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Make That Sound More Metallic: Towards a Perceptually 
Relevant Control of the Timbre of Synthesizer Sounds 
Using a Variational Autoencoder
Fanny Roche*, Thomas Hueber†, Maëva Garnier†, Samuel Limier* and Laurent Girin†

In this article, we propose a new method of sound transformation based on control parameters that 
are intuitive and relevant for musicians. This method uses a variational autoencoder (VAE) model that 
is first trained in an unsupervised manner on a large dataset of synthesizer sounds. Then, a perceptual 
regularization term is added to the loss function to be optimized, and a supervised fine-tuning of the 
model is carried out using a small subset of perceptually labeled sounds. The labels were obtained from 
a perceptual test of Verbal Attribute Magnitude Estimation in which listeners rated this training sound 
dataset along eight perceptual dimensions (French equivalents of metallic, warm, breathy, vibrating, 
percussive, resonating, evolving, aggressive). These dimensions were identified as relevant for the 
description of synthesizer sounds in a first Free Verbalization test. The resulting VAE model was evaluated 
by objective reconstruction measures and a perceptual test. Both showed that the model was able, to a 
certain extent, to capture the acoustic properties of most of the perceptual dimensions and to transform 
sound timbre along at least two of them (aggressive and vibrating) in a perceptually relevant manner. 
Moreover, it was able to generalize to unseen samples even though a small set of labeled sounds was used.

Keywords: Synthesizer sounds; timbre perception and verbal description; variational autoencoders; 
machine learning; audio synthesis

1. Introduction
Synthesizers are powerful instruments that offer musicians 
a large palette of possibilities for creating sounds. 
However, the most common synthesis methods (additive 
synthesis, subtractive synthesis, frequency modulation 
and physical modeling (Miranda, 2002)) are controlled 
by low-level parameters that are often numerous and 
not easily correlated with musical intent. Consequently, 
musicians often need technical expertise, or even 
assistance, to generate interesting sounds. To broaden 
the range of possible sounds and improve synthesizers’ 
ergonomics, it might be better for musicians to control the 
sound synthesis from a reduced number of higher level 
dimensions that are more intuitive and directly related to 
timbre perception.

A first issue when searching for these control dimensions 
is that musical timbre is neither unidimensional nor 
uniparametric (von Bismarck, 1974). Controlling timbre 
with a synthesizer therefore involves manipulating several 
perceptual dimensions, resulting in the joint variation of 
multiple acoustic descriptors.

A second issue is to choose the angle from which to 
approach the problem: either by studying the consequences 
of parameterized acoustic variations on supposedly rele-
vant perceptual dimensions (psychoacoustic approach) 
(Grey and Moorer, 1977; McAdams et al., 1999), or by 
identifying the perceptual dimensions on which listeners 
rely to evaluate timbre and by searching for their acoustic 
correlates (semioacoustic approach) (Faure 2000; Traube, 
2004).

A third problem is to find a reduced number of dimensions 
organizing the timbre space. Multidimensional scaling 
(MDS) was used to organize, by perceptual similarity, the 
timbre of different orchestral musical instruments in a 
geometric space with a reduced number of dimensions 
(usually three for visualization but there may be more – see 
Wedin and Goude (1972); Grey (1977); Grey and Moorer 
(1977); Wessel (1979); Krumhansl (1989); Iverson and 
Krumhansl (1993); Krimphoff et al. (1994); McAdams et al. 
(1995); Faure (2000); Marozeau et al. (2003); Zacharakis 
(2013); McAdams (2019) for a review). Varying acoustic 
correlates to these dimensions were found: descriptors 
of the long-term average spectral envelope (e.g. spectral 
centroid or degree of harmonicity), of the temporal 
envelope (e.g. logarithm of the onset time) and of the 
spectral variations over time (e.g. spectral flux or vibrato). 
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However, the semantic interpretation of these dimensions 
remains relatively unclear. Following an alternative 
approach based on free categorization/verbalization, other 
studies identified a greater, though limited, number of 
main semantic dimensions (from two to twenty) to describe 
the timbre of musical instruments such as “brightness” 
or “warmth” (Traube 2004; Garnier et al., 2007; Fritz 
et al., 2012; Reymore and Huron, 2020). However, (i) the 
number and label of these semantic dimensions strongly 
depend on the sound category (Dubois, 2000; McAdams, 
2019), (ii) they depend on the culture and expertise of the 
listeners as well as their listening goal (Dubois, 2000), (iii) 
they are not always strictly orthogonal but may present 
some form of semantic overlap, inclusion or opposition, 
(iv) they can be relatively objective (e.g. “vibrato”) and 
closely related to a low-level acoustic parameter, or more 
subjective and related to the combined variation of several 
acoustic parameters (e.g. “strident”), (v) they can hardly be 
conceptualized without using language. This consequently 
requires semantic analyses to identify the most shared 
and non-polysemic terms to represent each perceptual 
dimension in a given language.

A last complexity of this mapping comes from the 
non-linear relationship between acoustic and perceptual 
spaces. After decades of linear models and regressions to 
correlate both spaces (Garnier et al., 2007; Fritz et al., 2012), 
more recent studies have started using machine learning 
methods, in particular deep neural networks (DNNs) such 
as autoencoders (AEs) or generative adversarial networks 
(GANs) (Goodfellow et al., 2016), to model and synthesize 
audio (Colonel et al., 2017; Engel et al., 2017; Roche 
et al., 2019; Donahue et al., 2019; Engel et al., 2019). In 
particular, AE-based methods identify a limited number 
of latent dimensions underlying the physical space of a 
training dataset. The extracted latent space is then used 
as a control space for creating or hybridizing new sounds 
(Engel et al., 2017). As an alternative to the classic AE, 
the variational autoencoder (VAE) introduced by Kingma 
and Welling (2014) and Rezende et al. (2014) has also 
been applied to musical sound modeling (e.g. Çakir and 
Virtanen, 2018; Esling et al., 2018; Roche et al., 2019; Girin 
et al., 2019). It can be seen as a probabilistic extension 
of the (deterministic) AE. Specifically, a prior distribution 
is used to structure (or regularize) the extracted latent 
coefficients and thus encourage dimensions to be 
mutually orthogonal. Since however they do not easily 
relate to perception (Esling et al., 2018; Roche et al., 
2019), Esling et al. (2018) investigated how to force the 
VAE latent space to match the topology of a perceptual 
timbre space using a fully-labeled dataset of orchestral 
instruments and an extra regularization term in the VAE 
objective function. Esling et al. (2020) also experimented 
mapping the VAE latent space into the parameter space 
of a synthesizer using an invertible transform (the 
normalizing flows introduced by Rezende and Mohamed 
(2015)). This mapping was constrained by arbitrarily-
chosen binary semantic tags linked to the synthesizer 
presets (e.g. “aggressive” vs. “calm”).

The objective of the present study is to propose a 
prototype of an audio synthesizer that can transform 
the timbre of musical synthetic sounds, by controlling 

a limited number of perceptual dimensions. The main 
contributions of this study are:

(i)  Identifying, with a free verbalization experiment, 
the most important perceptual dimensions on 
which musicians organize their perception of 
purely synthetic sounds, as well as the most typi-
cal and shared verbal descriptors of these dimen-
sions in French. This is presented in Section 3.1. 
So far, very few previous timbre studies have 
 focused on purely synthetic sounds that do not 
imitate orchestral instruments (Lichte 1941; von 
Bismarck, 1974; Miller and Carterette, 1975; Grey 
and  Moorer, 1977; Samson et al., 1997; McAdams 
et al., 1999; Kendall et al., 1999; Zacharakis, 2013) 
and they were not necessarily interested in their 
verbal description, or they mostly relied on English 
labels selected a priori.

(ii)  Creating a dataset of 80 synthetic sounds rated 
by human listeners along these main perceptual 
dimensions (this is presented in Section 3.2), and 
using these perceptual ratings to regularize a VAE 
model and force its latent space to follow the iden-
tified perceptual dimensions. To do so, we used an 
extra term to perceptually regularize our model, in 
line with Esling et al. (2018). However, in contrast 
to this previous study, our regularization aims at 
encouraging each individual latent dimension to 
drive one of the perceptual dimensions. Further-
more, due to the moderate size of our dataset (of 
purely synthetic sounds), our study relies on a 
weakly-supervised method whereas Esling et al. 
(2018) used bigger sound datasets (of orchestral 
instruments coming from some of the above-listed 
MDS studies), which enabled them to use a fully-
supervised method instead. Also, compared to 
Esling et al. (2020), our perceptual regularization 
relies on continuous values and does not depend 
on the synthesizer’s engine (since sounds remain 
synthesized directly from the VAE latent space as 
by Esling et al. (2018)). The overall methodology 
of sound transformation with a VAE model is pre-
sented in Sections 2.1 and 2.2. The proposed per-
ceptual regularization of the VAE is presented in 
Section 2.3 and implemented in Section 4.2.

(iii)  Evaluating the proposed method both objectively 
and perceptually. This evaluation is presented in 
Section 4. In particular, we modified the latent 
 coefficients along different perceptual dimen-
sions, resynthesized new corresponding signals, 
and conducted a new perceptual test to assess the 
effectiveness of the overall methodology.

2. General Methodology for Sound 
Transformation with VAEs
2.1 Analysis-transformation-synthesis process
In line with previous studies applying (V)AE models to 
sound synthesis (Colonel et al., 2017; Blaauw and Bonada, 
2016; Hsu et al., 2017a; Esling et al., 2018; Roche et al., 
2019), our study follows an analysis-transformation-
synthesis approach as illustrated in Figure 1.
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The first step of the process is to convert the original 
time-domain signal into the time-frequency domain 
using the short-term Fourier transform (STFT). The STFT 
magnitude spectrogram is given to the VAE encoder frame 
by frame, i.e. each column of the magnitude spectrogram 
is encoded into a latent vector.1 A complete spectrogram is 
thus encoded into a sequence of latent vectors. Then, this 
latent vector sequence can be modified by the musician. 
For example, a sequence can be shifted with an offset, or 
two latent vector sequences encoding two different sounds 
can be interpolated to generate a hybrid sound. The final 
step of the process consists in decoding the sequence of 
(possibly modified) latent vectors in order to reconstruct 
a magnitude spectrogram. The output audio signal is 
then synthesized by combining the decoded magnitude 
spectrogram with the phase spectrogram of the input 
signal and applying inverse STFT (ISTFT). If the latent 
coefficients are not modified in between encoding and 
decoding, the decoded magnitude spectrogram is close 
to the original one and the original phase spectrogram 
can be directly used for good-quality waveform 
reconstruction. Otherwise, if the latent coefficients are 
modified so that the decoded magnitude spectrogram 
becomes too different from the original, the Griffin & Lim 
algorithm (Griffin and Lim, 1984) is used to reconstruct 
the waveform with a more consistent phase spectrogram.

2.2 Variational autoencoders
The proposed approach is based on the VAE model 
(Kingma and Welling, 2014; Rezende et al., 2014), which 
can be seen as a probabilistic AE. It delivers a parametric 
model of the data distribution:

 q q q=( , ) ( | ) ( ),p p px z x z z  (1)

where x ∈ ℝF is the input vector, z ∈ ℝL is its corresponding 
low-dimensional latent representation (in general 
we have L ≪ F) and θ denotes the set of distribution 
parameters. The likelihood function pθ(x|z) plays the role 
of a probabilistic decoder, modeling how the generation 
of observed data x is conditioned on the latent data 
z. The prior distribution pθ(z) is used to structure (or 
regularize) the latent space. Typically a standard Gaussian 
distribution is used: pθ(z) = p(z) = N(z; 0,IL), where IL is 
the identity matrix of size L (Kingma and Welling, 2014). 
This encourages the entries of the latent vector z to be 
mutually orthogonal and to lie in a similar range. The 
likelihood function pθ(x|z) is usually defined as:

 ( )q q q= 2( | ) ; ( ),diag{ ( )} ,p Nx z x z zm s  (2)

where N(·;µ,Σ) denotes the multivariate Gaussian 
distribution with mean vector µ and covariance matrix Σ, 
diag{·} is the operator that forms a diagonal matrix from a 
vector by putting the vector entries on the diagonal, and 
µθ (z) ∈ ℝF and 2 ( ) F

q +Îz s  are non-linear functions of z 
implemented with the so-called decoder network, which is 
a feed-forward DNN. θ is thus the set of weights and biases 
of this network. The VAE decoder is illustrated in the right 
part of Figure 2.

Due to the highly non-linear relationship between z and 
x, the exact posterior distribution pθ(z|x) corresponding 
to the above generative model is intractable. In the VAE 
methodology, it is approximated by a tractable parametric 
inference model qφ(z|x) which acts as the probabilistic 
encoder. This model is generally similar in form to the 
decoder:

 ( ) ( )f f f= 2| ; ( ),diag{ ( )} ,q Nz x z x xm s  (3)

where µφ(x) ∈ ℝL and 2 ( ) L
f +Îx s  are non-linear functions 

of x implemented as the output of the so-called encoder 
network. The encoder network is also a feed-forward DNN, 
here parameterized by φ. It is illustrated in the left part of 
Figure 2.

The marginal log-likelihood of a data vector log pθ(x) 
is also intractable. The training of the VAE model, i.e. the 
estimation of θ and φ, is therefore done by maximizing 
a tractable lower-bound of log pθ(x) over a large dataset 
of vectors x. It is shown by Kingma and Welling (2014) 
that this lower bound, called the variational lower bound 
(VLB), is given by (for an individual vector x):

 ( )KL( | )

regularizationreconstruction accuracy

( , , ) log ( | ) ( | ) ( ) ,q p D q pz xx x z z x z



f q ff q é ùë= -û  (4)

Figure 1: Global diagram of (V)AE-based sound analysis-transformation-synthesis.

Figure 2: General architecture of a VAE. Grey dotted 
arrows represent sampling processes.
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where DKL(·ǁ·) ≥ 0 denotes the Kullback-Leibler (KL) 
divergence between two distributions. In practice, the 
model is trained by maximizing ( , , )x f q  with respect to 
the parameters φ and θ on a set of training data vectors. 
As we can see in Eq. (4), the lower-bound is composed 
of two terms: the first term represents the average 
reconstruction accuracy and the second term acts as a 
regularizer, encouraging qφ(z|x) to be close to the prior 
p(z). The maximization of the VLB involves an iterative 
combination of sampling, stochastic gradient ascent 
(applied in practice on mini-batches of data) with error 
backpropagation through the decoder and encoder layers, 
and parameter updating. For more technical details about 
VAE training, the reader is referred to Kingma and Welling 
(2014).

The above “conventional VAE” was later extended to a 
β-VAE where β is a weighting coefficient introduced in 
the VLB to arbitrarily control the balance between the 
reconstruction and the regularization terms (Blaauw and 
Bonada, 2016; Higgins et al., 2017):

 ( )KL( | )( , , , ) log ( | ) ( | ) ( ) .q p D q pz xx x z z x z
f q ff q b bé ù -ë û=  (5)

Indeed, for some applications it is important to control the 
tradeoff between the quality of the generated/reconstructed 
signal and the organization of the latent space. In practice, 
β is set empirically so that the values of the reconstruction 
and regularization terms are in the same range.

2.3 Perceptual regularization
Although VAEs allow to extract an interesting high-level 
representation space for speech and audio signals with 
good interpolation properties (Blaauw and Bonada, 
2016; Hsu et al., 2017a; Roche et al., 2019), the extracted 
dimensions may not be perceptually meaningful (Esling et 
al., 2018). In this subsection, we describe the method used 
to train the VAE where the latent space is forced to match 
the perceptual dimensions identified in our listening tests.

2.3.1 Perceptual score vectors
For each sound of a subset L  of our dataset (and thus 
for each vector x extracted from this sound), a perceptual 
score vector (PSV) d(x) was defined, in which each entry 
represents the magnitude of a perceptual dimension, as 
rated by human listeners in the continuous range [–1,1]. 
See Section 3 for more details on the perceptual test and 
the eight dimensions considered.

2.3.2 Perceptually regularized VLB
Following the approach of Esling et al. (2018) and Pati 
and Lerch (2020), we inserted an additional regularization 
term in the VLB of Eq. (5). In these studies, this additional 
regularization term aimed at encouraging the properties 
of the latent space to match those of the perceptual/
attribute space by minimizing the difference between 
pairwise distances in the latent space and in the perceptual 
space. In our case however, the additional term is intended 
to encourage the latent space to match the perceptual 
dimensions identified in the listening test. Formally, our 
perceptually regularized VLB is written as:

 ( )
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where ( ), ( )z d x  is the perceptual regularization term 
based on the distance between the latent vector z and the 
perceptual score vector d(x) of the sample sound from 
which x is extracted. α is a corresponding weighting factor 
which has a similar role as β for the classic KL divergence 
term.

The number of perceptual dimensions P is limited 
(P = 8 in our experiment, see Section 3). However, the 
number of latent dimensions (i.e. the size of z) must 
be large enough to maintain good quality of the whole 
encoding-transformation-decoding process. We therefore 
chose to force the first P entries of z, i.e. the subvector z1:P, 
to match the perceptual score vector. The other entries 
of z are left free to encode other aspects of the sounds 
(although nothing prevents them from also encoding 
some aspects of the considered perceptual dimensions). 
Regarding the function , no assessment was made on 
the relationship between the PSV values and the actual 
perception of potential users. We therefore chose a simple 
metric (square error) in the present study:

 ( ) 2
1:, ( ) ( ) .Pz d x z d x  = -  (7)

2.3.3 2-step learning procedure
Since the labeled subset of sounds resulting from our 
listening test is limited in size (see Section 3), we could not 
use supervised training. We therefore focused on a semi-
supervised approach. Hinton and Salakhutdinov (2007) 
presented a semi-supervised learning method operating 
in two steps: the first step is to train the model in an 
unsupervised manner, using all available data to extract 
“sensible, high-level features.” The second step consists in 
refining the model (i.e. fine-tuning) using only the labeled 
data. Following both Hinton and Salakhutdinov (2007) 
and Esling et al. (2018), we investigated the use of a 2-step 
learning procedure to add perceptual regularization to 
a VAE model. In a first step, the model is trained in an 
unsupervised manner, using both the unlabeled dataset U  
and the labeled dataset L , and maximizing the weighted 
VLB of Eq. (5). Then, the VAE is fine-tuned, using the labeled 
dataset L  only, and maximizing the regularized VLB of Eq. 
(6). Thus, the proposed methodology can be summarized as:

1. Unsupervised pre-training:
 Maximize ( , , , )x f q b  from Eq. (5) on U L  ,
2. Supervised fine-tuning:
 Maximize ( , , , , )x f q b a  from Eq. (6) on L .

3 Perceptual Description of Synthesizer Sounds
3.1 First perceptual test: Free verbalization
A first perceptual test was conducted in order to identify 
the most relevant perceptual dimensions underlying the 
perception of synthesizer sounds, and their most shared 
verbal descriptors.
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3.1.1 Stimuli
First, a large audio dataset (referred to as the ARTURIA 
dataset)2 was created, consisting of 1,233 audio samples 
generated with varying ARTURIA software applications,3 
having the same pitch (E3, 165 Hz), a similar duration (2 
to 2.5 seconds) and normalized in loudness.

Fifty stimuli were selected from the ARTURIA dataset to 
cover as broadly as possible the range of acoustic variation 
of these sounds. To this end, a k-means algorithm was 
applied from the acoustic characterization of the dataset, 
using 12 classical audio descriptors.4 The 50 stimuli were 
then randomly chosen from the 50 clusters obtained.

Finally, a subset of 20 stimuli was assigned to each 
participant, half of which was shared with the preceding 
listener. Thus, each of the 50 stimuli received a comparable 
number of evaluations (21.5 ± 2.82 evaluations on 
average).

3.1.2 Participants and task
This first perceptual test was undertaken by 101 French-
speaking listeners. None of them reported any hearing 
disorder.5 The test was conducted online, using a self-
developed web interface based on the Web Audio 
Evaluation Tool (Jillings et al., 2015). Twenty stimuli were 
successively presented. Participants could listen to each 
sound as many times as they wanted. They were asked 
to give verbal descriptions of each sound (at least one, at 
maximum five) using preferably isolated words or very 
short sentences, and trying to avoid aesthetic judgments 
(like “beautiful” or “ugly”). Five input fields were displayed 
on the web page, in which participants could type in these 
descriptions. The test lasted approximately 20 minutes.

3.1.3 Clustering of verbal expressions by semantic proximity
A first step of data “cleaning” and reduction consisted in 
correcting typos, and grouping verbal expressions with 
a shared lexical root (e.g. brillant and qui brille). This 
resulted in a set of 784 verbal expressions. Most of them 
were “classical” descriptors, such as métallique, chaud 
or brillant6 that have already been reported in previous 
studies to distinguish the timbre of orchestral instruments 
(Reymore and Huron, 2020; Faure, 2000; Zacharakis, 
2013), to qualify timbre variations within some instrument 
categories (piano, violin, guitar, voice, etc.) (Cheminée 
et al., 2005; Traube, 2004; Fritz et al., 2012; Garnier et al., 
2007), or to qualify the timbre of purely synthetic sounds 
(von Helmholtz, 1875). However, almost half of them were 
also new expressions such as spatial, robotique or saccadé 7 

that had, to our knowledge, never been reported in the 
literature.

We then evaluated the semantic proximity of these 
expressions, both within individuals (i.e. when two 
expressions were used together more than twice by a 
participant to describe a sound) and between individuals 
(i.e. when two expressions were used by two different 
participants to describe the same set of sounds). These 
analyses were performed from the 3D occurrence 
matrix M of the collected expressions, of size (number 
of expressions) × (number of participants) × (number 
of stimuli). Then, for each participant (denoted Sk), we 
evaluated the co-occurrence of pairs of expressions within 
the same listener (Jintra) and between pairs of listeners 
(Jinter), based on the Jaccard distance metric (Jaccard, 1912):

( )

( )
=
¹

ìï =ïïïïí =ïï -ïïïî

å

intra
, ,

inter
, ,

1

( , ,:), ( , ,:) ,

1
( , ,:), ( , ,:) ,

1

k

k

i j S J k k

K

i j S J k l
l
l k

J d i S j S

J d i S j S
K

M M

M M

where dJ denotes the Jaccard distance, i and j are the 
indices of the pair of expressions considered, and “:” is 
shorthand for “all entries in that dimension”. This metric 
is particularly well adapted for our study as it does not 
take zeros into account. The above matrices were then 
averaged across participants, and combined into a single 
final similarity matrix J = 0.5(Jintra + Jinter). Finally, we 
applied a hierarchical agglomerative clustering algorithm 
(HAC) (Day and Edelsbrunner, 1984) on J to group the 
verbal expressions into categories. We used Ward’s 
aggregation index for the clustering (i.e. intra-cluster 
variance minimization). The final number of groups was 
chosen by manually detecting the largest decrease in 
homogeneity (i.e. the intra-category inertia) between two 
successive clusters. This resulted in 98 final perceptual 
categories, containing eight expressions on average (from 
2 to 21). The complete process is illustrated in Figure 3.

3.1.4 Identification of perceptual dimensions and 
corresponding verbal labels
The “strength”, or relevance, of each semantic cluster was 
then evaluated, based on (i) its occurrence frequency 
(defined as the total number of occurrences of every 
expression in the cluster) and (ii) its transversality 
(defined as the percentage of listeners who used at least 
once one of the cluster’s expressions). This allowed us to 

Figure 3: Global diagram of the semantic proximity analysis.
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select the eight most frequent and transverse semantic 
clusters, supposed to correspond to the most relevant 
perceptual dimensions to describe and control the timbre 
of synthesized sounds. Finally, a last step was to select 
the most representative verbal descriptor for each of 
these eight perceptual dimensions. We only considered 
qualifiers and ignored nouns (designating objects or 
acoustic sources), and selected again the most frequent 
and transverse verbal descriptor within each semantic 
cluster: métallique, chaud, soufflé, qui vibre, percussif, 
qui résonne, qui évolue and agressif (whose equivalent 
expressions in English could be: metallic, warm, breathy, 
vibrating, percussive, resonating, evolving and aggressive). 
The results are summarized in Table 1.

In the end, the verbal descriptors selected for the eight 
main perceptual dimensions had all previously been 
reported in the literature of musical timbre. Two of them: 
metallic and warm are quite unanimously considered 
as main perceptual dimensions of musical timbre in 
previous studies (Zacharakis, 2013; Reymore and Huron, 
2020; Kendall et al., 1999; Faure, 2000; Fritz et al., 2012). 
Three others: breathy, resonating and vibrating were also 
considered in some studies, but not in others (resonating 
and vibrating were even combined as one and the same 
dimension by Reymore and Huron (2020)). Finally, the 
two remaining descriptors: evolving and aggressive did 
not appear in the list of main perceptual dimensions of 
previous studies, although aggressive could be compared 
to harsh, hard or strident.

3.2 Second perceptual test: Verbal Attribute Magnitude 
Estimation
A second perceptual test was conducted, based on the 
Verbal Attribute Magnitude Estimation (VAME) method, 
to get quantitative evaluations of timbre for a subset of 
synthesizer sounds, along the eight perceptual dimensions 
previously identified, and use these ratings as perceptual 
score vectors for the regularization of our VAE.

3.2.1 Stimuli
Eighty stimuli were selected from the ARTURIA dataset so 
as to be as representative as possible of its acoustic space 
(by applying again a k-means algorithm to its acoustic 
characterization, as described in Section 3.1.1). These stimuli 
were split into a training subset (10 stimuli) and a main 
subset (70 stimuli). The 10 training stimuli were always 
presented at the beginning of the test so that participants 
could become familiar with the perceptual dimensions. 
They were followed by 30 additional stimuli, 25 of which 
were randomly selected from the main subset and five from 
the training subset (in order to evaluate the intra-listener 
agreement). On average, the samples of the main subset 
were evaluated by 26 different participants and samples 
from the training subset received 36 different evaluations.

3.2.2 Participants and task
This second perceptual test was fully completed by 71 
French-speaking participants. None of them reported any 
hearing disorder.5 The test was also conducted online, 
using a self-developed web interface based on the Web 
Audio Evaluation Tool (Jillings et al., 2015). Forty stimuli 
were successively presented without informing the 
participants that the 10 first examples were considered 
as training, and that five of them would be reintroduced 
among the 30 following examples. Participants could 
listen to each sound as many times as necessary. They 
were asked to evaluate its timbre according to the eight 
perceptual dimensions métallique, chaud, soufflé, qui 
vibre, percussif, qui résonne, qui évolue and agressif, using 
continuous scales implemented with horizontal sliders 
starting from pas du tout (not at all, scored as –1) to 
extrêmement (extremely, scored as 1). The slider was initially 
positioned in the middle (score 0). No definition of the 
eight perceptual dimensions was given to participants. 
However, they were asked to give their own understanding 
of each verbal descriptor in written form afterward. The 
test lasted approximately 20 minutes.

Table 1: Frequency and transversality measures of the eight most frequent and transverse semantic clusters, repre-
sented by the most frequent and transverse verbal descriptor within each cluster. The frequency of the semantic 
clusters is expressed as percentages of the evaluated sounds for each participant and their transversality as percent-
ages of the total number of participants. The frequency and transversality of the verbal descriptors are expressed as 
percentages of the expressions within each cluster.

Semantic Cluster Frequency (in %) Transversality (in %)

Semantic 
Cluster

Isolated 
Verbal Desc.

Semantic 
Cluster

Isolated 
Verbal Desc.

Qui résonne (cluster of 8 expressions) 13.5 25.7 47.5 37.5

Métallique (cluster of 4 expressions) 10.6 52.6 43.6 75.0

Agressif (cluster of 4 expressions) 9.9 47.6 40.6 48.8

Qui vibre (cluster of 7 expressions) 7.8 43.5 46.5 40.4

Chaud (cluster of 4 expressions) 7.7 45.8 36.6 40.5

Qui évolue (cluster of 8 expressions) 5.7 27.0 29.7 33.3

Soufflé (cluster of 5 expressions) 4.5 43.5 25.7 57.7

Percussif (cluster of 4 expressions) 3.6 37.8 25.7 26.9
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3.2.3 Analysis and results
Intra-listener agreement was explored for each participant 
and each perceptual dimension by computing the Pearson 
correlation between the ratings of the five training sounds 
that were presented twice. The different dimensions 
showed an average intra-rater agreement ranging from 
R = 0.38 to R = 0.81 (see Table 2), indicating that the two 
dimensions qui vibre and qui résonne were intrinsically 
more difficult to evaluate, compared to the others. 
Participants who demonstrated a correlation lower than 
0.5 for a given perceptual dimension were not considered 
as reliable enough and were excluded from further analysis 
of that dimension. The number of remaining participants 
for each perceptual dimension is reported in the second 
column of Table 2.

Inter-listener agreement was then analyzed for each 
perceptual dimension by computing, for each pair of 
participants, the Pearson correlation between the ratings 
of the stimuli that they both evaluated (from 4 to 29 
common stimuli, depending on the listeners’ pair). The 
average inter-listener agreement for each perceptual 
dimension is given in the third column of Table 2. 
Only the dimensions percussif and agressif showed an 
acceptable degree of inter-listener agreement (greater 
than 0.5). The lower levels of inter-listener agreement 
observed for the other dimensions may indicate that the 
verbal descriptors were understood differently by the 
listeners. To explore this further, we performed, for each 
dimension, a hierarchical agglomerative clustering (HAC) 
in order to distinguish groups of participants who may 
share a common conception of the verbal descriptors.8 
This resulted in two or three groups for each perceptual 
dimension. Most of them showed a higher degree of inter-
listener agreement (see last three columns of Table 2). 
Finally, for each perceptual dimension, we selected the 
largest group of participants corresponding, from an 

application point of view, to the majority of users of our 
synthesizer, and considered the average evaluation score 
given to each sound by the participants in that group. As 
a result, each of the 80 stimuli was described by a eight-
value vector corresponding to the average evaluation of 
the sound timbre along the perceptual dimensions.9

4. Experiments with Perceptually Regularized 
VAEs
4.1 Data pre- and post-processing
For magnitude and phase spectrogram extraction, we 
applied a 1024-point STFT to each input waveform 
(sampled at 44.1 kHz) using a sliding Hamming window 
with 50% overlap. Silent portions at the beginnings and 
ends of signals were removed. The resulting 513-point 
positive-frequency magnitudes were converted to log-
scale and normalized in energy: we set the maximum 
of each log-magnitude spectrogram to 0 dB (the 
corresponding scale factor was stored to be used for signal 
reconstruction). Then, every log-magnitude below a fixed 
threshold value of –100 dB was set to –100 dB, i.e. the 
spectrogram range was clipped to [–100, 0] dB. Finally, 
the spectrogram was linearly rescaled to [–1, 1], which 
is a usual procedure for DNN inputs. Corresponding 
denormalization, rescaling and log-to-linear conversion 
were applied to the decoded magnitude spectrogram. 
Waveform reconstruction was achieved by combining 
the resulting magnitude spectrogram with the original 
phase spectrogram, and then applying inverse STFT with 
overlap-add and optionally the Griffin & Lim algorithm 
(see Section 2.1).

Our experiments were conducted using the entire 
ARTURIA dataset described in Section 3.1.1 and 
containing 1,233 synthesizer sound samples. This dataset 
was split into a training set (80%) and a testing set (20%). 
The unlabeled dataset U  consisted of the normalized 

Table 2: Intra- and inter-listener agreement on the eight perceptual dimensions, for the second perceptual test. The first 
two columns give information on the intra-listener agreement: the average Pearson’s coefficient R and the percentage 
of participants showing an R > 0.5. The four last columns report the levels of inter-listener agreement observed over 
the whole group of participants and for each group of participants identified from the HAC analysis (the percentage 
of participants in each group being reported in brackets).

Perceptual dimension Intra-listener agreement Inter-listener agreement

Average 
Pearson’s R

% of part. for 
whom R > 0.5

Average Pearson’s R (% of participants)

All 1st cluster 
(selected)

2nd cluster 3rd cluster

Métallique 0.59 69.0% 0.38 0.47 (59.2%) 0.40 (40.8%)

Chaud 0.50 64.8% 0.36 0.48 (43.5%) 0.39 (37.0%) 0.45 (19.5%)

Soufflé 0.58 66.2% 0.31 0.40 (53.2%) 0.35 (46.8%)

Qui vibre 0.38 49.3% 0.23 0.42 (62.9%) 0.30 (37.1%)

Percussif 0.81 87.3% 0.56 0.62 (85.5%) 0.40 (14.5%)

Qui résonne 0.41 57.7% 0.23 0.33 (56.1%) 0.27 (43.9%)

Qui évolue 0.54 67.6% 0.42 0.47 (70.8%) 0.49 (29.2%)

Agressif 0.68 81.7% 0.51 0.58 (60.3%) 0.60 (27.6%) 0.57 (12.1%)
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log-magnitude spectra of the unrated sounds, computed 
as described above. The labeled dataset L  was composed 
of the normalized log-magnitude spectra of the 80 sounds 
rated in the VAME test (see Section 3), associated to the 80 
corresponding perceptual score vectors (PSVs) (note that 
the PSV of a sound is used to label all the successive spectral 
vectors that compose the normalized log-magnitude 
spectrogram of that sound). To maximize the use of the 
labeled data, when dividing the dataset into training 
and test sets, we ensured that all the 80 labeled sounds 
were contained in the training set and not in the test 
set. Following the methodology explained in Section 2.3, 
the unsupervised pre-training was made using U L  ,  
composed of 243,861 513-dimensional spectral vectors 
and the supervised fine-tuning was performed using L , 
containing 16,011 vectors.

4.2 Regularized VAE implementation
Considering the results reported by Roche et al. (2019) 
and other similar experiments that we conducted with the 
ARTURIA dataset, we focused in this experiment on a VAE 
model of the form [513, 128, enc, 128, 513] (this vector 
contains the number of neuron units on the successive 
layers). We investigated different values for the encoding 
dimension enc ranging from 8 to 100. Note that 8 is 
the size of the perceptual space evidenced in Section 3, 
so when enc = P = 8 we have z1:P = z in Eq. (7). We used 
tanh and linear activation functions for the hidden and 
output units respectively. β was empirically set to 0.25 
so that the reconstruction term and the conventional KL 
regularization term were in the same range. Concerning 
the weighting coefficient α for the proposed perceptual 
regularization, we tested three values: 0.01, 0.1 and 1.

All models were implemented in Python using the Keras 
toolkit10 with tensorflow backend (Abadi et al., 2016). 
The implementation of the perceptually-regularized 
VAE is mainly based on the implementation of the VAE 
provided in the Keras VAE tutorial, for which we added 

the perceptual regularization loss described in Eq. (6). 
The training was performed using the Adam optimizer 
(Kingma and Ba, 2015) with a learning rate of 10–3 and 
with a batch size of 512. For the unsupervised pre-training 
phase, 20% of the training set was kept for validation and 
an early stopping criterion with a patience of 30 epochs 
was used on the validation loss to avoid overfitting. During 
the fine-tuning stage, the model was forced to train for 
600 epochs.

4.3 Analysis-resynthesis experiments
First, we evaluated the perceptually-regularized VAE in 
an objective way, by comparing the different versions of 
the model (including the baseline VAE model without 
perceptual regularization) in an analysis-synthesis 
framework, without modification of the latent vector z. 
This was done by computing the root-mean squared error 
(RMSE) between original and reconstructed spectrograms 
from the test set, as well as the PEMO-Q score between 
the original and reconstructed waveforms (Huber and 
Kollmeier, 2006). The PEMO-Q is an objective measure 
of audio quality, based on an auditory perception model, 
defined in the range [0,1] (the higher the better). Note 
that the proposed perceptual regularization is expected 
to deteriorate the quality of the reconstructed signal, 
especially in terms of RMSE. Indeed, the perceptual 
regularization term in Eq. (6) is balanced with the 
reconstruction error term that is directly related to the 
RMSE within the current Gaussian data model. Note also 
that the effects of the perceptual regularization term and 
the conventional KL regularization term are cumulative. 
We wish to quantify this degradation and also assess it 
perceptually with the PEMO-Q score.

Figure 4 shows that the RMSE and PEMO-Q results 
present similar (opposite) behaviors, with a performance 
increasing logarithmically with the encoding size. As 
expected, increasing α deteriorates the quality of the 
reconstructed signal. In particular, for enc = 8, the 

Figure 4: Performance of the classic VAE and the proposed perceptually-regularized VAE in terms of (a) RMSE (in dB) 
and (b) PEMO-Q scores, for three values of α (error bars represent 95% confidence intervals calculated with paired 
t-tests considering the classic VAE as the reference).

https://keras.io/examples/generative/vae/
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regularization strongly deteriorates the quality of the 
signal, with variations in RMSE and PEMO-Q reaching 
respectively +62% and –25% for α = 1. This result is not 
surprising, since this dimension corresponds to the size 
of the perceptual space and therefore, during fine-tuning, 
the model is encouraged to encode the successive spectra 
of a given sound (most often non-stationary) with constant 
values (the entries of the PSV) for all latent dimensions. In 
other words, the dynamics of the input signal are encoded 
through the dynamics of the latent trajectories, and 
for enc = 8, the signal dynamics were encouraged to be 
constant, which severely affects the quality of the output 
signal. Allowing the additional latent dimensions to freely 
encode the signal dynamics results in a rapid decrease in 
RMSE and increase in PEMO-Q score from enc = 8 to 32. 
The evolution becomes slower after 32, and the results 
are statistically very consistent. For enc = 64, an α value 
varying from 0.01 up to 1 causes an increase in RMSE over 
the baseline of 6% up to 33% (respectively 1.6% to 16% 
decrease in PEMO-Q score). This shows that the setting 
of α can have a significant impact on the quality of the 
reconstructed signals.

4.4 Analysis of the latent space
The next step in evaluating the effectiveness of the 
proposed approach was to investigate how the structure 
of the latent space was modified by the perceptual 
regularization. We focused here on a VAE model where 
enc  = 64 and α = 0.1, since this setting appeared to 
achieve a good tradeoff between regularization and 
reconstruction accuracy.

4.4.1 Organization of the latent space
To analyze the organization of the latent space, we first 
computed the Spearman correlation coefficients (SCC) 
between the extracted latent dimensions obtained 
using samples from the labeled dataset. The first 
column of Figure 5 shows that the classic VAE presents 
low correlations between the different dimensions 
extracted. The second column shows that the perceptual 
regularization significantly affected the eight constrained 
dimensions, while preserving the others. The bottom 
chart of Figure 5 shows the SCC for the perceptual score 
vectors collected during the perceptual test of Section 
3.2. We can see that the structure of the eight constrained 
VAE latent dimensions (second row) closely matches 
that of the PSVs, which shows the effectiveness of the 
perceptual regularization. Moreover, a closer observation 
of the correlation coefficients between the perceptually-
constrained dimensions and all the other unconstrained 
dimensions (third row) shows that these latter dimensions 
were not impacted by the perceptual regularization 
and that they remained mostly uncorrelated from the 
perceptual dimensions.

4.4.2 Mapping and disentanglement evaluation
Some recent studies have proposed metrics to evaluate 
the mapping and disentanglement of extracted latent 
dimensions (Adel et al., 2018; Locatello et al., 2020; 
Pati and Lerch, 2020). In the present study, we are not 

particularly interested in the disentanglement of the 
constrained latent dimensions as this would assume that 
the perceptual dimensions themselves are uncorrelated, 
which is not the case. Indeed, if we focus on the 
dimension métallique for example, the bottom chart 
of Figure 5 clearly shows that it is strongly correlated 
with the dimensions qui vibre and agressif while being 
negatively correlated with the dimension chaud, and 
uncorrelated with the dimensions qui résonne, percussif 
and qui évolue. Instead, we therefore rather considered 
four of the metrics presented by Pati and Lerch (2020) – 
interpretability, mutual information gap (MIG), separated 
attribute predictability (SAP) and maximum SCC between 
the extracted dimensions and the perceptual ratings – to 
compare our perceptually-regularized model with the 
classic VAE baseline.

Figure 5: Spearman correlation coefficients between 
extracted latent dimensions (first three rows) and per-
ceptual ratings (last row).
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We first computed the interpretability measure for each 
of the perceptual dimensions. We compared the ratings 
obtained during the VAME test with the extracted latent 
dimensions obtained for both the classic VAE and the 
perceptually-regularized VAE. The results are illustrated 
in Figure 6. They clearly show the effectiveness of the 
perceptual regularization, increasing significantly the 
interpretability of the extracted dimensions.

We then computed the average scores obtained by the 
two models with the four mapping and disentanglement 
metrics (see Table 3). The results show that the perceptual 
regularization has a clear impact on the structure of the 
latent space and that the obtained perceptually-regularized 
latent space significantly outperforms the baseline for all 
the metrics (the higher the better according to Pati and 
Lerch (2020)).

4.5 Perceptual evaluation of the regularized model
Finally, to assess the impact of the proposed method at the 
perceptual level, we conducted a final A/B listening test. 
The main goal of this test was to evaluate the perceptual 
impact of a basic modification (offset) of the VAE latent 
coefficients.

4.5.1 Stimuli
For this test, we focused on the five perceptual dimensions 
that are more related to spectral characteristics: 
métallique, chaud, soufflé, qui vibre and agressif. We did 
not consider the dimensions percussif, qui résonne and 
qui évolue because our first attempts at controlling these 
dimensions with a VAE were not convincing, certainly due 

to the fact that they were more related to sound temporal 
dynamics and therefore poorly captured by the static VAE 
model.

For each of these five dimensions, we selected 12 
sound samples. Six of these were selected from the 
labeled dataset (train): the three samples that received 
the highest mean rating (close to 1) on this perceptual 
dimension, with the lowest standard deviation (thus 
considered as very representative of this dimension), 
and the three samples that received the lowest mean 
rating (close to –1), with the lowest standard deviation 
(thus considered as unrepresentative of that dimension). 
Six other samples were randomly selected from the test 
dataset (unlabeled) to evaluate the generalization ability 
of the model.

The 60 selected sound samples (12 stimuli per perceptual 
dimension × 5 dimensions), were then transformed 
applying the analysis-modification-synthesis method 
described in Section 2.1. The modification consisted in 
adding a predefined constant offset to the trajectory of 
the latent coefficient corresponding to the perceptual 
dimension to be modified. From the results presented in 
Section 4.3, we decided to use the perceptually-regularized 
VAE with a [513, 128, 64, 128, 513] architecture, β = 0.25 
and α = 0.1. Since the modification of the latent 
coefficients can lead to significant changes in the decoded 
spectrogram, the waveform signal was reconstructed with 
the Griffin & Lim algorithm (Griffin and Lim, 1984).

Independently from the (targeted) modification of 
perceptual dimensions, the overall sound transformation 
process (analysis-transformation-synthesis) can produce 
audible artifacts in the reconstructed signal. To prevent 
these artifacts from biasing the test, we applied the 
same transformation process (with different offset 
values) to each pair of samples compared during the 
test: we presented two modified versions of the same 
source samples using two different offset values for the 
transformation instead of presenting the original source 
sample and a single modified version. The reference 
stimulus was set to the lowest offset for which we could 
notice a perceptual difference with basic encoding-
decoding (without modifying the latent vectors). The 
“accentuated stimulus” was modified with a larger offset: 
we first searched for the threshold value for which all 
the reconstructed signals were perceptually identical 
(somehow saturating the decoder). Then, we set the 
actual offset value to 50% of this threshold (the resulting 
offset was always significantly larger than the small offset 
applied for the reference signal).

Examples of transformed sounds obtained with different 
offset values are available at the companion webpage.11

Figure 6: Interpretability measure (Pati and Lerch, 2020) 
for the first eight dimensions of the latent space.

Table 3: Averaged mapping and disentanglement metrics (Pati and Lerch, 2020) obtained for the classic and perceptually-
regularized VAE models.

SCC Interpretability MIG SAP

Classic VAE 0.3216 0.0762 0.0035 0.0264

Perceptually-regularized VAE 0.7895 0.6448 0.0513 0.4275
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4.5.2 Participants and task
Thirty listeners participated in this third perceptual test.5 

The test was conducted again online, using a self-developed 
web interface based on the Web Audio Evaluation Tool 
(Jillings et al., 2015). Participants were presented with 
60 successive pairs of samples, in a random order. Each 
pair was resynthesized from the same original sound 
sample modified with the two different offset values on 
the corresponding dimension. They were asked to choose, 
by clicking on the corresponding “A” or “B” button (each 
sample of the pair being randomly assigned to these 
buttons) which of the two samples sounded the most 
métallique for example. The test lasted about 20 minutes.

4.5.3 Analysis and results
The test outcome was encoded as a binary variable y (equal 
to 1 if the participant evaluation followed the targeted 
VAE transformation, and 0 otherwise). The statistical 
analysis was performed independently for each perceptual 
dimension. The experimental data was modeled using a 
logistic random effects regression, considering the listener 
and the pair of stimuli as random effects, and considering 
as a fixed effect the data subset from which the sound was 
selected (train vs. test).12

First, the data origin (train vs. test) was not found to 
influence the perception of any of the five perceptual 
dimensions significantly (see the first two columns of 
Table 4), meaning that the perceptually-regularized model 
was able to generalize and modify the acoustic characteristics 
of a sound sample even if this sample was not used for 
training our model (p > 0.05).13 As a result, the data model 
was simplified to account for only the two random effects.

Figure 7 and the last three columns of Table 4 
summarize how well the perception of each dimension 
followed the intended sound transformation. Thus, the 
perceptual dimensions agressif and qui vibre turned out 
to be well captured by the model, with respectively 80.8% 
and 72.8% of “correct” answers (i.e. perceptual evaluations 
that follow the intended sound transformation), which 
was significantly above chance level (p < 0.0001). 
Conversely, the results cannot reject the hypothesis that 
the participants randomly evaluated the dimensions 
chaud and soufflé, with a percentage of “correct” answers 
of 51.9% and 52.8% respectively (p > 0.05). These 

results, combined with the fair degree of inter-listener 
agreement obtained on the dimension soufflé (0.36) may 
indicate that the participants of this test understood 
this verbal descriptor in a different way to the majority 
group of the second VAME test, whose ratings were used 
to train the VAE. For the dimension chaud, the low level 
of both “correct” answers (51.9%, p = 0.36) and inter-
rater agreement (0.08) indicate that the model failed to 
capture the perceptual dimension as intended. Finally, the 
perception of the dimension métallique tended to follow 
relatively well the intended VAE transformation with 
a percentage of “correct” answers greater than chance 
(60.8%) and a fair inter-rater agreement (0.29), although 
this tendency was not statistically significant (p = 0.07).

5. Conclusions and Perspectives
5.1 Conclusions
In this study, we proposed a new method to perceptually 
regularize a variational autoencoder (VAE) model, using a 
semi-supervised learning procedure. This method allowed 

Table 4: Statistical results of the perceptual A/B test results for the five selected perceptual dimensions. Effect of the 
train/test data origin factor (first two columns). Comparison of the perceptual choice (A/B) with chance level (third and 
fourth columns). Inter-listener agreement using Randolph’s free-marginal multi-rater kappa (Randolph, 2005) (last column).

Dimension “train/test dataset” factor Chance threshold comparison Inter-listener 
agreement

χ2 p-value z p-value Randolph’s κ
Agressif 0.026 0.87 3.39 ≪0.0001 0.50

Chaud 1.07 0.30 0.37 0.36 0.08

Métallique 0.43 0.61 1.47 0.07 0.29

Soufflé 0.002 0.96 0.25 0.40 0.36

Qui vibre 0.76 0.38 3.93 ≪0.0001 0.27

Figure 7: Results of the A/B perceptual test for five per-
ceptual dimensions and for labeled stimuli (train) and 
new unknown ones (test). Bars represent mean values, 
error bars represent 95% confidence interval, and the 
red line indicates chance level.
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us to obtain perceptually relevant control parameters for 
the transformation of synthesizer sound timbre. To our 
knowledge, no clear definition of relevant perceptual 
dimensions and corresponding verbal descriptors has 
already been provided in the literature for synthesizer 
sounds. We therefore conducted a first perceptual test to 
identify these relevant perceptual dimensions and their 
associated labels in French: métallique, chaud, soufflé, qui 
vibre, percussif, qui résonne, qui évolue, agressif. We then 
conducted a second VAME test to get an entire sound 
dataset rated along these perceptual dimensions. We 
then used these ratings as perceptual score vectors for the 
regularization of our VAE.

Our experiments allowed us to draw several conclusions. 
As expected, we first observed that the additional 
regularization slightly degraded the quality of the audio 
signals generated by the model but that this quality 
remained acceptable when choosing an appropriate 
weighting factor α. This issue may be overcome in the 
future by considering bigger datasets (both labeled and 
unlabeled L  and U ). We also observed that using this 
extra regularization increased the interpretability of the 
constrained dimensions and modified their behavior 
to relate closely to the perceptual ratings obtained 
from our listening test. Finally, we conducted a last 
perceptual test to get a preliminary evaluation of how 
well the perceptually-regularized model performed sound 
transformation. This experiment validated the proposed 
methodology, showing that the model was relatively good 
at capturing and modifying the acoustic properties of the 
dimensions agressif and qui vibre. It was not efficient for 
the dimensions chaud and soufflé and the results on the 
dimension métallique are not so clear and would deserve 
further investigation. Furthermore, the model was able to 
generalize well to unseen sounds, even though the labeled 
dataset was very small.

5.2 Perspectives
A first perspective is to further study the semantic 
relationships between the eight perceptual dimensions, 
in order to better understand their potential redundancy, 
or inclusion. Then, in the present study, we implemented 
perceptual regularization by computing the MSE between 
the VAE latent vectors and the perceptual score vectors 
collected during the second perceptual test. However, 
the relationship between these vectors may not be linear 
and several metrics may possibly be more appropriate for 
this application. It might also be interesting to investigate 
further how normalizing flows (Rezende and Mohamed, 
2015) can be used to organize the latent space of our 
model, as done by Adel et al. (2018) and Esling et al. (2020), 
to benefit from a more complex and flexible posterior 
distribution model. Finally, one of the limitations of the 
present VAE model is that it is a static model, i.e. the input 
vectors (extracted from the input sound spectrogram) are 
processed one-by-one independently. Recently, the VAE 
model and corresponding variational training methodology 
have been extended to dynamic models, including the 
modeling of temporal dependencies between consecutive 

observed and/or latent vectors (Chung et al., 2015; Fraccaro 
et al., 2016; Hsu et al., 2017b; Krishnan et al., 2017). Our 
future work will consider extending the proposed study to 
those dynamic models, which should improve the model’s 
ability to capture and manipulate dynamic perceptual 
dimensions such as qui évolue or percussif.

Notes
 1 The choice of the exact data representation to feed the 

VAE model will be detailed further in Section 4.1.
 2 This dataset is publicly available at http://doi.org/10. 

5281/zenodo.4680486.
 3 Sounds were generated from all factory presets of the 

ARTURIA software applications resulting in single-
pitched sounds with a sample rate of 44.1 kHz.

 4 Attack time, attack slope, decay time, jitter, shimmer, 
MFCC, spectral centroid, spectral bandwidth, spectral 
contrast, spectral flatness, spectral roll-off and zero-
crossing rate; see Peeters et al. (2011) for a review of 
commonly used audio descriptors and their imple-
mentations.

 5 The participants freely agreed to participate in the three 
online perceptual tests. No identifying information 
was asked or stored.

 6 Which could be translated to English as metallic, warm 
and bright.

 7 The closest expressions in English would be space, 
robotic and jerky.

 8 Clustering was performed on the correlation matrices 
(converted into distance matrices beforehand using 
D  = 1 – C where D and C are the distance and 
correlation matrices respectively) and the method to 
obtain the final clusters was similar to that presented 
in Section 3.1.3.

 9 These vectors were then used as perceptual score 
vectors when regularizing our VAE.

 10 https://keras.io.
 11 http://synthsounds.eu/article_companion.html.
 12 We used the glmer function of the lme4 package of the 

R software; https://CRAN.R-project.org.
 13 This analysis was conducted using the anova function 

of the R software.
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