column of an IO table
describes an industry in its role as user of products while
the corresponding row describes its role as supplier.

In most cases these tables are further extended by
sections representing the value added of each industry,
taxes and subsidies as well as final consumption
(private and government consumers as well as capital
formation). Input-output tables following the United
Nations System of National Accounts, UN SNA [31],
system are inherently complete and consistent, thus
capturing all economic activity within a country where
the sum over all inputs into industries (including imports)
equals the output of all industries (including exports).
The data for domestic input output tables are typically
gathered by industry surveys conducted by national
statistical agencies as the tables form an integral part of
the national accounts.

The pivotal point to derive global multi regional input
output tables from these domestic ones is to connect
them through detailed description of bilateral trade
flows. These connect each industry/product sector

of a specific country with all other sectors of all other
countries, thus describing how the output of one sector
(as export) is used as input (through imports) in any other
country. Similar to domestic IO tables, global MRIOs
are inherently complete and consistent, thus capturing
all global trade flows and economic activity with two
caveats: often multiple countries are aggregated to
world regions and the tables usually only describe the
official economy (thus reported economic activity) and
exclude any shadow economic or financial flows due to
criminal activity.

Since global MRIOs allow the tracking of products
through the global supply chain they have been proven
to be an ideal tool to also track the environmental
burden associated with the production processes
along the supply chains. In order to do so, one
conceptually regards environmental effects like land
use, emissions or material use as required inputs into
the production process of a certain product. This links
the environmental consequences due to the production
of a product to the product itself. Fundamentally, these
opens up two contrasting perspectives: Production-
based environmental accounts, which describe the
environmental consequences at the place of production
and the consumption-based environmental accounts,
which assigns the environmental consequences of
production to the final consumer of the product. The later
are also known as various kinds of footprints and became
a stable tool to describe the environmental performance
of countries [3, 7, 30].

The mathematical handling of these tables is
described further below in the section “Mathematical
Background”.

Current status for MRIO analysis software
In contrast to other Industrial Ecology methodologies
like Life Cycle Assessment (e.g. Brightway [16], openLCA
[18]) or Material Flow Analysis (e.g. STAN [1]), few
generally available analysis packages for (Multi-Regional)
Input-Output tables are available [19]. One of the very
few well documented and stand-alone packages for
IO analysis, PyIO [17], is not available for Python 3 and
does not provide parsers for current MRIO databases
(the package has not been updated since 2011 but is
still available at http://www.real.illinois.edu/pyio). Another
framework, the MRIOLab suite [2, 11] takes a different
approach: it provides a virtual lab for the compilation of
MRIO tables and thereby streamlining the compilation
of MRIO tables. The MRIOLab also includes functions for
MRIO analysis. These, however, are not well suited for
the analysis of MRIO tables compiled independent of the
MRIOLab since the tables can not fully reproduced within
the MRIOLab [22, 23]. As a consequence of the lack of
a generic MRIO analysis toolkit, MRIO analysis today
relies on often ad-hoc produced scripts and functions.
This hinders reproducibility of results and the reuse of

https://doi.org/10.5334/jors.251
http://www.real.illinois.edu/pyio

3Stadler Journal of Open Research DOI: 10.5334/jors.251

previous coding efforts. Here I present the open source
tool Pymrio, a Python 3 package, which aims to close this
method gap for EE MRIO analysis.

The article proceeds with a description of the
architecture of Pymrio, including the mathematical
background and implementation details. This is followed
by a short tutorial with a simple use case for Pymrio. This
tutorial is also available as a Jupyter notebook. The reuse
potential and future development plans are pointed out
at the end of the article.

IMPLEMENTATION AND ARCHITECTURE
Mathematical Background
This section gives an overview about the mathematical
background of EE MRIO analysis as used in Pymrio.

The focus of this section is on the specifics of the
multi-regional aspects of input-output analysis. Note,
however, that Pymrio can also be used for analysing
simple single country input-output tables. Readers
unfamiliar with input-output analysis are referred to the
standard textbook for input-output analysis by Miller and
Blair [15]. Exercises of this book are also used in the online
documentation which also highlights how Pymrio can be
used for teaching of input-output methods (https://pymrio.

readthedocs.io/en/latest/notebooks/pymrio_directly_assign_

attributes.html).
Generally, mathematical routines implemented

in Pymrio follow the equations described below. If,
however, a more computationally efficient mechanism
was available this was preferred. In these cases, the
original formula remains as comment in the source
code. Mostly, this was the case when instead of a matrix
multiplication with a diagonalized vector the operation
can be efficiently executed using numpy broadcasting
mechanisms [32].

The Input-Output analysis implemented in Pymrio
follows the classic Leontief demand-style modeling [12].
To do so, MRIO tables describe the global inter-industries
flows within and across countries for k countries with a
transaction matrix Z:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

k

k

k k k k

Z Z Z

Z Z Z
Z

Z Z Z

 (1)

Each submatrix on the main diagonal (Zi,i) represents
the domestic interactions for each industry n. The off
diagonal matrices (Zi,j) describe the trade from region i to
region j (with i, j = 1, ⋯, k) for each industry. Accordingly,
global final demand can be represented by

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

k

k

k k k k

Y Y Y

Y Y Y
Y

Y Y Y

 (2)

with final demand satisfied by domestic production in
the main diagonal (Yi,i) and direct import to final demand
from country i to j by Yi,j.

The global economy can thus be described by:

 x Ze Ye (3)

with e representing the summation vector (column
vector with 1’s of appropriate dimension) and x the gross
output.

The direct requirement matrix A is given by
multiplication of Z with the diagonalized and inverted
gross output x:

1ˆA Zx (4)

Based on the linear economy assumption of the IO
model, gross output x can then be determined for any
arbitrary vector of final demand y by multiplying with the
total requirement matrix (Leontief matrix) L.

1(I)x A y Ly (5)

IO systems can be extended with various extensions
(satellite accounts). Among others these can represent
factors of production (e.g. value added, employment)
and environmental stressors associated with production.
These direct factors, contained in matrix F, can be
normalized to the output per sector x by

1ˆS Fx (6)

Multipliers (total, direct and indirect, requirement factors
for one unit of output) are then obtained by

 M SL (7)

Total requirements (footprints in case of environmental
requirements) for any given final demand vector y are
given by

 cbaD My (8)

Setting the domestically satisfied final demand Yi,i to
zero (Yt = Y – Yi,j | i = j) allows to calculate the factors of
production occurring abroad (embodied in imports)

 timpD SLY (9)

The factors of production occurring domestically to
satisfy final demand in other countries is given by:

exp tD SLY e (10)

where indicates diagonalization of the resulting
column-vector of the term underneath.

If parts of the environmental stressors occurring during
the final use of product, these can be represented by FY
(e.g. household emissions). These need to be added to
the total production- and consumption-based accounts
to obtain the total impacts per country. Total territorial
requirements/emissions per region i are therefore given
by summing over the stressors per sector (0⋯m) plus the
stressors directly linked to final consumption for all final

https://pymrio.readthedocs.io/en/latest/notebooks/pymrio_directly_assign_attributes.html
https://pymrio.readthedocs.io/en/latest/notebooks/pymrio_directly_assign_attributes.html
https://pymrio.readthedocs.io/en/latest/notebooks/pymrio_directly_assign_attributes.html

4Stadler Journal of Open Research DOI: 10.5334/jors.251

demand categories (0⋯w) of that region.

 0 0

c

m w
ii i

s Ypba
s c

D F F

 (11)

Similarly, total requirements (footprints in case of
environmental requirements) per region i are given by
summing the detailed footprint accounts and adding the
aggregated final demand stressors.

 0 0

s c

m w
i ii

Ycba cba
s c

D D F

 (12)

Internally, the summations are implemented with the
group-by functionality provided by the Pandas package
[14].

Aggregation
For the aggregation of the MRIO system the matrix Bk
defines the aggregation matrix for regions and Bn the
aggregation matrix for sectors.

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2, 2,1 2,2 2,

,1 ,2 , ,1 ,2 ,

k n

k n
k n

w w w k x x x n

b b b b b b

b b b b b b
B B

b b b b b b

 (13)

With w and x defining the aggregated number of
countries and sectors, respectively. Entries b are set
to 1 if the sector/country of the column belong to the
aggregated sector/region in the corresponding row and
zero otherwise. The complete aggregation matrix B is
given by the Kronecker product of Bk and Bn:

 k nB B B (14)

This effectively arranges the sector aggregation matrix Bn
as defined by the region aggregation matrix Bk. Thus, for
each 0 entry in Bk a block Bn * 0 is inserted in B and each 1
corresponds to Bn * 1 in B.

The aggregated IO system can then be obtained by

T

aggZ BZB (15)

and

T(I)agg kY BY B (16)

with I defined as the identity matrix with the size equal
to the number of final demand categories per country.

Factors of production are aggregated by

T

aggF FB (17)

and stressors occurring during final demand by

T(I)Yagg Y kF F B (18)

Implementation
The main design principle of Pymrio is based on the
concept that an EE MRIO system can be effectively
represented as an object in an Object-Oriented
Programming (OOP) language. In Pymrio, such an EE

MRIO object consists of a core component describing the
economic relationships grouped with a various number
of components describing the environmental and/or
social extensions (satellite accounts, see Figure 1). All
components of the main object are in turn represented
as objects, allowing to implement specific methods for
each sub-component.

This architecture described above was implemented
in Python 3.7. The various tables of the MRIO system are
stored in Pandas DataFrames [14], therefore building
upon a well-tested data-science framework. As a
consequence, besides the specific methods implemented
by Pymrio, the full functionality of Pandas and the
underlying NumPy framework [32] can be used to modify
the MRIO data.

Methods implemented in Pymrio which go beyond
basic Pandas functionality are accompanied by a
corresponding test harness which ensures the formal
correctness of the method. The full source code is
hosted on a public code repository together with an
extensive documentation and tutorials https://github.com/

konstantinstadler/pymrio. Pymrio is openly available under
the GNU General Public License v3.0.

Parsing and Storage
To date, no standard way of storing MRIO databases
has been defined. For example, the WIOD database
[29] is provided as xlsx tables, whereas Eora [10] and
EXIOBASE [28] use (compressed) csv tables. For the two
latter, however, the approach differs as Eora26 uses
pure numerical tables with separate files describing
the headers, whereas EXIOBASE uses csv tables which
include the headers. To ease the use of different MRIO
systems, Pymrio include parsers for the different formats.
After parsing a MRIO system, Pymrio stores all data in
a consistent way. For each component (core system
and extension) data is stored in a separate folder.
While the storage-format of the actual numerical data
can be defined by the user, each storage folder also
contains a json file (file_parameters.json) which contains
information about the used format. Using the common
json file format for storing the file meta data allows
to easily and automatically import the data in other
programming environments. By default, each table is
stored as a tab-separated text file format, including
row and column headers. The folder with the economic
core also contains a file named “metadata.json” which
includes information about version, name and system
(industry-by-industry or product-by-product) as well
as a record of modifications to the particular MRIO
system (including when it was downloaded, applied
aggregations, removal/addition of extensions, etc.).

Usage
The following section provides a quick start guide for
using Pymrio beginning at the installation followed

https://github.com/konstantinstadler/pymrio
https://github.com/konstantinstadler/pymrio

5Stadler Journal of Open Research DOI: 10.5334/jors.251

by a basic input-output calculation example. For the
example here, the WIOD MRIO database [29] is used.
However, after downloading and parsing the database
the same methods are available for any EE MRIO
system.

An interactive Jupyter notebook with the following
code tutorial can be downloaded at https://git.io/fjjUk.
As the code example here only show the code inputs,
refer to the notebook to see the output of a specific
command. An cloud-based virtual environment with the
code example can be run in the BinderHub available at
https://cutt.ly/vwmOpA3.

Pymrio is a Python [21] package, Python version ≥ 3.7
is required. The Pymrio package is hosted on PyPI [20]
and the Anaconda Cloud [5]. Therefore, you can either
use

pip install pymrio –upgrade

or

conda install -c conda-forge pymrio

to install Pymrio and all required packages.
Pymrio can then be used in any Python programming

environment.
Throughout the code examples below, it is assumed

that Pymrio is imported as follows:

import pymrio

First, the Pymrio MRIO download function is used to get
the WIOD MRIO data-base with:

raw_wiod_path = ‘/tmp/wiod/raw’
pymrio.download_wiod2013(storage_folder=raw_
wiod_path, years=[2008])

This downloads the 2008 MRIO table from WIOD.
Omitting the year parameter would result in a download
of all years. The function returns a Pymrio meta data
object, which gives information about the WIOD
version, system (in this case industry-by-industry) and
records about from where the data was received (see
SI cell 6).

Figure 1 Class diagram of the core Pymrio class. The composite class IOSystem consists of the economic core with the actual data
stored in Pandas DataFrames and a variable number of Extension classes. Each Extension consists of multiple Pandas DataFrames.
Both, the IOSystem and Extension class are derived from an abstract CoreSystem class implementing the shared functionality of both
classes. Class methods are not depicted here.

https://git.io/fjjUk
https://cutt.ly/vwmOpA3

6Stadler Journal of Open Research DOI: 10.5334/jors.251

To parse the database into a Pymrio object use:

wiod = pymrio.parse_wiod(raw_wiod_path,
year=2008)

The available data can be explored by for example

wiod.get_sectors()
wiod.get_regions()

The transaction matrix can be inspected with

wiod.Z

which returns a panda DataFrame with the recorded
monetary flows.

WIOD includes several extensions, which are stored as
sub-objects (see Figure 1) in Pymrio. For example, in order
to see the AIR emissions provided by WIOD:

wiod.AIR.F

WIOD, however, does neither provide any normalized
data (A-matrix, satellite account coefficient data) nor
any consumption-based accounts (footprints).

In order to calculate them, one could go through all
the missing data and compute each account.

Pymrio provides the required functions, for example to
calculate the A-matrix:

x = pymrio.calc_x(Z=wiod.Z, Y=wiod.Y)
A = pymrio.calc_A(Z=wiod.Z, x=x)

Alternatively, Pymrio provides a function which identifies
all missing accounts and calculates them:

wiod.calc_all()

At this point, a basic EE MRIO analysis is accomplished.
For example, the regional consumption-based accounts
of the AIR emissions are now given by:

wiod.AIR.D_cba_reg

Units are stored separately in

wiod.AIR.unit

Pymrio can be linked with the country converter coco [27]
to ease the aggregation of MRIO and results into different
classifications. Using the country converter, WIOD can
easily be aggregated into EU and non-EU countries with
singling out Germany and the UK by:

import country_converter as coco
wiod.aggregate(region_agg = coco.agg_conc(

original_countries=‘WIOD’,
aggregates=[{‘DEU’: ‘DEU’, ‘GBR’:’GBR’},
‘EU’],
missing_countries=‘Other’,
merge_multiple_string=None))

wiod.rename_regions({‘EU’:‘Rest⊔of⊔EU’}

To visualize the results for example for CH4 the matplotlib
framework [4] can be used (Figure 2):

import matplotlib.pyplot as plt
with plt.style.context(‘ggplot’):

wiod.AIR.plot_account(‘CH4’)
plt.savefig(‘airch4.png’, dpi=300)
plt.show()

To calculate the source (in terms of regions and sectors)
of a certain stressor or impact driven by consumption,
one needs to diagonalize this stressor/impact.

Figure 2 CH4 emissions of Germany (DEU), the UK (GBR), Rest of the EU and Other countries This figure was produced with Pymrio
and matplotlib after aggregating the WIOD countries into the three regions specified above.

7Stadler Journal of Open Research DOI: 10.5334/jors.251

This can be done with Pymrio by:

diag_CH4 = wiod.AIR.diag_stressor(‘CH4’)

and be reassigned to the aggregated WIOD system:

wiod.CH4_source = diag_CH4

In the next step the automatic calculation routine of
Pymrio is called again to compute the missing accounts
in this new extension:

wiod.calc_all()

The diagonalized CH4 data now shows the source and
destination of the specified stressor (CH4):

wiod.CH4_source.D_cba

In this square consumption-based accounts matrix,
every column represents the amount of stressors
occurring in each region – sector driven by the
consumption stated in the column header. Conversely,
each row states where the stressor impacts occurring
in the row are distributed to (from where they are
driven).

If only one specific aspect of the source is of interest
for the analysis, the footprint matrix can easily be
aggregated with the standard Pandas groupby function.
For example, to aggregate to the source and receiving
region of the stressor:

CH4_source_reg = wiod.CH4_source.D_cba.groupby(
level=‘region’, axis=0).sum().groupby(
level=‘region’, axis=1).sum()

Which can then be visualised using the seaborn heatmap
[35] with (Figure 3):

import seaborn as sns
CH4_source_reg.columns.name = ‘Receiving⊔region’
CH4_source_reg.index.name = ‘Souce⊔region’
sns.heatmap(CH4_source_reg, vmax=5E6,

annot=True, cmap=‘YlOrRd’,
linewidths=0.1,
cbar_kws={‘label’:
‘CH4⊔emissions⊔({})’.format(

wiod.CH4_source.unit.unit[0])})
plt.show()

Storing the MRIO database can be done with

storage_path = ‘/tmp/wiod/aly’
wiod.save_all(storage_path)

from where it can be received subsequently by:

wiod = pymrio.load_all(storage_path)

The meta attribute of Pymrio mentioned at the beginning
kept track of all modifications of the system. This can be
shown with:

wiod.meta

Custom notes can be added to the history with:

wiod.meta.note(“Custom⊔note”)

The history of the meta data can be filtered for specific
entries like:

wiod.meta.file_io_history

Figure 3 CH4 emissions source and destination A substantial share of CH4 originating in the Rest of the World region are exported
into Germany and the UK. This figure was produced with Pymrio and seaborn.

https://doi.org/10.5334/jors.251

8Stadler Journal of Open Research DOI: 10.5334/jors.251

This tutorial gave a short overview about the basic
functionality of Pymrio. For more information about the
capabilities of Pymrio check the online documentation at
http://pymrio.readthedocs.io [26].

QUALITY CONTROL
All basic mathematical functions of Pymrio, as
described in the section Mathematical Background
above, are unit-tested against published results
extracted from a classic input-output textbook [15].
Additional unit tests validate various components of
the aggregation, file IO and other utility methods.
Beyond the unit tests, Pymrio includes a small pseudo
MRIO system which is used for a full regression test of
the package. Currently, the test coverage is at around
90%.

All tests are implemented in pytest and users can
verify the correctness of Pymrio, after installing pytest, by

py.test -v

in the root of the local copy of Pymrio.
In addition, Pymrio uses the continuous integration

platform Travis CI for automatic testing after each change
of the code base uploaded to the source repository. After
each build, test coverage is automatically calculated
using the coveralls platform https://coveralls.io.

The Pymrio source code follows the PEP 8
specifications as implemented by the Black code
formatter (https://github.com/psf/black). Accordance
with it is tested through the continuous integration
for each code contribution. More information on the
code style and required tests for acceptance are
outlined in the CONTRIBUTING file in the root of code
repository.

The Pymrio documentation is build using the Sphinx
Python Documentation Generator and hosted on
readthedocs (http://pymrio.readthedocs.io).

After each change to the master branch, the API
references in the documentation are automatically
updated based on the description provided in
the NumPy style docstrings, thus keeping the
documentation and code base in sync. Furthermore,
the code examples and tutorials given the in the
documentation are implemented as Jupyter notebooks
and are recalculated for each release, thus also
serving as regression tests for the documented Pymrio
functionality.

Updated results of the Travis CI tests as well as the
Sphinx documentation rebuild are indicated at the
beginning of the readme file at the source repository.

Contributors to the Pymrio code based are advised to
adhere to the testing and code standards established for
Pymrio. Further details can be found in the Contribution
section of the online documentation.

(2) AVAILABILITY
OPERATING SYSTEM
GNU/Linux, Mac OSX, Windows and any other operating
systems running Python with the SciPy stack.

PROGRAMMING LANGUAGE
Pymrio was built in Python 3 and currently (Pymrio
version 0.4.2) tested for Python 3.7, 3.8 and 3.9.

ADDITIONAL SYSTEM REQUIREMENTS
Pymrio runs on every system capable of running the
Python SciPy stack. The actual memory requirements
depend on the MRIO database to be analysed with
Pymrio. For example, for EXIOBASE [28] a minimum of 8
GB RAM are required.

DEPENDENCIES
For the current Pymrio version 0.4.2:

•	 pandas ≥ 1.0.0
•	 numpy ≥ 1.13.4
•	 matplotlib ≥ 2.0.0
•	 requests ≥ 2.18
•	 xlrd ≥ 1.1.0
•	 xlrd ≥ 3.0.0
•	 docutils ≥ 0.14

The main dependency of Pymrio is Pandas and future
versions of Pymrio will follow the developmental changes
in Pandas.

The file requirements.txt in the source repository
contains an up-to-date list of all requirements.

For development and unit testing the pytest module
and black code formatter are required. The requirements_
test.txt file and alternatively the environment_dev.yml file
(for using conda environments) outline all dependencies
necessary for testing and development.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: https://doi.org/10.5281/

zenodo.1146054

Licence: GPL v3
Publisher: Konstantin Stadler
Version published: 0.4.5 and earlier versions.

The DOI above always resolves to the latest version,
previous versions can be identified with separate
DOIs (see versions sections on the Zenodo repository
page).

Date published: 21/03/21 (version 0.4.5)

Code repository
Name: Github (Pymrio is also hosted on pypi and

anaconda cloud)

http://pymrio.readthedocs.io
https://coveralls.io
https://github.com/psf/black
http://pymrio.readthedocs.io
https://doi.org/10.5281/zenodo.1146054
https://doi.org/10.5281/zenodo.1146054

9Stadler Journal of Open Research DOI: 10.5334/jors.251

Persistent identifier: https://github.com/

konstantinstadler/pymrio

Licence: GPL v3
Date published: 21/03/21 (version 0.4.5)

Emulation environment
Name: MyBinder Jupyter Notebook of the tutorial

included above
Persistent identifier: https://mybinder.org/v2/gh/

konstantinstadler/pymrio_article/master?filepath=%2Fnotebook

%2Fpymrio-tutorial-for-wiod.ipyn

Licence: CC BY 4.0
Date published: 18/01/18

LANGUAGE
English

(3) REUSE POTENTIAL

Pymrio contains functionality aimed at professional
MRIO analysts and sustainability scientists, but
might be useful to anyone doing environmental and/
or economic analysis. As such, Pymrio is one key
component in the Industrial Ecology analysis software
framework [19]. With the other components it shares
the ambition to improve usability, interoperability,
and collaboration between Industrial Ecology and
sustainability research Python packages. The main
motivation for starting the project was to build
a common interface for handling different MRIO
databases, but through the years the scope extended
to include visualization, reporting and data provenance
tracking capabilities. Future development plans include
further visualization possibilities, parser for additional
MRIO models and extended analysis capabilities
like structural decomposition and structural path
analysis. Being an open source project, this includes
an invitation to fellow researchers to join these coding
efforts.

The primary communication channel for Pymrio is
the GitHub source repository, in particular the Issue
Tracker there. I strongly encouraged to not only use
the Issue Tracker for bug reporting but for all questions,
comments, and suggestions regarding the project.
Pymrio follows an “issue driven development” style.
This means that the first step for any modifications or
enhancements to Pymrio are to file an issue describing
the planned changes. This allows us to discuss
changes before the actual programming and gives
us the chance to identify synergies across ongoing
efforts and avoid potential double work. Finished
modification should then be submitted as pull request.
Further information about open points and code style
can be found in the contributing.rst file at the source
repository.

ACKNOWLEDGEMENTS

Special thanks to Guillaume Majeau-Bettez
(Polytechnique Montréal/Norwegian University of Science
and Technology), Radek Lonka (Norwegian University of
Science and Technology), Richard Wood (Norwegian
University of Science and Technology) and Stefan Pauliuk
(University of Freiburg) for discussing ideas and the scope
of Pymrio as well as implementation details. I am much
obliged also to all people already using Pymrio and
providing feedback and improvement suggestions.

FUNDING STATEMENT

The development of Pymrio was funded by the European
Commission under the DESIRE Project (grant no.: 308552)
as well as by The Research Council of Norway IKTPLUSS
project HiTEA (grant no.: 302830).

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATION
Stadler, Konstantin orcid.org/0000-0002-1548-201X
Developer of Pymrio, Industrial Ecology Programme, Norwegian
University of Science and Technology (NTNU), NO

REFERENCES

1. Cencic O, Rechberger H. Material Flow Analysis with

Software STAN. 18: 3.

2. Geschke A, Hadjikakou M. Virtual Laboratories and MRIO

Analysis – an Introduction. 29: 143–157. issn: 0953-5314.

DOI: https://doi.org/10.1080/09535314.2017.1318828

3. Giljum S, et al. Identifying Priority Areas for European

Resource Policies: A MRIO-Based Material Footprint

Assessment. 5: 1. issn: 2193-2409. DOI: https://doi.

org/10.1186/s40008-016-0048-5

4. Hunter JD. Matplotlib: A 2D Graphics Environment. 9:

90–95. issn: 1521-9615. DOI: https://doi.org/10.1109/

MCSE.2007.55

5. Inc., A. Anaconda Cloud https://anaconda.org/about.

6. Ivanova D, et al. Environmental Impact Assessment of

Household Consumption. 20: 526–536. issn: 1530-9290.

DOI: https://doi.org/10.1111/jiec.12371

7. Ivanova D, et al. Mapping the Carbon Footprint of EU

Regions. 12: 054013. issn: 1748-9326. DOI: https://doi.

org/10.1088/1748-9326/aa6da9

8. Kanemoto K, Moran D, Hertwich EG. Mapping the Carbon

Footprint of Nations. 50: 10512–10517. issn: 0013-936X,

1520-5851. DOI: https://doi.org/10.1021/acs.est.6b03227

https://github.com/konstantinstadler/pymrio
https://github.com/konstantinstadler/pymrio
https://mybinder.org/v2/gh/konstantinstadler/pymrio_article/master?filepath=%2Fnotebook%2Fpymrio-tutorial-for-wiod.ipyn
https://mybinder.org/v2/gh/konstantinstadler/pymrio_article/master?filepath=%2Fnotebook%2Fpymrio-tutorial-for-wiod.ipyn
https://mybinder.org/v2/gh/konstantinstadler/pymrio_article/master?filepath=%2Fnotebook%2Fpymrio-tutorial-for-wiod.ipyn
https://orcid.org/0000-0002-1548-201X
https://doi.org/10.1080/09535314.2017.1318828
https://doi.org/10.1186/s40008-016-0048-5
https://doi.org/10.1186/s40008-016-0048-5
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://anaconda.org/about
https://doi.org/10.1111/jiec.12371
https://doi.org/10.1088/1748-9326/aa6da9
https://doi.org/10.1088/1748-9326/aa6da9
https://doi.org/10.1021/acs.est.6b03227

10Stadler Journal of Open Research DOI: 10.5334/jors.251

9. Lenzen M, et al. International Trade Drives Biodiversity

Threats in Developing Nations. 486: 109–112. issn:

0028-0836, 1476-4687. DOI: https://doi.org/10.1038/

nature11145

10. Lenzen M, Moran D, Kanemoto K, Geschke A. Building

Eora: A Global Multi-Region Input–Output Database at High

Country and Sector Resolution. 25: 20–49. issn: 0953-5314.

DOI: https://doi.org/10.1080/09535314.2013.769938

11. Lenzen M, et al. The Global MRIO Lab – Charting the World

Economy. 29: 158–186. issn: 0953-5314. DOI: https://doi.org

/10.1080/09535314.2017.1301887

12. Leontief W. Environmental Repercussions and the

Economic Structure: An Input-Output Approach. 52: 262–

271. issn: 0034-6535. DOI: https://doi.org/10.2307/1926294

13. Marques A, et al. Increasing Impacts of Land Use on

Biodiversity and Carbon Sequestration Driven by Population

and Economic Growth, 1. issn: 2397-334X.

14. McKinney W. Data Structures for Statistical Computing in

Python in (), 51–56. http://conference.scipy.org/proceedings/

scipy2010/mckinney.html. DOI: https://doi.org/10.25080/

Majora-92bf1922-00a

15. Miller RE, Blair PD. Input-Output Analysis: Foundations and

Extensions. isbn: 978-0-521-51713-3 0-521-51713-3 0-521-

73902-0 978-0-521-73902-3 (Cambridge University Press).

16. Mutel C. Brightway: An Open Source Framework for Life

Cycle Assessment. 2: 236. issn: 2475-9066. DOI: https://doi.

org/10.21105/joss.00236

17. Nazara S, Guo D, Hewings GJ, Dridi C. PyIO – Input-Output

Anaysis with Python 03-T-23 (The University of Illinois at

Urbana-Champaign). http://www.real.illinois.edu/pyio/.

18. openLCA. openLCA Modeling Suite | openLCA.Org http://

www.openlca.org/openlca/.

19. Pauliuk S, Majeau-Bettez G, Mutel CL, Steubing B, Stadler

K. Lifting Industrial Ecology Modeling to a New Level of

Quality and Transparency: A Call for More Transparent

Publications and a Collaborative Open Source Software

Framework. 19: 937–949. issn: 1530-9290. DOI: https://doi.

org/10.1111/jiec.12316

20. PyPI. PyPI – the Python Package Index: Python Package

Index https://pypi.python.org/pypi.

21. Python. Official Python Webpage https://www.python.org/.

22. Rahman MDA, et al. A Flexible Adaptation of the WIOD

Database in a Virtual Laboratory. 29: 187–208. issn: 0953-

5314. DOI: https://doi.org/10.1080/09535314.2017.13181

15

23. Reyes RC, et al. The Virtual IELab – an Exercise in

Replicating Part of the EXIOBASE V.2 Production Pipeline

in a Virtual Laboratory. 29: 209–233. issn: 0953-5314. DOI:

https://doi.org/10.1080/09535314.2017.1317237

24. Simas M, Pauliuk S, Wood R, Hertwich EG, Stadler K.

Correlation between Production and Consumption-Based

Environmental Indicators: The Link to Affluence and

the Effect on Ranking Environmental Performance of

Countries. 76: 317–323. issn: 1470-160X. DOI: https://doi.

org/10.1016/j.ecolind.2017.01.026

25. Simas MS, Golsteijn L, Huijbregts MAJ, Wood R, Hertwich

EG. The “Bad Labor” Footprint: Quantifying the Social

Impacts of Globalization. 6: 7514–7540. DOI: https://doi.

org/10.3390/su6117514

26. Stadler K. Pymrio – Multi Regional Input Output Analysis

in Python —Pymrio 0.3.3 Documentation http://pymrio.

readthedocs.io/en/latest/#.

27. Stadler K. The Country Converter Coco – a Python

Package for Converting Country Names between Different

Classification Schemes. 2. issn: 2475-9066. DOI: https://doi.

org/10.21105/joss.00332

28. Stadler K, et al. EXIOBASE 3: Developing a Time Series of

Detailed Environmentally Extended Multi-Regional Input-

Output Tables. 22: 502–515. issn: 1530-9290. DOI: https://

doi.org/10.1111/jiec.12715

29. Timmer MP, Dietzenbacher E, Los B, Stehrer R, de Vries

GJ. An Illustrated User Guide to the World Input–Output

Database: The Case of Global Automotive Production,

n/a–n/a. issn: 1467-9396.

30. Tukker A, et al. The Global Resource Footprint of Nations.

Carbon, Water, Land and Materials Embodied in Trade and

Final Consumption Calculated with EXIOBASE 2.1. isbn:

978-3-200-03637-6. http://exiobase.eu/9-home/27-creea-

booklet().

31. United Nations, European Commission, International

Monetary Fund, Organisation for Economic Co-operation

and Development & World Bank. System of National

Accounts 2008. isbn: 978-92-1-161522-7 92-1-161522-4

(United Nations).

32. Van der Walt S, Colbert SC, Varoquaux G. The NumPy

Array: A Structure for Efficient Numerical Computation.

13: 22–30. issn: 1521-9615. DOI: https://doi.org/10.1109/

MCSE.2011.37

33. Verones F, Moran D, Stadler K, Kanemoto K, Wood R.

Resource Footprints and Their Ecosystem Consequences.

7: 40743. issn: 2045-2322. DOI: https://doi.org/10.1038/

srep40743

34. Vivanco DF, Wang R, Hertwich E. Nexus Strength: A

Novel Metric for Assessing the Global Resource Nexus. 22:

1473–1486. issn: 1530-9290. DOI: https://doi.org/10.1111/

jiec.12704

35. Waskom M, et al. Mwaskom/Seaborn: V0.8.1 (September

2017). DOI: https://doi.org/10.5281/zenodo.883859

36. Wiedmann T, Wilting HC, Lenzen M, Lutter S, Palm V.

Quo Vadis MRIO? Methodological, Data and Institutional

Requirements for Multi-Region Input–Output Analysis. 70:

1937–1945. issn: 0921-8009. DOI: https://doi.org/10.1016/j.

ecolecon.2011.06.014

37. Wiedmann TO, et al. The Material Footprint of Nations,

201220362. issn: 0027-8424, 1091-6490.

38. Wood R, et al. Beyond Peak Emission Transfers: Historical

Impacts of Globalization and Future Impacts of Climate

Policies on International Emission Transfers. 20: S14–S27.

issn: 1469-3062. DOI: https://doi.org/10.1080/14693062.20

19.1619507

https://doi.org/10.1038/nature11145
https://doi.org/10.1038/nature11145
https://doi.org/10.1080/09535314.2013.769938
https://doi.org/10.1080/09535314.2017.1301887
https://doi.org/10.1080/09535314.2017.1301887
https://doi.org/10.2307/1926294
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.21105/joss.00236
https://doi.org/10.21105/joss.00236
http://www.real.illinois.edu/pyio/
http://openLCA.Org
http://www.openlca.org/openlca/
http://www.openlca.org/openlca/
https://doi.org/10.1111/jiec.12316
https://doi.org/10.1111/jiec.12316
https://pypi.python.org/pypi
https://www.python.org/
https://doi.org/10.1080/09535314.2017.1318115
https://doi.org/10.1080/09535314.2017.1318115
https://doi.org/10.1080/09535314.2017.1317237
https://doi.org/10.1016/j.ecolind.2017.01.026
https://doi.org/10.1016/j.ecolind.2017.01.026
https://doi.org/10.3390/su6117514
https://doi.org/10.3390/su6117514
http://pymrio.readthedocs.io/en/latest/#
http://pymrio.readthedocs.io/en/latest/#
https://doi.org/10.21105/joss.00332
https://doi.org/10.21105/joss.00332
https://doi.org/10.1111/jiec.12715
https://doi.org/10.1111/jiec.12715
http://exiobase.eu/9-home/27-creea-booklet()
http://exiobase.eu/9-home/27-creea-booklet()
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/srep40743
https://doi.org/10.1038/srep40743
https://doi.org/10.1111/jiec.12704
https://doi.org/10.1111/jiec.12704
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.1016/j.ecolecon.2011.06.014
https://doi.org/10.1016/j.ecolecon.2011.06.014
https://doi.org/10.1080/14693062.2019.1619507
https://doi.org/10.1080/14693062.2019.1619507

11Stadler Journal of Open Research DOI: 10.5334/jors.251

TO CITE THIS ARTICLE:
Stadler K 2021 Pymrio – A Python Based Multi-Regional Input-Output Analysis Toolbox. Journal of Open Research Software, 9: 8. DOI:
https://doi.org/10.5334/jors.251

Submitted: 29 October 2018 Accepted: 26 February 2021 Published: 11 May 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.251
https://doi.org/10.5334/jors.251
http://creativecommons.org/licenses/by/4.0/

