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Tomáš Helikar,
University of Nebraska-Lincoln,

United States

*Correspondence:
Osbaldo Resendis-Antonio

oresendis@inmegen.gob.mx

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 16 December 2020
Accepted: 17 May 2021
Published: 10 June 2021

Citation:
Avila-Ponce de León U,

Vázquez-Jiménez A,
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The balance between pro- and anti-inflammatory immune system responses is crucial to
face and counteract complex diseases such as cancer. Macrophages are an essential
population that contributes to this balance in collusion with the local tumor
microenvironment. Cancer cells evade the attack of macrophages by liberating
cytokines and enhancing the transition to the M2 phenotype with pro-tumoral
functions. Despite this pernicious effect on immune systems, the M1 phenotype still
exists in the environment and can eliminate tumor cells by liberating cytokines that recruit
and activate the cytotoxic actions of TH1 effector cells. Here, we used a Boolean modeling
approach to understand how the tumor microenvironment shapes macrophage behavior
to enhance pro-tumoral functions. Our network reconstruction integrates experimental
data and public information that let us study the polarization from monocytes to M1, M2a,
M2b, M2c, and M2d subphenotypes. To analyze the dynamics of our model, we modeled
macrophage polarization in different conditions and perturbations. Notably, our study
identified new hybrid cell populations, undescribed before. Based on the in vivo
macrophage behavior, we explained the hybrid macrophages’ role in the tumor
microenvironment. The in silico model allowed us to postulate transcriptional factors
that maintain the balance between macrophages with anti- and pro-tumoral functions. In
our pursuit to maintain the balance of macrophage phenotypes to eliminate malignant
tumor cells, we emulated a theoretical genetically modified macrophage by modifying the
activation of NFkB and a loss of function in HIF1-a and discussed their phenotype
implications. Overall, our theoretical approach is as a guide to design new experiments for
unraveling the principles of the dual host-protective or -harmful antagonistic roles of
transitional macrophages in tumor immunoediting and cancer cell fate decisions.
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INTRODUCTION

Macrophages are essential cells in inflammatory responses and
immune regulation. However, these cells have heterogeneous
functions depending on their polarization. Despite the
importance of the process, only the M1 and M2 phenotypes
have been experimentally characterized (1, 2). Nevertheless,
there are macrophages with intermediate functional
phenotypes or hybrid stages that have not been fully described
yet. M1, M2, and some hybrid states have specific gene
expression and secretion profiles, depending on the
microenvironment signals (3). For instance, M1 macrophages
express NFkB or STAT1 and secrete TNF-a and IL-12,
correlated with a pro-inflammatory response. On the contrary,
the M2 macrophages are correlated with an anti-inflammatory
response, but their expression profiles are subject to the hybrid
stages. As far as we know M2 macrophages have 4 hybrid stages,
called M2a, M2b, M2c, and M2d (4). M2a macrophages express
STAT6 and secrete IL-10, TGF-b, and IL-1RA, associated with
pro-fibrotic functions and inhibition of Th1, and a Th2 response
(5). M2b macrophages express Erk and AP-1, and secrete IL-10,
TNF- a, and IL-1, correlated with immune regulation (6). M2c
macrophages express STAT3 and secrete IL-10 and TGF-b, involved
in tissue repair, matrix remodeling, and immunosuppressive behavior
(7). Finally, M2d macrophages express HIF1-a or a defective NFkB,
enhance STAT1, and induce the secretion of IL-10, TGF-b, and
VEGF. M2d is associated with tumors, enhancing the angiogenic
process, metastasis, tumor growth, and regulating the immune system
(8–10). In principle, hybrid stages inmacrophage polarization depend
on the microenvironment signals, such as cytokines, membrane
receptors, and transcription factors, to determine their specific
function and cell fate. However, macrophage hybrid states can
transit from one to another depending on the stimuli. M1
macrophages can polarize reversibly into M2a, M2c, and M2d,
while M2c can polarize reversibly into M2a (8–11). Moreover, the
microenvironment signals can be secreted by other cells within the
tissue or by the macrophages themselves (12). Despite the previous
characterization, theoretically it has been proposed a continuum
transition between the mentioned phenotypes (13). Therefore,
integrating the signaling responses and molecular mechanisms
involved in the macrophage polarization is required to untangle the
complexity of the transitions between the different phenotypes.

As stated above, macrophages respond to tumor
microenvironment stimuli in a coordinated and regulated
manner. At the molecular level, transcription factors regulate
the expression of other transcription factors or mRNA molecules
inducing a change in the behavior based on the stimuli. These
interactions can be summarized in a gene regulatory network
where we can analyze their dynamic properties through
mathematical models (14). Given that gene regulatory
networks contemplate a large number of variables and the
interactions among them, modeling their behavior using a
continuous approach would be difficult due to the lack of
kinetic parameters. However, gene regulatory networks
represent variables as nodes and the interactions between them
as edges, making a discrete approach suitable because it requires
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few parameters. A common approach is the Boolean modeling.
This mathematical approach is, where we numerically represent
the state of the nodes as 0 (OFF) or 1 (ON). The OFF state means
that a transcription factor or molecule is below a certain
threshold, meaning it is inactive, while ON indicates an active
molecule. The activation and inactivation rules for each node are
called Boolean functions. These rules, indicate how each node is
activated or inhibited are obtained from experimental evidence
and mathematically represented through logical operators: AND
(stated as: &), OR (stated as: |), and NOT (stated as: ¬), obtained
based on the experimental evidence on how each node is
activated or inhibited. The system is solved via a synchronous
or asynchronous update where we transform a static gene
regulatory network into a dynamic one. By applying a
synchronous all Boolean functions are updated simultaneously,
and they will eventually arrive at a steady state, called an
attractor. An attractor is a point where a group of states will
converge to that point and they cannot leave this state until a
perturbation occurs (15, 16). The biological interpretation of an
attractor is a certain cell type or function defined by a gene
pattern, it can be related to one or more subtypes of phenotypes
and a phenotype can be associated with one or more attractors.
This approach has been used to successfully model biological
systems (17, 18), and study the cell fate decisions of the adaptive
immune response by their specific signals (19, 20). Notably, this
approach validated the continuum hypothesis of polarization
states by integrating a network of external cytokine signals
(21, 22). Although valuable endeavors have recovered and
model some of the macrophage phenotypes (M1, M2a, M2b,
and M2c) (21, 22). However, there is a lack of information about
other phenotypes and their functionalities. We propose a new
model capable of recreating the macrophage phenotype diversity
considering relevant experimental evidence to fulfill this gap.

In this paper, we present a Boolean dynamical analysis over an
updated signaling regulatory network of macrophages to assess the
polarization of intermediate phenotypes immersed in the tumor
microenvironment. Our Boolean model predicted known
macrophage phenotypes, plus hybrid intermediate phenotypes
with mixed physiological functions associated with tumor
eradication, tissue repair, and progression of tumor cells. Then,
we proceeded with an in-depth analysis of the functional
properties of the hybrid states. Analyzing the stability of the new
hybrid states. As a result, we acknowledge the importance of
STAT1, NFkB for the M1 phenotype and HIF1-a for the M2
phenotype. We also proposed a theoretical approach of
macrophage immunotherapy in an in silico breast cancer
microenvironment, which showed promising results in a specific
microenvironment towards a better prognosis for cancer
eradication. Overall, this work represents a systems biology
framework capable of characterizing known macrophage
phenotypes and suggesting new hybrid cell populations. Also, it
explores the typified macrophages functionality in a tumor
microenvironment as well as their robustness and properties.
Moreover, our model serves as a computational platform to
explore how the tumor microenvironment can potentially
modulate macrophages-cancer interaction.
June 2021 | Volume 12 | Article 642842
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MATERIAL AND METHODS

Mathematical Modeling of Network
Phenotypes Through Discrete Variables
To explore the feasible space of phenotypes associated with our
signaling network, we applied a Boolean approach. Briefly,
Boolean approaches assume that each node in the network can
be in one of two states (0 or 1), and their dynamic behavior is
entirely governed by a Boolean function, which is defined by their
regulation. Under this situation, the dynamic state of the i-esime
node at time t is given by

xi(t + 1)   =   fi(xi1(t), xi2(t),   :::  ,   xiki(t))

Where xi can take the values 0 or 1, and fi represents the
Boolean function of the i-esime node in the network. Note that
every node has a Boolean function which determine how that
specific node respond to the change of the neighbor regulators
(here indicated by the arguments of fi). Also, fi maps a Boolean
state including multiple Boolean variables at time t into a new
Boolean state. After one unit of time, the dynamic behavior of the
network is obtained when we simultaneously apply the transition
function fi over all the nodes. Starting from the 2N initial states,
the Boolean transition functions will allow the network to reach a
finite set of states that could cycle between them in a fixed state.
These recurrent states are called attractors: if the dynamics
reaches a state and stays there, they are called simple
attractors, but if they move irregularly in a set of states, they
are called complex or loose attractors. All the set of initial states
whose transition function guide to the same attractors will form
the basin of attraction. The attractors are of great importance
because they represent the long-term behavior of the Boolean
model and are potentially associated with phenotypes in the
system of study (20, 23).

Analysis and Simulation of the Attractors
of Our Boolean Model
A gene regulatory network is a dynamic system. We obtained all
of the attractors using the exhaustive search algorithm evaluating
the space of 2n (where n is the number of nodes) initial
conditions. So we evaluated 536,870,912 initial conditions
using BoolNet Library from R software (24). The obtained
attractors carried important biological implications and were
associated with macrophage phenotypes. Each attractor was
labeled based on experimental evidence. The labeling was done
with a function of R package BoolNetPerturb, located at https://
github.com/mar-esther23/boolnet-perturb-0.1. To compare the
differences between the obtained attractors we reduced the
dimension of our variables to plot them in a 2D-space using
the t-SNE function in R. Once we had our plot, we clustered
them to find similarities between the attractors. To determine the
optimal number of clusters, we develop rules based on each
possible group value’s associated error, varying from 10 to 30.
Finally, the clusters were named based on the functions carried
out by the phenotypes of macrophages in each cluster. The
model is available in a txt file and an SBML file for it could be
easily reproduced. Our Code, data, and implemented analysis
Frontiers in Immunology | www.frontiersin.org 3
can be accessed at: https://github.com/resendislab/M1-M2-
Macrophage-Polarization.

Mutation Analysis
Mutation analysis was divided into two sections: gene deletion
and activation. The number of initial conditions for each
perturbation is 2n–1 where n–1 is the number of nodes minus
the perturbed, so for every perturbation we evaluated 268,435456
initial conditions. We permanently set the state of the node as 0
for gene deletion and simulated the dynamics until it reached an
attractor. Conversely, gene activation was accomplished by
permanently fixing as 1 the state of one node in the network
along with all units of time. These considerations were used to
mimic the experimental condition of knock-outs or
overexpression, respectively. By making this approach, we
evaluated the robustness of a given macrophage subtype to
resist a gene deletion or activation and how it affects its
molecular activation pattern.

In the case of the cell fate map of macrophage polarization, we
randomly changed the values of each attractor’s nodes. by a
single bit flip. Then we evaluated which nodes changed a given
macrophage phenotype into another given phenotype; this
perturbation will determine the one-state neighbors.

Robustness Analysis of Our Model
To validate the robustness of our model, we calculated the
Derrida curve and developed the sensitivity analysis of the
update rules. A Derrida curve allowed us to evaluate if a gene
regulatory network is chaotic, ordered or critical. If the
differences between the initial states diverge rapidly from the
degrees diagonal, the network is chaotic. To obtain the Derrida
curve we proceeded as follows. First, we sampled a random pair
of initial states X1(t) and X2(t) at the same known time t. Once
we have these states, we calculated the normalized Hamming
distance h(t) which is the number of bits that differ from the two
initial states divided by the number of nodes N. Then, we
initialize in time the Boolean network and let both initial states
evolve to their next states X1(t+1) and X2(t+1), we calculated the
normalized hamming distance denoted as h(t+1) run the
dynamic. We repeated the previous steps for 10 000 random
pairs and calculated the average behavior over the realizations.
We plotted the value of h(t) in the x-axis and the y-axis the value
of h(t+1), as well we plotted the diagonal where h(t)=h(t+1)
which means that the successor states and the initial states are the
same. The Derrida curve was calculated with the R package
BoolNetPerturb, located at https://github.com/mar-esther23/
boolnet-perturb-0.1.

Complementary, the sensitivity analysis showed the
differences on the results depending on alterations on each
component, either turning on or off respectively. First, we
created 50 000 randomly chosen states for each Boolean
function define as f(ki) where ki is the different variables and
i iterates from 1 to 29. Then, for each of these 50,000 initial states,
we created a mutation randomly with only one-bit flip
(Hamming distance of 1) labeled as f(ki’). Finally, we applied
the update rule for ki and ki’, and we calculated the sensitivity of
the update rule as the fraction of initial states where f(ki) ≠ f(ki’).
June 2021 | Volume 12 | Article 642842
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The sensitivity analysis was carried out using the package of
BoolNet in R.
RESULTS

Network Reconstruction and Boolean
Analysis: The Molecular Basis of
Macrophage Polarization in a
Tumor Microenvironment
The tumor microenvironment contains several cell types, such as
cancer cells, immune cells, and mesenchymal cells. These cells
produce cytokines that attract other monocytes to the tumor as a
natural immune response in the host. The interplay between tumor
microenvironment interactions and macrophage functions must be
taken into account to understand part of the inflammatory process
involved in the interaction between macrophages and cancer. To
this end, we reconstructed a signaling network that comprises a
variety of regulatory elements associated with macrophage
differentiation. We set up our interaction network of the
macrophage polarization by a literature search of interactions
between external components and how this affects the activation
or inhibition of transcriptional factors associated with macrophage
polarization. This approach is called a bottom-upmethodology. The
original reconstruction included 40 nodes. Then, we excluded all
those nodes with less than two interactions (in and out) to analyze
the dynamic behavior of the network.We did it because these nodes
do not contribute information to the dynamic analysis. Therefore,
we did the dynamic Boolean analysis onto a network of 29 nodes
and 60 interactions. Overall, our transcriptional regulatory network
(TRN), integrates extracellular-intracellular components, signal
transduction cascades, and transcriptional regulatory mechanisms.
This regulatory network of macrophage polarization had two parts,
Frontiers in Immunology | www.frontiersin.org 4
the extracellular components (green nodes) and the master
transcriptional factors (blue nodes) that regulate macrophage
polarization (Figure 1 and Table S1).

Among the signaling cascades included in our reconstruction,
we included the following interactions: Cancer dying cells produce
HMGB1 activating Toll-like receptor 4 (TLR4), consequently
activating NFkB (25). Briefly, these signals initiate the anti-tumor
response in macrophages. However, the macrophage colony-
stimulating factor (M-CSF) also triggers NFkB through JAK2 and
STAT5. Besides, interferon triggers STAT1, so the cell releases
cytokines to inhibit tumor growth (26). On the other side, we also
described different activation processes for the M2 sub phenotypes
(M2a, M2b, M2c, and M2d). First, M2a activation depends on IL-4
and IL-13 and triggers STAT6 (27). At the same time, STAT6
inhibits STAT1 and NFkB through SOCS1 and KLF4, avoiding the
M1 phenotype. Then, M2b activation depends on the signals of AP1
or ERK. AP1 is activated by the presence of IL-1b, while ERK needs
the binding to Fc receptors (6). Next, M2c activation relies on the
presence of STAT3. IL-10, glucocorticoids, TGF-b, and adenosines
trigger STAT3 (28). This cascade induces the secretion of IL-10 and
the inactivation of NFkB. Finally, M2d activation hinges on IL-6 or
HIF1, related to a hypoxic environment (29). This phenotype is
present in solid tumors. This cascade induces the secretion of IL-10,
VEGF, and other cytokines. Conversely, the activation of any M2
sub phenotypes culminates in the liberation of cytokines, such as
IL-10, that enhance tumor growth. We also included interactions
that described M2d phenotype, a tumor-associated-macrophage,
and relevant inflammatory cytokines, such as TGF-b and TNF-a.
We used this network to dynamically analyze the master regulators
that drive the transition between several types of macrophage
phenotypes. Hence, to unveil the effect of the tumor
microenvironment in macrophage polarization, we performed a
Boolean analysis over a reconstructed transcriptional regulatory
FIGURE 1 | Gene regulatory network of macrophage polarization in a tumor microenvironment. Green circles represent components of the extracellular space and
blue circles represent the components of the internal machinery. Solid green arrows represent activation and dashed red arrows inhibition.
June 2021 | Volume 12 | Article 642842
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network for macrophages (Table S1). Our network contains a
monocyte-derived macrophage regulatory mechanism, as depicted
(Figure 1). We assumed that all the receptors for the external
stimuli were constitutive. This assumption allowed us to eliminate
linear interactions and to reduce the size of our network without
affecting the dynamic and topology.

Boolean Modeling of the TRN and Its
Spectrum of Macrophage Phenotypes
Based on our reconstructed signaling network, we determined
the possible macrophage phenotypes existing in a tumoral
Frontiers in Immunology | www.frontiersin.org 5
microenvironment. Our Boolean model had interconnected
signaling pathways, and their dynamics with the external
inputs eventually converged to stable states, called single
attractors. An attractor is a set of activated or inactivated genes
that are time-invariant and potentially represent a macrophage
phenotype. We named each attractor based on in vitro
experimental evidence; we considered six possible steady states
associated with a specific macrophage phenotype (Table 1).
Using a synchronous update, our TRN converged to an entire
landscape of 10,430 attractors, where 56 were cyclic, and the
remaining were simple attractors. The simple attractors
represented 13 phenotypes. Among them, four are already
experimentally described (M0, M1, M2b, and M2d). The nine
remaining were hybrid phenotypes with two or three
macrophage phenotypes. To identify similarities among
attractors, we made a bidimensional map using a distributed
stochastic neighbor embedding (t-SNE) and a clustering analysis
(Figure S1). Employing a 30 metrics consensus, we determined
that the optimal cluster value was 10 (Figure S2). We obtained
10 clusters for 13 phenotypes (Figure 2), each one embedding
more than one phenotype (Figure S3).

Among all the phenotypes, seven correlated with a pro-
tumoral response and five with an anti-tumoral response. The
tumor microenvironment enhances macrophages polarization to
TABLE 1 | Macrophage phenotypes used to name each attractor.

Phenotype Transcriptional Factors Activated/External
components

Literature
Revised

M0 None
M1 Activation of NFkB, or STAT1, or TNFa and AP1 (26, 30)
M2a Activation of STAT6 (28, 31)
M2b Activation of AP1 or ERK (12)
M2c Activation of STAT3 (29)
M2d Activation of TLR4 and A2a or HIF1A (32)
The attractors obtained after the simulation were labeled based on the macrophage
phenotypes reported in the literature.
FIGURE 2 | Clusters of the single size attractors obtained in the Boolean simulations. Each circle represents a two-dimensional projection of one attractor, and the
color represents a collection of attractors with similar phenotypes between them. The numbers associated with the clusters are explained in Table 1.
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pro-tumoral phenotypes with the liberation of interleukins and
chemokines. In return, macrophages release growth and immune
regulatory factors allowing proliferation and progression of
cancer cells. Notwithstanding, in a tumor microenvironment,
there are macrophage phenotypes with anti-tumor activity,
balancing the elimination of tumor cells without affecting the
surrounding tissues.

Due to the massive amounts of stimuli in a tumor
microenvironment, we hypothesized that many hybrid
activation states exist. We handled macrophage hybrid
phenotypes as a single cell identity rather than a heterogeneous
population, as in previous works (32). We suggested that a
hybrid will be phenotypically distinguished by a combination
of expression markers associated with pure M1 and M2
phenotypes. For instance, cluster A contained two-hybrid
(mixed macrophage behavior) phenotypes M2bM2d and
M2aM2d, macrophages associated with wound healing and
regulatory behavior. Based on their composition, we concluded
that this cluster was beneficial for tumor growth due to the
liberation of growth factors maintaining tumor proliferation and
regulatory cytokines to maintain the immune system. On the
other hand, clusters B and I consisted of macrophages that would
eliminate tumor cells due to the presence of M1, which liberate
cytotoxic cytokines to the microenvironment (30). Clusters C
and D behavior was complex due to the heterogeneous
phenotype composition. Cluster F was a wound-healing and
regulatory macrophage due to a hybrid phenotype labeled as
M2aM2b (Table 2). According to our results, a good scenario
against cancer is given by a macrophage state the increases tumor
clearance role, by releasing tumor cytotoxic factors, and
diminishing the levels of components associated with pro-
tumoral behavior.

Loss and Gain Function Alteration Dictates
the Macrophages Subtypes
In this section, we computationally assessed the importance of
each node in the stability of the phenotypes obtained. For this
purpose, we performed a permanent deletion (set the value of the
node to zero) or activation (set the value of the node to one) of
each node in the dynamic analysis of the TRN. To quantify the
Frontiers in Immunology | www.frontiersin.org 6
effect produced by these perturbations, we applied the following
equation:

log2
M ± i
WTi

� �

where WTi denotes the size of the basin of attraction for the “i”
attractor without alterations, and M ± i denotes the basin of
attraction for the “i” attractor for the deletion(-) and activating
(+) of the node. As expected, the previous equation is
constrained to those cases where WTi ≠ 0 and both variables
are positively defined. The size of the basin of attraction for WT
is depicted in Figure S4. Figure 3 shows the log-fold of the size of
the basin of attraction when we compared perturbed and
unperturbed (WT) genes stated by columns. Gray areas
indicate attractors that were in the wild-type but not in the
perturbed state. Attractors with an M1 macrophage will be an
anti-tumoral phenotype, and with the M2 macrophage, a pro-
tumoral phenotype (rows). Each column is an activation or
inactivation of a transcription factor.

In terms of the results, we observed that permanent activation
of AP-1, STAT1, or NFkB was very similar because they induce
hybrids with tumoricidal capacity (M1). AP-1 and STAT1
activation decreased at 100% pro-tumoral phenotypes and 20%
anti-tumoral phenotypes. These transcriptional factors may
recover the balance towards a tumor eliminating scenario in
the tumor microenvironment (gray areas Figures 3A and S5, S6
respectively). NFkB permanent activation maintained the same
behavior as previous transcription factors because it diminished
at a 100% pro-tumoral phenotype and 20% anti-tumoral
phenotypes, creating a perfect balance of tumor elimination
and recovery of the tissue due to the secretion of cytotoxic
interleukins and interferons (gray areas in Figures 3A and S5, S6
respectively). On the other hand, constitutive expressions of
HIF1-a or TGF-b eliminated pure M1 macrophages (Figure
3A) and decreased the available profiles that converged to
hybrids with M1 as a component. HIF1-a and TGF-b
promoted the development of malignant behavior in
macrophages. Once activated, HIF1-a decreased 22% anti-
tumoral phenotypes (Figure S6) and 40% pro-tumoral
phenotypes (Figure S5). We concluded cells should avoid the
TABLE 2 | Macrophage phenotypes associated with each cluster.

Cluster Phenotypes Behavior

A M2bM2d and M2aM2d Regulatory/wound healing macrophage
B M1 and M1M2d Classical activated macrophages/Pro-tumoral macrophages
C M1M2bM2d, M1M2bM2cM2d, M1M2b, M2d and M2M2d Complex behavior. Mixed phenotypes associated with different functions
D M0, M1M2bM2d, M2b, M2d and M2bM2d Complex behavior. Mixed phenotypes associated with different functions
E M1M2bM2d and M2aM2d Classical activated macrophage/Pro-tumor
F M2aM2b Wound-healing macrophages
G M2aM2cM2d and M2aM2bM2d Regulatory/wound-healing macrophages
H M2bM2d and M1M2bM2d Regulatory/Pro-tumoral macrophages
I M1 and M1M2d Classical activated macrophages/Pro-tumoral macrophages
J M2aM2d and M2aM2bM2d Regulatory/Pro-tumoral macrophages
The phenotype behavior of each cluster was approximated by the criteria of classification used by (33).
Description of the results obtained from the k-means clustering over the t-SNE 2D space.
June 2021 | Volume 12 | Article 642842
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presence of HIF1-a in a tumor microenvironment. Also, TGF-b
had the same behavior as HIF1-a (Figures S5, S6, respectively),
so cells should avert its secretion to revert cancer proliferation.
Nevertheless, we hypothesize that the modulation of the balance
to anti-tumoral phenotypes could be sufficient to diminish
TGF-b.

Conversely, constitutive expressions of NFkB or STAT1 kept
M1M2b and M1M2d phenotypes, respectively. Both hybrid
phenotypes with well-known tumoricidal capacity. Interestingly,
the overexpression of NFkB and STAT1 could be a potential
therapeutic strategy because they promote phenotypes that could
balance the behavior of macrophages in a tumor
microenvironment, favoring tumoricidal capacity (Figure 3A).

On the other hand, we found an imbalance in the size of the
basin attractors when we knocked out some transcriptional
factor expressions separately (Figure 3B). Our in silico analysis
allowed us to conclude that if we knocked out the expression of
Fra-1, the M1 and the hybrid M1M2b produced a slight augment
in their size of the basin of attraction, implementing a tumoral
eradication capacity. Also, we observed that the lack of Fra-1 did
not influence the development of the M2d phenotype. Turning
off HIF1-a increased phenotypes associated with tumoricidal
capacity (M1 and M1M2b), denoting the importance of not
expressing these transcriptional factors for eliminating tumor
cells (Figure S7). However, only affecting HIF1-a activity is
insufficient because it enhances pro-tumoral phenotypes at 36%
for the wild type macrophage (Figures 3B and S8). Thus, we had
a typical host defense by activating the gamma receptors and
liberating IFN-g to the microenvironment. Notably, unlike gene
activation analysis, we observed the emergence of some pure
phenotypes, M2a, and M2c, tending to favor tumor progression
when we knocked out HIF1-a.

Furthermore, we noted that knock-out of STAT3 decrease the
proportion of phenotypes specific for tumor eradication and
Frontiers in Immunology | www.frontiersin.org 7
hybrid with anti-tumoral behavior at 33% (Figure S7).
Inactivating STAT3 diminished 63% of pro-tumoral phenotypes
involved in the regulation of the immune system (M2c) by
activating NFkB (Figure S8). STAT6 knock-out does not affect
anti-tumoral phenotypes (Figure S7), but it decreases the
attraction basin of phenotypes. M2c phenotype releases IL-10
into the microenvironment creating a scenario for tumor evasion
and enhancing tumor metastasis. In agreement with these
findings, biological evidence suggests that the inactivation of
STAT3 and STAT6 transcriptional factors are associated with
reducing tumor growth and metastasis in a model of breast and
lung cancer (31, 34).

Macrophage Polarization Develops
Feedback With Microenvironments
Tumor microenvironments shape the polarization of
macrophages. To evaluate how the microenvironmental signals
alter this process, we analyzed six different signaling
environments associated with macrophage phenotypes: M0,
M1, M2a, M2b, M2c, and M2d states. We simulated signaling
microenvironments activating permanently known profiles of
cytokines and signaling metabolites associated with each
macrophage phenotype (see Table 3) (33, 35).

Figure 4 depicts the logarithm of the basin of attraction of the
attractors obtained in said microenvironments. Gray areas
indicate that the phenotype was not present in the specific
microenvironment. Notwithstanding that the Boolean model is
a simplified analysis, we highlight a global behavior over how the
macrophage phenotype is shaped. For instance, the monocyte
microenvironment (Pro-M0) tends to induce three phenotypes
at a low rate: M0, M1, and M2d. Fra1 may give a possible
explanation underlying the increment in the size of the basin of
attraction for M2d. The upregulation of Fra1 ultimately activates
NFkB, which in turn will induce the M1 macrophage phenotype.
FIGURE 3 | Heat Map of the overexpression and knock-out of transcriptional factors. (A) Heat Map of the overexpression of transcriptional factors of macrophage
polarization. We maintained the expression of the node as 1, simulated, and reviewed the attractors obtained. All overexpression was compared with the wild-type
(original network) with log2 fold change. (B) Heat Map of Knock-outs of transcriptional factors of macrophage polarization. The nodes were permanently fixed with a
value of 0; the perturbations were realized one by one until the attractors were reached. We compared the phenotypes of the wild-type with the perturbations by a
log-fold change. Green and red regions indicate those attractors whose size of the basin of attraction increased or decreased after the perturbation. In black, we
denote those attractors with few effects in the basin attraction size versus WT and after perturbation. Gray areas indicate those attractors that exist in the wild-type
but do not remain perturbed.
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Furthermore, our computational analysis suggests that the
Pro-M1 microenvironment diminishes regulatory and wound-
healing phenotypes and enhances tumoricidal capacity (Figure 4).
In counterpart, Pro-M2b microenvironment decreases tumoricidal
capacity, favoring macrophages phenotype to tumor progression
and immune regulation. This microenvironment only induces
phenotypes either hybrid or simple associated with M2b. On the
other hand, M2c microenvironments maintain hybrid phenotypes
associated with tumor proliferation and wound-healing
components, like angiogenesis. Besides, we noted that the
regulatory cytokines like IL-10 and IL-6 in the microenvironment
Pro-M2c diminished all possible cytotoxic hybrid activity in
macrophages. This finding can explain cytotoxic activity in a pro-
tumor microenvironment (36). However, the M2 population was
preferred over M1 because they had specific microenvironment
components (Pro-M2c) to maintain this imbalance (Figure 4).
Furthermore, the M2d microenvironment does not generate any
macrophage associated with tumoricidal capacity; it only activates
Frontiers in Immunology | www.frontiersin.org 8
macrophages implicated in wound-healing (angiogenesis and tissue
recovery) and phenotypes regulating the actions of the immune
system in eliminating tumors.

Lastly, macrophage phenotypes were susceptible to local
microenvironments inside a tumor. These microenvironments
can induce heterogeneity over the composition enhancing
specific subtypes of macrophages. We believe that these
phenotypes will increase their stability due to the continuum
expression of their external signal. However, anti-tumoral
behavior occurs even in the activation of pro-tumoral behavior
by external signals but with lower stability. This type of modeling
scheme may help develop therapeutic strategies to ensure
stability despite the microenvironment acting against the
treatment of a specific cancer type (37, 38).

The Importance of Molecular Components
in Determining Cell Fate Macrophages
We analyzed each attractor’s stability previously obtained
through a gene perturbation analysis to evaluate the plasticity,
closeness, and possible transition between the macrophage
subtypes. As shown previously, these sets of analyses are
beneficial to describe and uncover the network’s global
properties. We obtained a global landscape of the possible
transitions among them (Figure 5). To accomplish this, we
altered each node’s state in the network. If the value of the
node was 1, we changed to 0 and vice versa. Then we evaluated if
this modification affected the stability of the phenotype in the
network. Notably, we observed that only some transitions were
allowed among attractors; besides, these transitions depended on
different genetic alterations. As expected, phenotypes with the
FIGURE 4 | Heat maps of the microenvironments of macrophage polarization. Microenvironments associated with the six phenotypes evaluated in this work. For
these simulations we used the criteria of Table 2. Once the attractors were obtained, we applied a logarithmic transformation on the size of the basin of attraction for
each phenotype. Red stands for a low basin of attraction and green for a high basin of attraction. Pro means we modelled the polarization in a microenvironment
adjuvant for each macrophage subtype. M0, monocytes.
TABLE 3 | Microenvironments associated with specific macrophage subtypes.

Macrophage Phenotype Signals

M0 No external stimuli
M1 IFN-g and IFN-b
M2a IL4 and TGF-b
M2b IgG and glucocorticoids
M2c IL10 and IL6 and MCSF
M2d Adenosines and hypoxia and glucocorticoids
On the right side of the table, we have the phenotypes and the nodes that were kept on
during the simulation until an attractor was reached.
Simulation of microenvironmental cues for the six macrophage phenotypes modeled in our
gene regulatory network.
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largest basin of attraction were more stable to perturbations
(Figure S4). This study allowed us to conclude that M0
(monocyte) had a low stability, and it was prone to become
other macrophage phenotypes under perturbations (Figure 5A).
For example, M1 can differentiate from M0 through the
activation of STAT1, IFN-g, or IFN-b, but M1 can re-polarize
to M0 (monocyte) activating the inhibitory function of SOCS1.
These polarizations were irreversible, which means once they
shift to the new phenotype, they cannot shift back to monocytes
(Figure S9).

On the other hand, M2b transitioned from M0 by activating
immunoglobulin G (IgG). B cells liberate IgG and can be cancer-
derived (39, 40), so the M2b phenotype can be induced directly
frommonocytes and not necessarily has to pass first from a TLR4
activated macrophage and then shift to M2b (7). The transition
from M0 to M2d was obtained by activating HIF1a or TGF-b or
adenosines leading to the inactivation of any transcriptional
factor of cytotoxic behavior; this transition was reversible
(Figure S9). Notably, our simulations allowed us to postulate
that the more complex phenotypes, the hybrids, can be obtained
from M0. For instance, the tumoricidal/regulatory macrophage
given by M1M2b obtained by activating AP1, NFkB, and IL1-b,
had an, irreversible transition.
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Another interesting observation is that the cytotoxic
macrophage named M1 was stable for most perturbations
(Figure 5B). For example, when we turn on AP1, the M1
phenotype becomes a hybrid phenotype (M1M2b) that
maintains its cytotoxic capacity combined with a regulatory
behavior. This shift is reversible macrophages can return to an
M1 phenotype by inactivating AP1 (Figure S9). Furthermore,
M2b attained from M1 by activating IgG, stating the importance
of the immune complexes for selecting this trajectory. It does not
need to be first a TLR4 activated macrophage to promote the
transition to the M2b phenotype (7). Hybrid phenotype M1M2d
(Figure 5C) can favor tumor clearance and recuperation of
tissue. Based on our model, we observed this phenotype
constrain the macrophage into a hypoxic condition,
permanently activating TGF-b. The M1 phenotype can be
obtained from M1M2d, turning off hypoxia or TGF-b, but
both extracellular conditions are present most of the time in a
tumor microenvironment. In this context, pursuing a hybrid
phenotype with theoretical benefits such as M1M2d seems to be
a better strategy than the induction of the M1 phenotype in a
tumor microenvironment. We also observed that M1M2d, a
tumoricidal/regulatory state, can shift to the M2d macrophage
stage. This polarization is reached by turning on SOCS1
A B

DC

FIGURE 5 | Cell fate map of the macrophage polarization. Of all the attractors obtained, we changed the node’s value and maintained this perturbation until an
attractor was reached. If the attractor’s transition to another phenotype, we represent it with a line and the new phenotype obtained by the perturbation. Plus sign (+)
means the node was turned off, and we turn it on, while minus sign (-) means the perturbation was on, and we turned off. (A) Cell fate map of monocyte (M0).
(B) Cell fate map of M1 macrophage. (C) Cell fate map of M1M2d macrophage. (D) Cell fate map of M2bM2d macrophage. Colors represent different states of
macrophage polarization.
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(inhibiting STAT1) or turning off STAT1 (M1 transcriptional
factor). Notably, perturbation analysis suggests the emergence of
a new phenotype from M1M2d; a hybrid labeled M2aM2c with
an irreversible phenotype (Figure S9). M2aM2c has a regulatory/
pro-tumoral behavior favoring tumor growth and tumor evasion,
and it is promoted by turning on STAT6 from M1M2d.
M2bM2d has more stability compared with other phenotypes
(Figure 5D). IgG is a crucial factor that dictates this phenotype’s
behavior, so turning off this node, the hybrid phenotype can shift
irreversibly to various tumoricidal macrophage stages, like M1
(Figure S9). M2b phenotype derived from M2bM2d by turning
off HIF1a and the expression of ERK, which permits the
secretion of IL-6, a pleiotropic cytokine and immune regulator
of IL-10. Finally, turning on STAT1 or NFkB was sufficient to
transit to a tumoricidal/regulatory phenotype from M2bM2d,
labeled as M1M2b.

Lastly, there is growing evidence that plasticity is a property in
the immune system’s response altogether, here we supplied
evidence that the response of macrophages is not the
exception. Even though macrophages polarize depending on
external factors, they can be manipulated to influence the
outcome of their external signals. This analysis allowed us to
identify potential genetic control points like NFkB and HIF1a,
which could serve as potential molecular targets against cancer
by modifying the macrophage phenotypes.

HIF1-a and NFkB as Potential
Transcriptional Factors for a Theoretical
Treatment Based Approach
Despite tumor microenvironment complexity and variability,
their modulation is an appealing strategy to reduce the cancer
cell phenotype (41). For instance, in our model, the most relevant
Frontiers in Immunology | www.frontiersin.org 10
activated transcription factors for the polarization to M1
phenotype and M1 hybrid are STAT1 and NFkB; these
findings agree with a previous report (42). On the contrary,
activation of HIF1-a is associated with the reduction of anti-
tumoral macrophages by enhancing pro-tumoral macrophages.
We concluded that the inactivation of HIF1-a and activation of
NFkB or STAT1 might be critical to shift the balance to an anti-
tumoral microenvironment rather than a pro-tumoral.

To verify these hypotheses, we designed two theoretical
genetically modified macrophages (TGEM): HIF1-a =0 &
NFkB =1 and HIF1-a =0 & STAT1 = 1. Dynamic analysis
constrained by the inactivation of HIF1-a and activation of
NFkB showed a significant reduction in the number of attractors,
4096, compared to the 10430 obtained initially. The HIF1-a =0
& STAT1 = 1 (STGEM) diminished the number of attractors
(3840) distributed in four phenotypes (Figure S10). On the
contrary, HIF1-a =0 & NFkB =1 had only two phenotypes
(Figure 6A).

Interestingly, all the attractors belonged to two phenotypes,
M1 and M1M2d hybrid. The M1M2d hybrid has a cytotoxic
action, but the M2d counterpart diminishes the damage caused
its cytotoxic function. M1 was the more stable due to its basin of
attraction, while M1M2d was the least stable. We developed a cell
fate map for our TGEM to acknowledge which genes can transit
from one phenotype to another. Remarkably, we identified a
reversible transition between M1 and M1M2d, mainly driven by
Fra-1 and toll-like receptor 4 (TLR4) (Figure 6B). This means
that our TGEM will cycle between these two phenotypes without
developing new phenotypes; both are resistant to perturbations.

Our genetically modified macrophage with STAT1 activated
(STGEM) developed four phenotypes. All of them had a
hybrid state where the cytotoxic action was always present
A B

FIGURE 6 | Attractors and cell fate map of our TGEM. (A) Bar plot of the attractors obtained from our theoretical genetically modified macrophage. For this analysis
we set the value of NFkB to 1 and HIF1-a to 0, and simulated until we obtained these attractors. (B) Cell fate map of our theoretical genetically modified
macrophage. By analyzing the plasticity of phenotypes through single gene perturbation of the genetically modified macrophage, we obtained the rules of genetic
perturbation that contribute transition between macrophages phenotypes. Here (-) means the node was turned off and (+) means the node was turned on.
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(Figure S10A). M1M2b was the most stable phenotype, while
M1M2d as well as the least stable. The cell fate map of STGEM is
more complicated than TGEM. The transition from M1 to
M1M2b marked by STAT3 and ERK activation. STAT3 and
ERK are activated by common interleukins in a tumor
microenvironment like IL-10, TNF-a, and IL1b. The rest of
the map is depicted in Figure S10B, it showed that the four
phenotypes cycle between them without any new phenotype.
Based on this information, STGEM may be used as a strategy for
eliminating tumor cells. Due to the nature and simplicity of the
phenotypes obtained in TGEM, it can be an optimal option for
an immunotherapeutic strategy to modulate the tumor
microenvironment to eliminate tumor cells.

Finally, we concluded that our in silico TGEM (conceptually
defined by the permanent activation and inactivation of NFkB
and HIF1-a, respectively) induced phenotypes against cancer
cells in the tumor microenvironment. We predicted balanced M1
characteristics that liberate all the components involved in the
elimination phase of cancer immunosurveillance and the
substances to resolve inflammation and tissue damage
caused by cancer. Therefore, generating an M1/M2 ratio with
a good prognosis. Furthermore, the phenotypes coming
from our TGEM were robust, only certain transcription
factors could redirect the polarization to another phenotype
(Figure 6B).

Theoretical Genetically Modified
Macrophage Resisted Perturbations in a
Breast Cancer Microenvironment
Given the experimental evidence and previous results of the
intricate and determining relationship of the microenvironments
in macrophage polarization, we developed an in-silico
microenvironment based on experimental evidence. We
decided to simulate the alterations in the microenvironment of
our previous TGEM. Microenvironment alterations are
associated with adverse prognosis in other studies (43). We
defined the state (active or inactive) of all the extracellular
nodes present at the cancer microenvironment using cancer
multi-omics data (44). We calculated the differential expressed
genes between breast cancer cells and healthy tissue to estimate
which extracellular nodes are highly present and then fixed the
state of all extracellular nodes in our network. In the particular
case of components such as immunoglobulin G (39), adenosines
(45), glucocorticoids (46), and under hypoxia (47). All these are
activated (node state:one) due to previous reports supporting
their activity in samples of patients with breast cancer. Overall,
we simulated our theoretical genetically modified macrophage
(TGEM) in four different simplified breast cancermicroenvironments
to evaluate its behavior and determine if this pharmaceutical
approach could be suitable. Under this microenvironment, we
analyzed the effect of IgG and A2a; IL10 and TGF-b; IL-1b and IL
6; Hypoxia and glucocorticoids.

First, we evaluated the behavior modification of our TGEM in
specific breast cancer microenvironments according to previous
conditions. The phenotypes obtained changed globally, we found
two new phenotypes: M1M2b and M1M2bM2d. Both
Frontiers in Immunology | www.frontiersin.org 11
phenotypes have the M1 function creating a cytotoxic/
regulatory microenvironment (Figure 7A). The most
complicated microenvironment (this microenvironment is
implicated with metastasis) was the one with the presence of
A2a and Ig G. We observed only two phenotypes: M1M2b and
M1M2bM2d, while M1 and M1M2d were absent. This analysis
suggested that IgG & A2a could inhibit functions of the M1
macrophage through the inactivation of TLR4 and consequently
the activation of NFkB. A2a can inhibit NFkB as well; both
components created a complicated microenvironment for the
development of more M1 type macrophages.

Nevertheless, the phenotypes generated in this microenvironment
can help eliminate tumor cells and balance the microenvironment to
a more suitable one to create anti-tumoral macrophages. The
remaining microenvironments develop four macrophage
phenotypes (M1, M1M2b, M1M2bM2d, and M1M2d) with
different proportions each. Therefore, we found a high proportion
of pure M1 and M1 hybrid to shift the balance towards a tumor
eliminating microenvironment, and having the regulatory
components not cause more damage from the cytotoxic activity
(Figure 7A).

In Figures 7B–E, we depict the cell fate map of our TGEM
under the four breast cancer microenvironments evaluated.
Overall, once STAT6, is activated, induce an irresistible into
the phenotypes by adding the M2a components. Even though in
the IgG & A2a environment, we did not have the M1 phenotypes,
they can be irreversibly obtained by inhibiting the function of
Erk in the M1M2b phenotypes. The M1M2b and M1M2bM2d
phenotypes create feedback between them by activating Fra1 or
TLR4 to transit fromM1M2b to M1M2bM2d; this transition can
be reversible by inhibiting the expression of Fra1. This
complicated microenvironment in our TGEM may be an
obstacle. However, from the phenotypes obtained and the one
(M1) obtained, our TGEM may still eliminate tumor cells beside
the microenvironment (Figure 7B).

In IL1b & IL6 microenvironment, M1 and M12b developed
feedback between them where the transitions are reversible. This
feedback may create a balance in the environment where the
immune system can eliminate tumor cells and recuperate the
damaged tissue caused by the cytotoxic functions (Figure 7C).
Under hypoxic conditions (Figure 7D), our TGEM still develops
macrophages with the capacity to eliminate tumor cells. The lack
of oxygen does not affect the feedback between M1-M1M2b and
M1M2d-M1M2bM2d. In this hypoxic microenvironment, the
activation of STAT6 may serve as an adaptation agent. STAT6 is
associated with the regulation of the lipid metabolism, our
macrophages can obtain energy from lipids to liberate
cytotoxic interleukins and eliminate tumor cells. From a
theoretical perspective, STAT6 activation in our TGEM in a
hypoxic scenario is not one we want to avoid (48, 49). Finally, in
Figure 7E, a microenvironment with regulatory activity in
macrophage cytotoxic functions does not affect creating
phenotypes to eliminate tumor cells. M1 and M1M2b develop
the same feedback as the previous microenvironment.
M1M2bM2d and M1M2d create feedback between them;
therefore, the transitions are reversible.
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In summary, the Boolean modeling of the TRN mimicking
the feasible space of macrophage phenotypes serves as a platform
to create hypotheses of the control mechanism that promotes
cancer phenotype. We postulate that TGEM associated with pro-
inflammatory is a promising pharmaceutical approach because it
is robust to permanent perturbation in a breast cancer
microenvironment. This hypothesis has to be experimentally
proven, an aim that constitutes a perspective of this paper.
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Robustness and Sensitivity Analysis of
Our Transcriptional Regulatory Network
of Macrophage Polarization in a
Tumor Microenvironment
A robust gene regulatory network is resistant to perturbations in
the network. We defined robustness as a characteristic of
behavior invariance, according to changes in their inner
variables. Nevertheless, gene regulatory networks or any
A B
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FIGURE 7 | TGEM in a breast cancer microenvironment. (A) We engineered different microenvironments associated with breast cancer and evaluate how our TGEM
behaved. (B) Cell fate map of the theoretical genetically modified macrophage in breast cancer microenvironment for the expression of IgG and adenosines. (C) Cell
fate map of the theoretical genetically modified macrophage in breast cancer microenvironment for the expression of IL1-b and IL-6. (D) Cell fate map of the
theoretical genetically modified macrophage in breast cancer microenvironment for the expression of Hypoxia and glucocorticoids (GCGCR). (E) Cell fate map of the
theoretical genetically modified macrophage in breast cancer microenvironment for the expression of IL-10 and TGF-b. This analysis was to evaluate the stability of
our pharmaceutical approach in a breast cancer scenario.
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biological network representing the phenotypic behavior of cells
have to gain an ability to respond appropriately to external
stimuli and filter molecular perturbations.

A mathematical representation of a gene regulatory network
can be dynamically classified as ordered, critical, or chaotic
regime. Ordered networks are not affected by filter external
stimuli. Critical networks are intermediate from an ordered
and chaotic behaviors, they are resilient to a specific subset of
perturbations. Finally, chaotic networks are severely affected by
perturbations, inducing a plethora of responses (50). To evaluate
the dynamical behavior of macrophage polarization in our TRN
we obtained the Derrida curve, see Figure 8A. To determine in
what extend the slope of the curve around x=0 differ from
identity line and thus classify the dynamic behavior of our
network, we applied a chi-squared Goodness of fit test with the
coordinates of the average Hamming values before
the intersection point between both curves. We consider the
observed values as those average Hamming distances depicted in
the y-axis of the plot. Simultaneously, we considered the
expected values as the average Hamming distances outlined in
the identity line (y=x). Despite our models seeming to draw a
curve slightly above the identity line around x=0, our statistical
test allowed us to conclude that there is no significant difference
in the Hamming distance between the observed and the expected
Hamming distances (exact multinomial test of goodness-of-fit,
p-value=0.5804, statistical significance= 0.05). Given that there
was not a statistical difference between expected and observed
values, we supplied evidence that the dynamic behavior of our
network falls into the critical region. There is evidence that
criticality is a trademark for living systems for simultaneously co-
exist in robustness and evolvability capacities (51, 52). This
finding suggests that TRN for macrophage polarization in the
tumor microenvironment seems to be robust to perturbations
and permits evolve according to the environmental cues.
Frontiers in Immunology | www.frontiersin.org 13
To evaluate the sensitivity in our TRN of macrophage
polarization, we modeled multiple perturbations of each
update rule. The sensitivity analysis of a gene or node
evaluates the influence of the other genes of our network.
Figure 8B outlines the average sensitivity of every node and
the entire network (golden line). TGF-b and IFN-g are the nodes
with higher sensitivity, followed by glucocorticoid receptor
(GCGCR), interleukin 4 (IL-4), and suppressor of cytokine
signaling 1 (SOCS1). Consequently, the extracellular cytokines
more susceptible to stimuli or molecular noise. For example,
IFN-g is associated with an anti-tumoral microenvironment and
a cytotoxic M1 macrophage function. Contrary, TGF-b is
associated with pro-tumoral microenvironment and a
regulatory wound healing M2 phenotypes. TGF-b is associated
with inhibiting M1 functions and enhance tumor proliferation.
GCGCR and IL-4 are associated with regulatory and wound
healing behavior as well. SOCS1 can inhibit STAT1 and diminish
the expression of IFN-g in the microenvironment. NFkB,
STAT1, and STAT3 have lower average sensitivity, thus, they
are robust to transient changes. Therefore, we acknowledged
NFkB and STAT1 as a therapeutic strategy for immunotherapy
in tumor eradication. The network’s average sensitivity is lower
than one, hence our network behaves orderly (Figure 8A).
DISCUSSION

The interaction between the immune system, microenvironment,
and cancer is one appealing topic to design effective treatments.
Moreover, the development of computational approaches that
contribute to clarify their mechanisms is a needed task. By and
extensive Boolean analysis, we presented a high quality curated
signaling regulatory network between cancer-derived factors and
macrophages. Unlike previous reports, we present a model with
A B

FIGURE 8 | Robustness analysis of our transcriptomic regulatory network of macrophage polarization. Sensitivity analysis of each node from our transcriptional
regulatory network of macrophage polarization. (A) Derrida curves of our transcriptional regulatory network of macrophage polarization in a tumor microenvironment.
(B) Sensitivity analysis of the variables in our transcriptional regulatory network of macrophage polarization in a tumor microenvironment. Golden line is the mean of
the value of the sensitivity analysis.
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additional interactions experimentally validated and an in-depth
analysis of the macrophages’ hybrid phenotypes. As Palma et al.
previously concluded, these intermediary steady-states support
the hypothesis that macrophage polarization is a continuum
process and not binary, as usually suggested. Furthermore, our
extended analysis allowed us to identify phenotypes that
suggested new physiological interpretations associated with
hybrid macrophage phenotypes. Based on our results, we
concluded that the hybrid phenotypes evolve constrained by a
permanent interaction with the environment. We postulate that
some of them have therapeutic implications by enhancing
tumoricidal capacity (M1M2d and M1M2b) or promoting
regulatory mechanisms (M2bM2d, M2aM2d, and M2cM2d)
against cancer.

Notably, our analysis allowed us to build hypotheses towards
the hybrid states that favor or contrast cancer phenotype. We
concluded that M1M2d, a tumoricidal-regulatory macrophage,
could potentially eliminate tumor cells due to the secretion of
cytotoxic cytokines and IL-12, the latest helps to differentiate
CD4+ T cells. As we know, M1 is an essential player in host
defense, but if it is not regulated, it could cause tissue damage.
Nonetheless, the M2d part of the hybrid phenotype will secrete
IL-10 and TGF-b. These regulatory cytokines would eventually
maintain at bay the action caused by the cytotoxic cytokines. The
M1M2d phenotype would induce a cytotoxic/regulatory cytokine
ratio that could eradicate tumor cells and avoid tissue
damage. Furthermore, M1M2b has a similar function as the
M1M2d. It would regulate with IL-10 the damage caused by the
cytotoxic actions. However, it would eventually eliminate tumor
cells through the action of M1 and heal the damage caused by the
elimination of tumor cells aside from the action of M2b.

Contrastingly, M2bM2d, M2aM2d, and M2cM2d are hybrid
states with a malignant phenotype that express HIF1a. When a
tumor grows and increases its diameter, the oxygen supply becomes
insufficient in inner regions, creating hypoxic or necrotic areas (47).
Hypoxia response via HIF1a not only affects macrophage
polarization (53) also recruits macrophages and mesenchymal
stromal cells to these regions (54, 55). All three macrophages
phenotypes have different actions on tumor progression. For
example, M2bM2d would favor the angiogenic process with the
contribution of vascular endothelial growth factor (VEGF-A).

Meanwhile, the M2aM2d hybrid would be the most
dangerous phenotype because it could heal the “wound”
caused by tumor growth. Moreover, M2aM2d would favor
tumor angiogenesis by secreting PDGF, TGF-b, IL-8, CXCL12,
and VEGF-A, thus contributing to tumor angiogenesis
metastasis. A shred of additional experimental evidence
describes this hypoxia adaptation is given by M2a, which
inhibits T cell expansion, reducing tumor clearance (56).
Finally, M2cM2d and other malignant hybrids would be
spatially constrained into a hypoxic area, behaving as
regulators secreting IL-10 and TGF-b, creating a tumor
proliferation scenario progression. Hypothetically, the
inhibition of IL-10 or the coactivation of CD40, IL-12, IL-8,
and TNF-a, could repolarize these macrophages to the M1
phenotype, where reverse tumor development has been
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demonstrated (57). Overall, we postulate that the behavior of
these macrophages hybrids is malignant, given their
characteristics they could promote carcinogenesis and regulate
the immune system in favor of tumor phenotype (58, 59).

Recent advances have shed the different cells that constitute
specialized niches and the mechanisms that promote cell-to-cell
interaction. The knowledge of the cellular content and diversity
of the tumor microenvironment in malignant transformation
and other metastatic diseases is relevant. Most human tissues,
including the breast, sustain their continuous replenishment
from primary stem cells. The microenvironment that
maintains homeostasis promotes cell differentiation according
to functional demands and suppresses aberrant cells’ potential
emergence. The interaction can be direct or bystander between
malignant and non-malignant macrophages presumably
powerfully influence the disease outcome, and cytokines
secretion by macrophages is a fundamental factor for epithelial
to mesenchymal transition (EMT) in breast cancer. Whether
they promote retention of primitive cells within their niches to
avoid mobilization into bloodstream or external tissues, as occurs
in bone marrow, stills a matter in question (57, 60). Even though
it is beyond this paper’s scope, it is becoming clearer the critical
role of the M1/M2 macrophage polarization in the malignant
progression of TNBC. These malignant macrophage hybrids are
mostly going to express type II cytokines, promoting cancer
stems cells (CSC) growth. M2 macrophages protect CSC from
the immune surveillance mechanisms and induce anti-inflammatory
microenvironments that plays as onco-promoters. Additionally, M2
macrophage contribute to drug resistance, particularly at the late
stages of tumorigenesis (57).

In ourTGEMapproach,wemutatedNFkB andHIF1a. NFkB is
amaster regulator with high activation and translocation efficiency.
Based on our results, it is a promising key player to eliminate tumor
cells. Having vital roles in the macrophage function. The
nanoparticle approach develops a shift from an M2 macrophage
type toM1 (61), very similar to our TGEM approach; nevertheless,
only targeting NFkB is not sufficient. Hence, we knocked out
HIF1a, because this factor is affected by hypoxia, a constitutive
condition in a tumor microenvironment, that triggers the M2
polarizing effect (62). In our TGEM, we obtained three hybrid
phenotypes all with M1 combined with a regulatory behavior
macrophage. Contrastingly under the knockout of HIF1a, the
macrophages still going to migrate to hypoxic regions but not for
the same reason described earlier. This time, the spatial
accumulation of macrophages in the hypoxic areas is due to their
ability to scavenge apoptotic cells. Additionally, the macrophages
activate the secretion of IL-12 and IFN-g generating positive
feedback with CD4+ T cells that will terminate theoretically in
tumor clearance. By this matter, hypoxia can no longer influence
our TGEM. It will not be immobilized in hypoxia regions,
contributing to an adverse prognosis in breast cancer.

Even though this approach shows good macrophage behavior
in a tumor microenvironment, we must take care of the Boolean
model’s limitations. There is no grading scale in the associated
factors, because Boolean models only consider 0 or 1 values. So,
we cannot evaluate the amount of a transcription factor is
June 2021 | Volume 12 | Article 642842
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sufficient to obtain a specific macrophage subtype. As we had
proven, this reconstruction includes the necessary information to
explore and supply evidence of the macrophage polarization
transformation. However, we should update the components and
their Boolean rules (Figure 1), as more experimental evidence will
be appearing, and draw a more accurate description of this
phenomenon. Finally, we considered the M0 phenotype as a
monocyte, which is a precursor of macrophage activation.
However, this type of cell has heterogeneity that could be
manipulated differently in cancer cells (63). We believe that the
monocyte continuum or reprogramming by cancer cells can be an
essential variable in determining the macrophage continuum’s
behavior. This behavior should be studied for understanding
completely macrophage polarization and the complexity in
between. Alternatively considering the heterogeneity of the myeloid
(monocytes and neutrophils) population set an appealing
future perspective.

Here, we aimed to understand the molecular and external
mechanisms that orchestrate macrophage polarization and
develop potential therapeutic strategies. Several strategies focus
on diminishing the recruitment of macrophages to the tumor site,
showing the limitation of tumor vascularization and metastasis in
mouse models (64). However, these treatments only reduce tumor
growth by reducing the M2 cells (65), losing the beneficial
properties of M1 type macrophages. We showed that our
designed macrophage diminished malignant hybrid phenotypes
and adapted to the perturbations caused by the tumor
microenvironment. Our theoretical approach follows a combined
strategy, which we believe will be the key to design potential
therapies with macrophages. Our theoretical model also suggested
that the best approach to defeat cancer is not shiftingM2 toM1, as
most pharmaceutical methods do. This shift is easily lost because it
is affectedby the tumormicroenvironment (66). Instead, anoptimal
therapeutic strategy could be highlighting the best characteristics in
the pro and anti-inflammatory scenarios. W concluded that the
simultaneous action of HIF1a and NFkB allows us achieving
“control” over the influence of hypoxia and the cytotoxic
behavior of macrophages. Finally, our computational approaches
may contribute to set the foundations of the macrophage
population dynamics under the phases of the cancer
immunoediting (elimination, equilibrium and escape), in the
hallmarks of breast cancer. Future directions and remaining
challenges in investigating transitional biology from
immunosurveillance to suppressor macrophages will include high
throughput genomic or cytometric analyses of M1 and M2
populations in breast cancer-associated tumor microenvironment. The
understanding of the dynamic process from immunosurveillance to
malignant progression may unravel the principles of the dual host-
protective or -harmful roles of M1 and M2 macrophages in tumors
Frontiers in Immunology | www.frontiersin.org 15
immunoediting. In recap, computationalmodelinghasbecomeacrucial
tool forpavingnovel avenues in immunotherapies capable to implement
optimal strategies for fighting against highly invasive breast cancer.
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