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Background: Aging is a complex phenotype influenced by a combination of
genetic and environmental factors. Although many studies addressed its cellular and
physiological age-related changes, the molecular causes of aging remain undetermined.
Considering the biological complexity and heterogeneity of the aging process, it is now
clear that full understanding of mechanisms underlying aging can only be achieved
through the integration of different data types and sources, and with new computational
methods capable to achieve such integration.

Recent Advances: In this review, we show that an omics vision of the age-
dependent changes occurring as the individual ages can provide researchers with
new opportunities to understand the mechanisms of aging. Combining results from
single-cell analysis with systems biology tools would allow building interaction networks
and investigate how these networks are perturbed during aging and disease. The
development of high-throughput technologies such as next-generation sequencing,
proteomics, metabolomics, able to investigate different biological markers and to
monitor them simultaneously during the aging process with high accuracy and
specificity, represents a unique opportunity offered to biogerontologists today.

Critical Issues: Although the capacity to produce big data drastically increased over
the years, integration, interpretation and sharing of high-throughput data remain major
challenges. In this paper we present a survey of the emerging omics approaches in aging
research and provide a large collection of datasets and databases as a useful resource
for the scientific community to identify causes of aging. We discuss their peculiarities,
emphasizing the need for the development of methods focused on the integration of
different data types.

Future Directions: We critically review the contribution of bioinformatics into the omics
of aging research, and we propose a few recommendations to boost collaborations
and produce new insights. We believe that significant advancements can be achieved
by following major developments in bioinformatics, investing in diversity, data sharing
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and community-driven portable bioinformatics methods. We also argue in favor of more
engagement and participation, and we highlight the benefits of new collaborations along
these lines. This review aims at being a useful resource for many researchers in the field,
and a call for new partnerships in aging research.

Keywords: bioinformatics, systems biology, aging, translational genomics, regulation, proteomics,
metabolomics, databases

INTRODUCTION

Over the past decades, the average human life expectancy has
increased dramatically, by more than 2 years per decade (Oeppen
and Vaupel, 2002; Vaupel, 2010; Meyer et al., 2020). In 2021,
the worldwide life expectancy is estimated to be 72.81 years, a
0.24% increase from 2020 (Parant, 1990), although the prevision
does not take into account the impact of the COVID-19 virus
on mortality (Goldstein and Lee, 2020; Kontis et al., 2020). This
increase in life expectancy, however, does not parallel with an
equivalent increase in disease-free lifespan or healthspan: this is
why biogerontologists are nowadays struggling with identifying
actionable mechanisms of aging, with the goal of extending
the time individual lives in good health, possibly delaying age-
related diseases, and therefore reaching longevity. The issue
is not simple to solve. In fact, although our understanding
of aging biology in model systems has increased dramatically,
thanks to the possibility to model the effect of single variants
on the probability to extend our lifespan, Human aging and
longevity are complex polygenic traits. They are influenced by
the inheritance pattern of multiple genes/variants, each one with
pleiotropic protective roles across several age-related diseases,
and their interaction with environment. People can achieve older
age while suffering major age-related diseases, because of their
capability to survive those disorders, or they can escape entirely
some of the most frequent causes of death and impairment,
thus living not just a long but also a healthy life. The difference
between these two aging trajectories and phenotypes is greatly
discussed and investigated: many studies aimed at determining
the relative contribution of the many players involved in this
challenge, which include diet, gender, education, socioeconomic
status, social engagement, access to medical care and, last but not
least, genetics. For these reasons, many disciplines are involved
in the search for contributors to human aging, from biology
to medicine, bioinformatics, demography, sociology, psychology,
and economy. This large effort in recent years led to an integrated
view of aging, in which health and diseases can be considered
part of a continuum (Franceschi et al., 2018) where boundaries do
not exist and the two extremes are represented by centenarians,
who largely avoided or postponed most diseases and experience a
decelerated aging, and patients who suffered one or more severe
diseases starting from their 60 s, 70 s, or 80 s and show signs of
accelerated aging. As part of a continuum, health and diseases
share the same underpinning mechanisms. Thus, it is likely that
risk alleles exerting its effect on the susceptibility to common
age-related diseases influence the individual lifespan, and the
difference in clinical manifestations is the result of peculiar
combinations of alterations affecting the same, limited set of basic

pathways shared with the aging process. This hypothesis is the
leading argument, which guided the efforts to identify genetic
variation associated with human aging. Large studies confirmed
this integrated view. As an example, in 2014, a meta-analysis on
the genetics of human longevity (Deelen et al., 2014) identified
an intergenic region on chromosome 5q33.3 promoting human
longevity and associated with lower mortality risk for CVD,
decreased risk for coronary artery disease, lower diastolic and
systolic blood pressure. On the other hand, studies investigating
families of long-lived individuals (LLI) not only demonstrated
that first degree relatives of centenarians show greater chances
of living to old ages too, as compared to the general population
(Sebastiani et al., 2016), but they are also more likely to show
delayed onset of age-related diseases and compressed disease
morbidity (Gudmundsson et al., 2000; Terry et al., 2003; Atzmon
et al., 2004; Lipton et al., 2010; Dutta et al., 2013).

Among the cellular mechanisms influencing health and shared
with common diseases, experts suggest seven master regulators,
represented by adaptation to stress, loss of proteostasis, stem cell
exhaustion, metabolic derangement, macromolecular damage,
epigenetic modifications, and inflammation (Kennedy et al.,
2014; Franceschi et al., 2018).

OVERVIEW: COHORT AGING STUDIES
COLLECTING OMICS DATA

The search for determinants of aging is nowadays involving the
collection of large cohorts of individuals to perform longitudinal
studies. More than 70 community-based cohort studies have
been conducted, mostly in North America or Northern Europe,
51 approved by NIA (National Institute of Ageing) (see
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135270/ for
a complete list), either including exclusively elderly people or
following people from middle-age (50+ years at enrollment)
to death, with a mean follow-up period of 10 years. Usually,
collected variables comprise data on familiar composition,
employment, economic status (socio-demographical variables),
self-reported chronic diseases and determination of the
functional status, through anthropometrics measures and test
of physical performances, measures of cognition, and, for
about 60% of the studies, the collection of biological samples.
One third of all the studies also conducted genetic analyses
(Seematter-Bagnoud and Santos-Eggimann, 2006). A review
of major cohorts and longitudinal studies still ongoing, can be
found in Stanziano et al. (2010) and we report some of the more
relevant cohort studies in Table 1.
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TABLE 1 | Relevant cohort studies in aging research.

Study/Cohort Aim of the research Main
publication

Population
(N samples*)

Start date
Status: Completed/ongoing

The Long Life Family Study Family based, longitudinal study of
healthy aging and longevity
launched in 2005 aimed at the
identification of markers in blood
able to predict survival, better
physical function, disease-free
aging, dementia, and
cardiovascular disease.

Sebastiani
et al., 2017

Caucasian and American of
European ancestry
(535 families, 1.499 individuals
in the Proband Generation,
2.594 individuals in the
Offspring Generation and 830
Spouse Controls)

Started in 2005
Status: Completed (2009)
https://www.sdu.dk/en/llfs

The Healthy Ageing in
Neighborhoods of Diversity across
the Life Span (HANDLS) study

Prospective study, aimed at
investigating the influence of age,
race, socioeconomic status on
health and on major age-related
diseases or conditions (Diabetes,
Cerebrovascular Disease,
Age-Associated Decline,
Cardiovascular Disease)

Evans et al.,
2010

African American and whites in
Baltimore
3720 participants

Started in 2009
Status: Ongoing
(Wave 5 of follow-up)
https://clinicaltrials.gov/ct2/show/
NCT01323322

The NIA’s Baltimore Longitudinal
Study of Aging

Comprehensive and longest
running longitudinal examination of
human aging in the world. The aim
was the understanding about
normal versus pathological aging as
well as age-related diseases and
conditions.

Schrack et al.,
2014

Different ethnicities**
3200 participants
(1300 actively followed)

Start date: 1958
Status: Ongoing
https://www.nia.nih.gov/research/
labs/blsa

Framingham Heart Study Long-term cardiovascular cohort
study of residents of the city of
Framingham, Massachusetts,
aimed at understanding
epidemiology of coronary heart
disease (CHD)

Mahmood
et al., 2014

Different ethnicities**
Six groups of individuals:
Original Cohort (5209),
Offspring Cohort (5124), Third
Generation Cohort (4095), New
Offspring Spouse Cohort (103),
Omni Generation 1 Cohort
(506), and Omni Generation 2
Cohort (410).

Started in 1948
Status: Ongoing
https://framinghamheartstudy.org/

Lifestyle Interventions and
Independence for Elders (LIFE)
study

Study of the effect of physical
activity in reducing the risk of major
mobility disability.

Pahor et al.,
2014

Different ethnicities**
1635 participants

Started in 2010
Status: Completed
https://clinicaltrials.gov/ct2/show/
NCT01072500

Genetics of Healthy
Aging (GEHA)

EU-funded program on the
identification of genes involved in
healthy aging and longevity.

Skytthe et al.,
2011 Individuals of European

ancestry from 10 recruitment
areas all over the Europe
2535 90+ sibpairs (5319
non-agenarians)
2548 controls (50–75 years)

Started in 2004
Status: Completed (2007)
https://cordis.europa.eu/project/id/
503270/it

IDEAL
(Integrated research on
Developmental determinants of
Aging and Longevity)

EU-funded project on development,
epigenetics and longevity. The
project was focused on gathering
insights into the role of early life
conditions affecting late-life health,
disease and aging.

Deelen et al.,
2013 Individuals of European

ancestry from all over the
Europe
8,000 long-lived individuals
(≥85 years of age)

Started in 2011
Status: Completed (2016)
http://www.idealageing.eu/

Canadian Longitudinal Study on
Aging (CLSA)

Large, national, long-term study
aimed at understanding the impact
of biological, medical,
psycho-social, lifestyle and
economic factors on the
development of disease and
disability as people age.

Raina et al.,
2009

Canadians
50,000 individuals aged
between 45 and 85 years
followed up for 20 year at least

Started in 2003
Status: Ongoing
https://www.clsa-elcv.ca/

Nagahama Prospective Cohort for
Comprehensive Human Bioscience
(the Nagahama Study)

Longitudinal cohort study of the
residents in Nagahama City
(south-central Japan)

Matsumoto
et al., 2017

Japanese
9,764 participants at baseline
aged between 34 and 80 years

Started in 2013
Status: concluded (2016)
no website

N.B: *Number of Samples: number in parenthesis indicates the number of samples collected in each cohort. **Different ethnicities in United States studies generally
include: Hispanic, White, African American, Asian, Others.
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Together with the collection of such large cohorts, including
big data of phenotypes related to aging, technical advancement
and the lowering of costs of genome-wide genotyping and next-
generation sequencing technologies prompted the discovery of
new genetic variants associated with aging. This has increased
the number of databases devoted to host big-data generated by
the large number of genome-wide association studies (GWAS)
launched on human age-related diseases (International Mhc and
Autoimmunity Genetics Network, Rioux et al., 2009; Márquez
et al., 2018; Jansen et al., 2019).

Meta-analyses of GWAS, carried out by combining the results
of independent studies (called cross-disease meta-analysis),
trying to identify loci with both same-direction and opposing-
direction allelic effects, revealed significant heterogeneity of
disease association within the genome, although some regions
showed association with more than one diseases (P < 0.0001)
(Jeck et al., 2012). Loci with pleiotropic effects on age-
related disorders tend to be enriched in genes involved in
underlying mechanisms related to nervous, cardiovascular and
immune system functions, stress resistance, inflammation, ion
channels and hematopoiesis, supporting the hypothesis of shared
pathological role of infection, and inflammation in chronic age-
related diseases (He et al., 2016).

Notwithstanding, there has been a lack of replication when
comparing these studies, due to differences in sample size,
study-specific age cut-offs to define the affectation status, sex-
specificity, and population specificity, i.e., genetic and/or lifestyle
heterogeneity among cohorts.

Nowadays, successful insights in the complex field of studying
the human aging can be generated only by large multidisciplinary
groups, because of the gerontological research need to bring
together a large number of sources of information: these are
essential to better understand how genetic and environmental
components interact, and result in different health outcomes
in older adults.

DATA INTEGRATION IN AGING STUDIES:
NEEDS AND CHALLENGES (OF OMICS)

The advancement of many technologies has made omics sciences
(genomics, transcriptomics, proteomics, and metabolomics)
increasingly affordable. The use of next-generation sequencing,
and the versatility of this technology, has paved the way for data
integration: through the same technology, it is today possible
to investigate genetics (targeted, exome and whole-genome
sequencing), different aspects of genomics like conformational
capture (Hi-C/3C-Seq) or protein binding (ChipSeq), and
interrogate the transcriptome (RNAseq) (Williams et al., 2015).
The consequence of this technological convergence is that
different information can be represented by similar data formats
and data sources: this offered unprecedented opportunities for
further development of the -omics and a boost to developing new
integration methods and approaches. Aging research is perhaps
one of the subjects where data integration is becoming essential to
further the understanding of this trait: as mentioned above, long-
living individuals have escaped the major causes of death, and
therefore their phenotype could be considered as complementary

to a large number of complex pathological phenotypes. The most
complex, among complex traits, we could say. Additionally, if
we look at the genomics determinants of human aging, long
living individuals are likely to be phenocopies, i.e., where different
polygenic combinations result in the very same phenotype.
Such a phenomenon severely impacts on our capacity to
unmask not just the underlying molecular mechanisms, but the
necessary interplay between all genes involved and their genetic
variation in order to produce the trait we observe phenotypically
(Lescai and Franceschi, 2010).

For this reason, aging is considered a multi-factorial
trait, highly heterogenous from a genomics point of view,
characterized by different levels of complexity ranging from
molecular to cellular, organ and organism (Cevenini et al., 2010):
in order to be investigated properly, this complexity requires a
systems-biology and -omics approach where the integration of
multiple data becomes essential.

Describing a biological phenomenon by investigating multiple
aspects of the biology or pathophysiology at the same time has
become not only easier, but also more accessible. Big data is
breaking down traditional boundaries between fields: collecting
such larger datasets also means to integrate data generated
through the use of different approaches (for instance, both
genome wide and family study design). This also implies the
involvement of hundreds of thousands of individuals over many
decades, to study the effects of earlier life conditions on later-life
health, including genetics, behavior and contextual factors such
as socioeconomic status.

Single-cell analyses have provided an additional dimension to
investigate the complexity of the organisms: technology allows
now to overcome the “average” picture we get from whole tissues,
and investigate the genomics, transcriptomics, proteomics and
metabolomics of each single cell analyzed. There is a growing
interest in the application of this technology in aging studies
as well, although most data available in Humans are limited
to transcriptomics (Uyar et al., 2020). Other single cell -omics
data emerging in model organisms show the potential of this
application and the importance in this field for the generation of
new in-depth data on aging biology (He et al., 2020).

Generating more data, however, means that the additional
information has to be integrated, in order to offer a rational
insight into the biology, and an answer to the experimental
question: one suddenly has to deal with several layers of
complexity. Next generation sequencing is indeed a very powerful
tool to address also genetic heterogeneity in traits, and therefore
does help investigating complex phenotypes. Data integration
remains, however, a very challenging task, because of its
mathematical and statistical nature, but also due to costs and
experimental difficulties: it is often quite difficult to use the same
set of samples in order to collect all different types of data, and
therefore integration methods need to be able to handle the
resulting gaps in information.

Multi-layered networks for example have been proposed as
a powerful tool used to establish the necessary connection
between different types of information: it does provide a natural
way to represent the structure of a biological system, and
the relationships between different layers in the network may
represent effects which cannot be described just by statistical
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correlations (as it happens in genome-wide association studies,
GWAS) (Lee et al., 2019). Network-based methods appear also a
very appropriate direction to combine data integration tools with
a holistic interpretation of phenotypes and their determinants.
It is for example through network analysis, that Garcia Alonso
et al. (2014) have proposed a mechanism for the maintenance
of deleterious variants in the genome of Human populations:
by looking at the whole interactome, we are able to better
understand how deleterious mutational load can be suppressed
in the resulting phenotype (Garcia Alonso et al., 2014). Similarly,
Khurana et al. (2013) have used a network approach to aid
the interpretation of genomics variants. Multi-layered networks
seem to offer also a promising solution to some data integration
challenges of single-cell omics analyses (He et al., 2020).

Tensor decomposition has also been proposed as a quite
powerful method to infer relationships between different
biological descriptors. A tensor is a multi-dimensional array:
the decomposition of these higher order arrays had numerous
applications in a wide ranges of scenarios, but only recently
found interesting applications in biology, thanks to the increase
in data dimensionality. There are a few methods to decompose
higher-order tensors (PARAFAC, Tucker among others) (Kolda
and Bader, 2009), and they can be considered a generalization
of more widely known methods used in biology like singular
value decomposition (SVD) or principal component analysis
(PCA). They can be very powerful in discovering patterns in
the data, and uncovering hidden relationships, as well as in
providing a joint factorization of multiple data sets, which
is a key issue in data integration (Khan et al., 2016). This
kind of methods has been applied as a way to investigate
expression in multiple tissues, and in linking transcriptomics
patterns to genetic variation (Hore et al., 2016), or to integrate
genomic and epigenomic data (Fang, 2019). Another area where
tensor decomposition has been successfully applied is data
visualization: it is becoming increasingly important, to provide
a much better way to explore, and consequently understand,
high-dimensional datasets and multi-omics data. Projections of
the lower-dimensional decompositions allow unmasking hidden
patterns, finding new relationships and applying clustering
methods otherwise inaccessible to higher-dimensional data
(Fanaee-T and Thoresen, 2019).

Machine learning (ML) approaches have also proven to be
extremely powerful in the re-analysis of large datasets collected in
the past, allowing an unprecedented capacity for data integration,
and providing new insights. It is the case, for example, the
use of feature selection and a combination of support vector
machines (SVM) and random forest (RF) allowed to mine
the combined datasets of different aging population studies
(3C, 3-City; AMI, aging multidisciplinary investigation; TSHA,
Toledo Study for Healthy Ageing; InCHIANTI, Invecchiare in
Chianti), and enabled the integration of lifestyle, laboratory and
clinical data. This approach allowed the processing of more
than 30 thousand omics markers, confirming and expanding
the understanding of mechanisms involved in frailty (Gomez-
Cabrero et al., 2021). The study also provided an important
starting point for future studies in the field.

OMICS BIOINFORMATICS USEFUL FOR
AGING RESEARCH

Bioinformatics has evolved dramatically in the past 10 years. This
has definitely affected aging research as well. Nowadays, there
is a strong drive for bioinformatics solutions to adopt at least
three key principles: reproducibility, portability, and community
standardization.

Reproducible research has been a goal for many years
(Gentleman et al., 2004; Gentleman, 2005) and it has been
facilitated by a number of solutions in data science, thanks
particularly to the possibility of mixing comments, text, and
blocks of code together. Reproducibility however is not achieved
just by sharing the code used for the analysis, or by explaining
in a transparent way how it has been written. Furthermore, it
is achieved by documenting the workflow of activities in their
specific sequence of tools used for the analysis, keeping track of
the software versions, of the provenance of files and enabling
any other user to access and run the very same sequence of
data analysis tasks. The latest developments in domain specific
languages (DSL) dedicated to running analysis workflows in the
life sciences have certainly changed the way biological scientists
approach bioinformatics: it has become easier to build and run
and share reproducible workflows, but they have also become
more accessible to people who are not necessarily experts in
bioinformatics. In our work we have adopted one of such DSL,
namely Nextflow (Di Tommaso et al., 2017), which is certainly
having a major impact in data analysis for life sciences, and aging
research as well.

It has certainly been more challenging in areas which involve
a large amount of experimental work, where reproducibility
also implies transparency and accessibility to reagents, source of
materials and methods for their collection. Biological research
has more recently seen a major effort to overcome these
challenges (Lithgow et al., 2017), also in gerontological sciences
(Estabrook, 2020).

Reproducibility is certainly connected to the concept
of portability, which addresses another major challenge of
bioinformatics: the possibility of running the same workflow,
independently of the computing environment, infrastructure, or
location of the computing resources (for example, on-premise
or on-cloud). The integration of workflow managers with the
increasingly adopted container technology (Docker, Singularity),
or recipe-based packages (Anaconda) has provided a solution
to both reproducibility of software as well as to the portability
challenge (Di Tommaso et al., 2015).

Reproducibility and portability represent fundamental
characteristics of a bioinformatics pipeline, but standardization
is also an essential goal. Standards can be either regulated, as
it happens in some areas, or they become really valuable when
they are developed and adopted by a community of practice.
This is most likely the case in bioinformatics and data science.
A very original effort has been made around the use of workflow
managers, and a community in particular, built around the use
of Nextflow, is worth of notice: the nf-core community (Ewels
et al., 2020). Those defined as “community curated pipelines”
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have become de facto community standards for bioinformatics,
and address key applications ranging from RNAseq to WGS,
to metagenomics. This initiative is having an influential impact
for two reasons: first, the pipelines are formulated through
a collaborative effort in a lively community, resulting in the
adoption of solutions which respond to the latest published
best practices in each field; second, this community is also
providing a set of templates, and co-developed code guidelines,
which increase accessibility to these tools, and provide a great
environment for people to start from, thus mitigating the
learning curve in the adoption of workflow managers.

The bioinformatics challenges described above remain valid
for many areas of science, including aging research. The
understanding of this phenotype, however, involves particular
challenges in the area of computational modeling: it is through
modeling that a connection can be found, among the many
elements underlying the biology of aging. One could therefore
use workflow languages like Nextflow, in order to process raw
data, perform initial data integration and network-based analysis,
add classical pathway-based analyses (Zhao et al., 2018), and
then follow-up with appropriate tools designed for modeling
biological systems.

These include biochemical modeling tools like CellDesigner1

(Funahashi et al., 2003) for gene-regulatory and biochemical
networks, COPASI2 also meant for the simulation of biochemical
networks and their dynamics, but also more generally valid
tools like the systems biology mark-up language (SMBL) (Hucka
et al., 2018), which has been successfully used to model higher-
order brain dysfunctions (McAuley et al., 2009). It is also by
computational modeling that it was proposed how the decline
we usually observe in some physiological processes during
aging, might act like a “programmed deterioration” in order
to increase the efficiency of other functions (Markov et al.,
2018). Unfortunately, as intriguing as the hypothesis is, the
same model fell short of identifying appropriate mechanisms
and aging genes as observed in populations. Similar approaches,
however, applied on the integration of omics data in model
organisms like Caenorhabditis elegans, succeeded in improving
the understanding of the contribution of different -omics data to
the overall characterization of an organism (i.e., how they play
a different role in sample variability), and also in proposing a
unifying hypothesis to connect the metabolic switches observed
during aging (food intake, among others) and the drop in
mitochondrial function (Hastings et al., 2019).

LARGE DATA COLLECTIONS FOR
AGING: A SURVEY OF AVAILABLE
DATABASES AND DATASETS

Nowadays, efforts pruned to collect data on aging phenotype
provide us several databases useful to integrate data and
analyze the biological pathways implicated in the aging
process (Figure 1).

1http://celldesigner.org
2http://copasi.org

In Table 2 we have compiled a list of useful databases in
aging research, which we hope the reader will find a useful
resource to access results and metadata. Common characteristic
to all the databases is the integration of different data sources,
with common identifiers linking to NCBI and establishing the
connection with scientific literature, and sometime meta-analysis
of studies in the field. In most cases, the interfaces are user-
friendly and they allow data download in different formats.

The “AgeFactDB,” the JenAge Aging Factor Database3 is
a repository aimed at the collection and integration of aging
phenotype data including lifespan information (Hühne et al.,
2014). Goal of the database is focusing on ‘Aging Factors.’
AgeFactDB incorporates information on genes, chemical
compounds, environmental or lifestyle factors such as diet,
whose action can affect lifespan and/or another aging phenotype.
In order to accept an aging factor in the database, a comparison
of two different experimental setups (e.g., experiments with and
without a chemical compound, a variation of concentrations,
dietary restriction or overfeeding vs. a normal diet, etc.) is
required. When a factor is defined, each information linked to the
effects of that aging factor is called ‘Observation’ and represents
aging-related evidences. The AgeFactDB provides a unique ID
to identify aging factors and observations (“AF_nnnnnn” and
“OB_nnnnnn,” respectively).

A huge issue in data integration is usually represented by
the different data structures of the originating data sources:
they have to be integrated with a large manual curation effort.
AgeFactDB attempts at solving this challenge, by providing
aging phenotype information in two formats: Type 1, which
includes observations un-separated within a single description,
Type 2 containing lifespan data in separate fields (e.g., lifespan
effect, lifespan change, and lifespan value). Another major issue
for all databases is the data validation. Comparing a list of
observations sorted by the lifespan change given in %, to the
qualitative classification (increased, decreased, and no statistically
significant effect) AgeFactDB is able to identify a number of
inconsistencies. AgeFactDB can be accessed either by browsing
through predefined lists or by searching, using as queries
synonyms, PubMed IDs and Medical Subject Headings, choosing
among more source databases or with specific type(s) of aging-
relevant evidence or search by using AgeFactDB ID. More details
are available in Hühne et al. (2014).

The MINDMAP4 is an integrated database infrastructure for
the promotion of research in aging and the management of
mental well-being and cognitive function of older individuals
(Beenackers et al., 2018). Mental disorders in old age are related
to impairments in the ability to function socially, decreased
quality of life, and increased risk of health problems and
comorbidities, thus they are considered a key priority for public
health policy and prevention (Whiteford et al., 2013). The aim of
the database is to integrate urban environmental characteristics
linking together longitudinal studies from 11 countries covering
over 35 cities. Integration of these data is useful to evaluate the
interaction between environment and individual determinants

3http://agefactdb.jenage.de
4https://www.maelstrom-research.org/mica/network/mindmap
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FIGURE 1 | Omics aging databases. General overview of the main aging research databases described in the review: we have annotated each database with the
omics data type it provides. G stands for genomics; T for transcriptomics; P for proteomics; M for metabolomics; E for epigenomics; Ph for pharmacogenomics.

of cognitive aging. The strength of the MINDMAP is the
capability to combine data from multiple cities and from different
sources (physical, social and socioeconomic environmental
characteristics, policy indicators), and therefore the opportunity
to increase sample sizes and statistical power, essential to identify
high-risk population subgroups and to study relatively rare health
conditions. Like for other databases, the harmonization of data
derived by different studies remains a key challenge: to harmonize
all MINDMAP cohort studies, each research team works on a
specific domain of information (e.g., socioeconomic variables,
multi-morbidities, health behaviors variables, etc.). The database
has restrictive data sharing rules, so that a central server running
RStudio allows authenticated investigators to securely access
firewall-protected data on primary and secondary data servers.
More details are available in Beenackers et al. (2018).

NeuroMuscleDB5 is a database of genes associated with
muscle development, neuromuscular diseases, aging, and
neurodegeneration (Baig et al., 2019).

The aim of the database is to help in developing strategies to
contrast muscle loss in elderly, i.e., one of the major contributors
of neuromuscular diseases and neurodegeneration which affects
mortality in old age (Listrat et al., 2016). A goal of this resource
is to help in translating the findings of different studies into
clinical interventions. Thus, NeuroMuscleDB integrates results
coming from muscle-associated genes directly or indirectly
involved in aging and age-associated neurodegenerative diseases.
The database can be manually or systematically updated, by

5http://yu-mbl-muscledb.com/NeuroMuscleDB

incorporating new data and resources. A strength of this
database is that analytical tools, containing PCR primer design
and sequence analysis, were also implemented to support the
laboratory analyses of candidate genes and sequences. More
details are available in Baig et al. (2019).

Molecular studies on metabolic variations during aging
can henceforward guide lifestyle changes and/or medical
interventions directed to improve healthspan and lifespan
(Lorusso et al., 2018). Although the research of aging is a rapidly
emerging field, none of the available aging-related databases is
specialized in aging metabolomics. MetaboAgeDB6 is a source of
known age-related metabolic changes from studies of disease-free
human cohorts (Bucaciuc Mracica et al., 2020). Aging-sensitive
metabolites, extracted from well-known databases, are annotated
with their chemical information, variations between age groups,
linked to the metabolic pathways in which they are involved,
including their effect on ageing and the gender(s) in which
this effect can be specifically seen. This is obtained thanks to
a quick link to individual pages including an ‘Age-variations’
panel, in which gender-specific and method-specific metabolite
variations are visually represented, grouped by the type of age-
related variation. For each metabolite, a summary table with an
overview of the information on the units of measurement, the
method by which the metabolite is detected, the age range and
sex of experimental group as well as information about specific
pathways that the metabolites are involved in are available. In
addition, MetaboAge entry provides users to use external links,

6http://www.metaboage.info
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TABLE 2 | Aging research databases.

Database Brief description Data type and size Omics data Project
status

References Links

AgeFactDB Database for the collection
and integration of
age-related data

16,599 aging factors (16,450
genes, 91 compounds, 58 others)
and 9,611 observations (8,159
aging phenotypes, 1,452
homology analyses)

Genomics Stopped Hühne et al., 2014 http://agefactdb.
jenage.de/

MINDMAP Integrated database for
research in aging, mental
wellness, and urban
environment. It integrates
10 longitudinal cohort
studies across cities in
Europe, the US, and
Canada to investigate
mental wellbeing in older
age as well as age-related
factors and phenotypes

Aging factors, aging-related
phenotypes, and aging-related risk
factors in 2,664,115 participants

Genomics,
Epigenomics,

Transcriptomics,
Proteomics,

Metabolomics

Ongoing Beenackers et al.,
2018

http:
//www.mindmap-
cities.eu/

GiSAO.db Database of genes involved
in age-related biological
processes. It also contains
orthologs between Homo
sapiens, Mus musculus,
Saccharomyces cerevisiae,
Caenorhabditis elegans,
and Drosophila
melanogaster

Data of genes involved in
senescence, apoptosis, and
oxidative stress (gene expression
data, annotation data, experimental
data, ortholog data) for a total of
338 between experiments and
arrays performed on all species
involved

Genomics,
Transcriptomics

Stopped Hofer et al., 2011 https:
//gisao.genome.
tugraz.at/

NeuroMuscleDB Database of muscle-related
genes at different stages of
development and aging

Information of about 1,102 genes,
6,030 mRNAs, and 5,687 proteins
that participate in muscle
development in Homo sapiens,
Mus musculus, and Bos taurus

Genomics,
Transcriptomics,

Proteomics

Ongoing Baig et al., 2019 http://yu-mbl-
muscledb.com/
NeuroMuscleDB/

MetaboAgeDB Database of human
aging-related metabolites

408 annotated aging-related
metabolites and more than 1,515
aging-related variations occurring
in healthy individuals

Metabolomics Ongoing Bucaciuc Mracica
et al., 2020

http://www.
metaboage.info/

Human Aging
Genomic
Resources (HAGR)

Collection of databases
and tools for studying the
genetics of aging

It integrates 10 between databases
and tools related to genomics, 1
related to drugs, 1 to animal
longevity, and 1 to aging changes

Genomics,
Epigenomics,

Transcriptomics,
Proteomics,

Pharmacogenomics

Ongoing Tacutu et al., 2018 https://genomics.
senescence.info/
index.php

HAGR - GenAge Database of genes related
to aging in model
organisms and in humans

2,202 genes related to longevity
and/or aging in model organisms,
and 307 aging-related genes in
humans (both directly related to
aging in humans and the best
candidates from model organisms)

Genomics Ongoing {Tacutu:2018fua} https://genomics.
senescence.info/
genes/

HAGR – GenDR Database of genes
associated with dietary
restriction (DR) in model
organisms and in mammals

214 DR-associated genes in model
organisms and 173 differentially
expressed genes due to DR in
mammals

Genomics,
Transcriptomics

Ongoing Wuttke et al., 2012 https://genomics.
senescence.info/
diet/

HAGR –
LongevityMap

Database of genes, genetic
variants, and loci
associated with longevity in
humans

550 entries (275 reported as
significant findings), 884 genes,
and 3,144 variants from a total of
270 large and small-scale
association studies on longevity in
humans

Genomics Ongoing Budovsky et al.,
2013

https://genomics.
senescence.info/
longevity/

HAGR – CellAge Database of genes
associated with cell
senescence

1,259 cell senescence-associated
gene expression changes from 279
gene manipulation experiments for
164 distinct cell lines and 3 distinct
senescence types

Transcriptomics Ongoing Avelar et al., 2020 https://genomics.
senescence.info/
cells/

(Continued)
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TABLE 2 | Continued

Database Brief description Data type and size Omics data Project
status

References Links

HAGR –
Aging-related
Disease Genes

Dataset of genes involved
in age-related diseases

769 aging-related disease genes Genomics Stopped Fernandes et al.,
2016

https://genomics.
senescence.info/
diseases/

HAGR – DrugAge Database of drugs and
compounds associated to
extended longevity in
model organisms

567 distinct compounds across
1,823 lifespan (increasing or
decreasing) assays on 30 unique
species

Pharmacogenomics Ongoing Barardo et al., 2017 https://genomics.
senescence.info/
drugs/

HAGR – AnAge Database of longevity
records in animals

4,244 entries (4,219 species and
25 taxa) with 3,275 longevity
records, and 1,981 aging process
observations. Life history traits for
3,275 species and metabolism
data for 707 species

Genomics Ongoing (Tacutu et al., 2018) https://genomics.
senescence.info/
species/

HAGR - Digital
Ageing Atlas

Database consisting in a
collection of human
age-related data covering
different biological levels. It
also contains data on Mus
musculus

3,784 molecular changes (3,071 in
humans, 713 in mice), 343
physiological changes, 17
psychological changes, and 95
pathological changes in humans.
A total of 2,599 genes involved for
humans and 675 for mice

Genomics,
Trancriptomics,

Proteomics,
Metabolomics

Ongoing Craig et al., 2015 http://ageing-
map.org/

Aging Atlas Database of age-related
changes and pathologies in
humans and model
organisms

3,274 aging-related human and
mouse genes. RNA-seq data of
genome-wide transcriptomic
changes related to aging (more
than 18,000 differentially expressed
genes potentially related to aging).
Single-cell RNA-seq data from 14
types of aged tissues from rats,
monkeys, and humans. ChiP-seq
data of specific aging-related loci
regulated by histone modifications
and transcription factors.
Protein–protein interaction data
related to aging. Compounds
related to aging

Genomics,
Epigenomics,

Transcriptomics,
Proteomics,

Pharmacogenomics

Ongoing Aging Atlas
Consortium, 2021

https:
//bigd.big.ac.cn/
aging/index

Japanese Multi
Omics Reference
Panel (jMorp)

Database of metabolome
and proteome data in
plasma obtained from
volunteers in Tohoku
Medical Megabank
Organization. It also
integrates other
multi-omics data collected
from volunteers mainly from
Japan

A Japanese reference genome and
genomic data from 8,380
Japanese individuals. Cell-type
specific transcriptomes based on
100 Japanese individuals. Peptides
of 256 abundant proteins in 501
volunteers. 45 metabolites
detected in 25,783 individuals

Genomics,
Transcriptomics,

Proteomics,
Metabolomics

Ongoing Tadaka et al., 2021 https://jmorp.
megabank.
tohoku.ac.jp/
202102/

through an easy and user-friendly web-interface. More details are
available in Bucaciuc Mracica et al. (2020).

The Human Ageing Genomic Resources (HAGR)7 is a
collection of databases and tools designed to help researchers
interested in the genetics of human aging, integrating results
from different approaches such as functional genomics, network
analyses, systems biology and evolutionary analyses. The project
is supported and maintained by the Integrative Genomics
of Ageing Group at the University of Liverpool in the
United Kingdom. Such big data repository is divided in sections,
which will be shortly indicated below.

7https://genomics.senescence.info/index.php

A major resource in HAGR is GenAge8, the database of genes
related to longevity. Its main characteristic is the division in two
sections, i.e., the section on human aging-related genes includes
the few genes directly related to aging in humans plus the best
candidate genes obtained from model organisms (yeast, worms,
flies, mice, etc.), clustered according to functional groups (Tacutu
et al., 2018). At the time of the last update, February 2020, the
database included 307 human genes, belonging to 15,054 Gene
Ontology categories. The developer of GenAge claim to be the
first to construct and analyze a protein network of human aging
as well as develop a system-level interpretation of aging.

8https://genomics.senescence.info/genes/
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Complementary to GenAge is LongevityMap, a database of
human genetic variants associated with longevity9, a repository
of genetic association studies of longevity which includes both
positive and negative association results, to provide visitors
with as much information as possible regarding each gene and
variant previously studied in context of longevity. Searching the
LongevityMap can be done by chromosome, by gene or genetic
variant (e.g., refSNP number), entering gene’s name or use the
gene’s HGNC symbol, or through a topic, like an age-related
disease, in LibAge10. LongevityMap provides the link to AnAge11,
the Database of Animal Aging and Longevity, a repository
developed for comparative biology studies, to provide researchers
with quantitative data for applying the comparative method
to studies of life history and lifespan. The database, featuring
over 4,000 species, contains life history records of organisms,
accessible to the AnAge’s browser and divided in three branches
(kingdom of animals, plants and fungi). The most important trait
in AnAge is maximum longevity (also called maximum lifespan)
because it is the most widely used parameter for comparing
rate of aging between species. Factors which can bias longevity
records, such as population size and whether animals are kept in
captivity or not, are also considered. Each entry has a qualifier of
the confidence placed in the longevity data. This qualifier is based
on the reliability of the original reference from which maximum
longevity was obtained, sample size, whether a given species has
been studied and reproduces in captivity, and whether there are
any conflicting reports. Confidence in the longevity data is hence
classified as: ’low’ (only used for species without an established
maximum longevity in AnAge), ’questionable,’ ’acceptable,’ and
’high.’ The database can be interrogated or it is possible to
download a zipped tab-delimited dataset of the latest stable build,
containing only the raw data, not observations.

GenDR12, DrugAge13, and CellAge14 are other resources
accessible from HAGR. GenDR is a database of genes associated
with dietary restriction. Like CellAge, the database of human
senescence-associated genes, classify genes on the base of
genetic manipulation experiments and gene expression profiling.
Dietary restriction (DR), limiting nutrient intake from diet
without causing malnutrition, is the most reproducible way
to extend lifespan in multiple organisms and postpone age-
related degeneration. GenDR includes two datasets: (1) genes
inferred from experiments in model organisms in which genetic
manipulations cancel out or disrupt the life-extending effects of
DR; (2) genes robustly altered due to DR, derived from a meta-
analysis of microarray DR studies in mammals, including also
an analysis of the gene network. Understanding the genetic basis
of DR is of great importance not only to the biology of aging
but also to understand how diet can influence aging, longevity,
health and age-related diseases. In particular, pharmaceutical
interventions targeting DR-associated genes are an emerging

9https://genomics.senescence.info/longevity/
10http://libage.ageing-map.org/entries/sources/longevity/
11https://genomics.senescence.info/species/
12https://genomics.senescence.info/diet/
13https://genomics.senescence.info/drugs/
14https://genomics.senescence.info/cells/

area with huge potential. In this frame, DrugAge provides data
on over 500 drugs, compounds and supplements (including
natural products and nutraceuticals) with anti-aging properties
that extend longevity in model organisms. CellAge also annotates
279 human genes driving cellular senescence, and allows to
specifically browse genes associated with cellular senescence,
simply by querying if a gene of interest is associated with
cell senescence in animal models, and to search for molecular
signature, i.e., genes that are either over-expressed or under-
expressed during replicative senescence of human cells. The base
of the work contained in this database is that genes involved
in cellular senescence tend to be overexpressed with age in
human tissues and are significantly overrepresented in anti-
longevity and tumor-suppressor genes, while genes inhibiting
cellular senescence overlap with pro-longevity and oncogenes.
Furthermore, cellular senescence genes are strongly conserved in
mammals but not in invertebrates.

By integrating the above mentioned and other datasets,
Avelar et al. (2020) recently developed a multidimensional
analysis of cellular senescence. By studying protein–protein
interaction and co-expression networks, the researchers found an
enrichment for cell cycle and immunological processes among
the senescent regulators; by siRNA silencing, they prompted 13
genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4,
IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3)
able to decrease cell number, activate p16/p21 pathway, and
undergo morphological changes resembling cellular senescence.

Finally, HAGR links also to The Digital Aging Atlas15

a centralized collection of aging changes and pathologies.
Maintained by the Aging Atlas Consortium (Aging Atlas
Consortium, 2021), the database integrates molecular,
physiological, psychological and pathological age-related
data, including anatomical models. Although primarily focused
on human aging, the db also includes supplementary mouse
data, in particular gene expression data, to enhance and expand
the information on human aging. The genetic information
maintained in the DB is also quite relevant, with 2,599
Human genes and 675 Mouse genes, linked to age-related
diseases or traits.

A further resource available for researchers in the field
is offered by Aging Analytics16, a very large repository of
information on longevity and aging, maintained by a non-
commercial and no-profit Deep Knowledge Group. The aim
of this repository is to offer progress updates on these topics,
ranging from publications, to newly identified biomarkers, to
research groups working in this area. The website also lists
biotech companies available for consultancy in aging research.

Besides the information organized in existing databases, we
aimed at providing readers with a carefully curated reference
to other available data sources. In Supplementary Table 1, we
report a selection of datasets from online repositories, resulting
from age-related studies producing different omics data. We have
searched and examined one by one the results and extracted those
we believe most relevant in this context.

15http://ageing-map.org/
16https://www.aginganalytics.com
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The first repository we scanned for relevant data has been
the database of Genotypes and Phenotypes (dbGaP17). DbGaP
includes data from sequencing studies and large-scale genomic
studies, as well as genotype, phenotype, exposure, expression
array, epigenomic, and pedigree data from GWAS. The access to
data hosted on dbGaP is achieved by signing in to the authorized-
access portal and submitting an application for specific datasets.
Requests must be reviewed and then approved by a specific data
access committee (DAC). We performed a search in the dbGaP
database on aging-related genetic studies. The aim was to find
and select the main datasets that one could access/request to
perform omics studies. We included in Supplementary Table 1
the large scale GWAS studies and omics studies related to aging.
We found and selected 26 dbGaP studies. The majority (17)
applied genomics approaches, either involving whole-genome or
targeted sequencing (7), in few instances in parallel with whole-
exome sequences, or whole-genome genotyping (10). Two studies
combined single nucleotide polymorphism (SNP) arrays with
exome sequencing. Eight were exclusively based on genome-wide
genotyping, employing different arrays with different numbers
of SNPs. However, care must be taken in the interpretation of
these data due to ascertainment bias and to the fact that rare
alleles can be under-represented in these arrays. Indeed, most
SNPs used by commercial arrays were ascertained in European
populations (Albrechtsen et al., 2010; Lachance and Tishkoff,
2013). As a result, disease risks can be mis-inferred and not yield
accurate estimations depending on populations, highlighting
the need of taking into account ancestry of study participants.
Moreover, cost-effective alternatives to genotyping arrays, such
as low-coverage sequencing (≥4X), have been shown to capture
variants at all frequencies more precisely and to identify novel
variation in underrepresented populations, as Africans (Martin
et al., 2021). The rest of the studies we have included (9) are based
either on a single or on more omics technologies. In particular,
they were based on transcriptomics (RNA sequencing) and/or
epigenomics (5hmC capture sequencing, DNA methylation,
ATAC sequencing, ChiP sequencing). Few of them combined
more omics approaches: those datasets would allow for a step
forward toward multi-omics data integration, because they are
among the few based on the same initial sample sets. Neither
proteomics nor metabolomics data were found in this search.

In Supplementary Table 1, we also report the results of
the same search on the European Genome-Phenome Archive
(EGA18). The EGA is an online repository for the storage and
sharing of genetic and phenotypic data from biomedical studies.
Studies present on EGA consist of one or more datasets, each
one under the supervision of a DAC. To access data on EGA,
an application must be sent for each dataset of interest to the
respective DAC, which will review and approve the request.

We searched the EGA repository for aging-related genetic
data that can be used to perform multi-omics studies and
data integration. We found many studies whose pages and
datasets from EGA referred to dbGaP pages, and whose data
were deposited on dbGaP. Therefore, the relevant studies

17https://www.ncbi.nlm.nih.gov/gap/
18https://ega-archive.org/

were either already included in our selection from dbGaP
or were added to it. For proper EGA projects and datasets,
we selected 11 studies. Genomics (whole-genome and whole-
exome sequencing), epigenomics (DNA methylation, MeDIP
sequencing, and ATAC sequencing), and transcriptomics (RNA
sequencing) were almost equally represented (four, four, and
three studies, respectively). Only one project combined two
omics technologies, whereas we did not find any multi-omics
study. As in dbGaP, neither proteomics nor metabolomics
data were present.

For those who wish to perform a broader search on omics
datasets, we would recommend OmicsDI19 (Perez-Riverol et al.,
2017, 2019). This web-based tool connects a very large number of
resources, listing omics studies and omics datasets. The results of
a search for the terms “ageing” or “aging” can be overwhelming,
and often after careful inspection no actual datasets can be found,
either with public or gated access. Nevertheless, it is an interesting
tool to keep in mind, with the caveat that some time has to be
spent in reviewing its results.

POST GENOMICS: PERSPECTIVES IN
BIOINFORMATICS

Advances both in high-performance computing as well as
in ML methods and in particular deep learning approaches,
have scaled up the opportunities to integrate different data
types. Deep learning methods have the advantage of building
hidden layers, which learn features capable to best predict given
outcomes: this allows the identification of novel patterns in very
complex datasets, and provide a very powerful tool for biology
applications, able to extract predictive parameters even from very
complex datasets. With this in mind, these approaches could
provide more holistic and system-base views of a biological
system, and therefore offer a deeper understanding of biological
mechanisms driving any phenotype (Hudson, 2021).

An interesting example is provided by the use of deep neural
networks (DNN) on a large set of biomarkers available through
common blood testing: Putin et al. (2016) used an ensemble
of DNNs and trained them on biochemical parameters from
62,419 individuals, achieving and interesting performance in
the prediction (R2 = 0.8). More interestingly, this approach
allowed feature extraction, and identify albumin, glucose, alkaline
phosphatase, urea, and erythrocytes as most promising markers
for predicting human chronological age (Putin et al., 2016). This
exercise showed the data mining potential of these new methods,
even in well-investigated areas like biomarkers.

Feature selection is in fact a critical and actionable area when
considering potential application of -omics sciences: while large-
scale omics data are essential to provide insights into the aging
phenotype, a selected number of actionable elements has to be
identified in order to enable strategies for intervention. Galkin
et al. (2020) also used deep learning (DL) to predict chronological
age, but trained their algorithms on the taxonomic profiling of
Human gut microbiomes: a strategical choice, considering the

19https://www.omicsdi.org
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growing importance attributed to the microbiota, and in turn
on nutrition for wellbeing and health. Leclercq et al. (2019)
while following a similar approach, chose to develop a software,
called BioDiscML, which makes use of different ML algorithms to
select the most promising combination of biomarkers capable to
predict any selected phenotype. They showed how this software
can be applied in a variety of real-world datasets, including stem
cells, nervous systems tumors and prostate cancer: a key aspect of
this work has been the attempt to break the non-expert’s barrier
often represented by the use of ML and DL algorithms. The trend
shows that, while bioinformatics continues to advance the field,
and more powerful methods are proposed and tested, existing
methods become more and more accessible, and therefore have
progressively more impact on daily choices both in research as
well as in intervention strategies (Figure 2).

We have compiled in Table 3 a useful list of tutorials, which
readers can use as a starting point to approach the key tools and
methods we discussed in this review.

DISCUSSION

Biomedical innovation, and in particular research into “omics
technologies,” offers the promise of monitoring, preventing
and treating age-related disabilities and diseases. Progress
in genomics and functional genomics in the past decades
have significantly supported our understanding of the
molecular mechanisms associated with aging. However, it
is nowadays clear that the complexity of aging requires a huge
effort into data integration, building a broader omics profile,
including genomics, proteomics, lipidomics or metabolomics,
transcriptomics, etc. Advances in the comprehension of aging
have been made possible thanks to a number of tools and
investigative method, like transgenic animal models of aging or
epidemiological studies using ‘omics’ tools such as genome wide
association and linkage studies.

Bioinformatics and Omics as a Holistic
View on Aging
While the availability of a large amount of data is a clear
advantage, there are still many challenges to be solved in order
to translate these technological advances into clinical settings.
This seems even more challenging in the field of aging, because
such an effort requires a more holistic view. Aging is not just
the progressive decline of different functions, but rather a well-
described phenotype, characterized by a complex remodeling
across the whole organism (Franceschi et al., 2000). This is the
key reason why omics technologies may greatly improve the
definition of different aging phenotypes, and the classification
of individuals with features ranging from the very frail, with
a poor quality of aging, to the most extreme, the centenarian’s
phenotype, characterized by a long life.

The Power of Diversity
The investment in omics approaches should also represent
the opportunity to strengthen diversity in aging research
and expanding the wealth of data from underrepresented

populations. It is increasingly debated how available data are
largely focused on populations of European descent (Peterson
et al., 2019). 94.23% of the 488,377-genotyped United Kingdom
Biobank participants are of white ancestry (Bycroft et al.,
2018); 23andMe dataset has 77% European ancestry (Servick,
2015). Diversity has a serious impact in the quality of the
resulting science as well: European ancestry-based polygenic
scores derived from GWAS explain only half as much of the
variability in the phenotype for non-Hispanic Black ancestry
individuals as compared with non-Hispanic White ancestry
individuals (Martin et al., 2017). This population heterogeneity
may be a reason for the failure to replicate certain findings in
other populations (Haiman et al., 2007). Including populations
with different ancestry can allow the comparison of data across
genetically diverse cohorts, which in turn can provide insights
into the underlying pathogenic mechanisms of disease, and
a more accurate and population-specific risk assessment. The
inclusion of different population backgrounds is particularly
crucial in complex traits, like aging, which is determined by
a strong geographical component and environmental exposure.
A recent study shows that for complex traits, a large proportion
of genetic effects are hidden when data across different countries
and historical periods are combined (Tropf et al., 2017).

There are many examples of advances facilitated by the
inclusion of different populations in the search for age-related
traits genetic determinants. For instance, a rare nonsense variant
(i.e., which causes the premature termination of a protein) in
the gene PCSK9 was found having a higher allele frequency in
African Americans: it was associated with a dramatic reduction
in low-density lipoprotein cholesterol concentration (LDLC; 28–
40%) (Cohen et al., 2005, 2006) and concomitant decrements
in coronary heart disease risk (88%) (Cohen et al., 2006).
The variant was present in individuals of European descent,
but with such a low allele frequency (0.006 vs. 2.6% carriers
in African ancestry individuals) to preclude any analysis with
sufficient statistical power. It was suggested that the frequency
among African ancestry individuals could be a result of selection
pressure due to malaria, or to genetic drift. Although identified
in the African American population, the study highlighted an
important role of PCSK9 variants in molecular mechanisms
which play a part in healthy aging: drugs targeting this gene
may therefore have a potential benefit for a large number of
individuals, beyond the population this role was first identified in.

The Importance of Community
Engagement
Investing in diversity should be achieved also through the
increase of meaningful engagement of marginalized communities
in the research process. There are wonderful examples of
community involvement which could lead an array of initiatives
and could be expanded to underrepresented communities.
The InCHIANTI study (Ferrucci et al., 2000), mentioned
earlier among those selected for re-analysis using new ML
methods, 20 years ago adopted an unprecedented level of public
engagement: it organized several community events involving
study participants, ranging from the promotion of local products
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FIGURE 2 | Data integration in aging research. A schematic representation of the process of data integration from public databases and other sources in aging and
age-related diseases. The main data sources are represented in the “input” panel, and we represent the key methods described in the manuscript under “data
extraction and integration.” We have represented the expected answers in the output, in terms of risk profiles and predictive tools for population stratification and
prevention.

characterizing the involved territories, to socializing activities
(i.e., knitting and sewing) producing materials used to further
promote the social impact of the study. All of this generated
reflection and debate around actionable measures, implementing
some of the study results.

The Importance of Sharing
Bioinformatics research thrives when both methods and data
can be easily accessed and reviewed in a transparent and
open way. For this reason, data sharing becomes crucial also
in aging research. There is an increasing receptiveness of the
community to this concept now, which we could sum it up
with the sentence “open science in open data.” Based on our
direct experience, while the most important European research
teams in biogerontology collaborated in very large EU-funded
research projects, like “European Challenge for Healthy Aging”
(ECHA), “Genetics of Healthy Ageing” (GEHA), and “Integrated
research on Development determinants of Aging and Longevity”
(IDEAL20), producing significant progress in the understanding
of aging dynamics (De Rango et al., 2008; Beekman et al., 2013;

20http://www.ideal-ageing.eu/

Deelen et al., 2014), data coming from these projects is not
available in public repositories or under controlled access
repositories. The GEHA project (Skytthe et al., 2011) for example,
was launched in 2004 and aimed at sampling an unprecedented
number (2500) of non-agenarians sib-pairs from all over the
Europe. The project was focused on the analysis of selected
chromosomal regions previously associated to the longevity
trait, as well as to the discovery of new regions by a whole
genome genotyping approach. GEHA represents an example of
standard recruitment methodology, both in collecting biological
samples and as well as phenotypic information through home-
based questionnaires, the latter very crucial for the definition
of phenotype (Montesanto et al., 2012). Without recovering
this wealth of data into a common data repository, genetic, -
omics, and non-genetic data on centenarians, non-agenarians
and their families, is kind of lost, and cannot be revisited with the
latest bioinformatics methodologies, data integration approaches,
nor new data mining methods, which could pave the way to
new insights and discoveries in the field, as in the example
from Gomez-Cabrero et al. (2021).

Like diversity and inclusion, responsible data and
biospecimen sharing was recognized as a scientific imperative
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TABLE 3 | Suggested tutorials about bioinformatics methods and tools
for omics analyses.

Topic Description Links

Tucker
Decomposition

This is an interesting blog curated by a
company named “Integrated
Knowledge Solutions.” We found this
3-parts tutorial well explained and
accessible, and therefore a good
starting point for those wishing to
approach tensors and Tucker
decomposition using R

Part 1:
https:
//bit.ly/2PEb5KC
Part 2:
https:
//bit.ly/3dfNrMK
Part 3:
https:
//bit.ly/39pxjXR

Tucker
Decomposition

R-bloggers is a famous blog for those
who use R, where people contribute
with their expertise and release tutorials
on different topics. Here, Alexej
Gossmann nicely explains the basic
concepts of tensors, and how to
perform Tucker decomposition

Understanding
tensors:
https:
//bit.ly/3czBK4t
Tucker
decomposition:
https:
//bit.ly/3rAWVHo

Support Vector
Machines

scikit-learn is a reknown python
framework to carry out machine
learning, with accessible and reusable
tools built of famous libraries. It is
entirely open source, and also has a
series of user guides and tutorials on
different topics, SVMs among others.

https:
//bit.ly/3szbrAV

Nextflow The best way to approach Nextflow is
to look at the extensive material
produced or cataloged by the nf-core
community. On their website they list a
large number of resources, and also
have a series of short “bytesize”
webinars covering all the basics.

Tutorials page:
https://nfco.re/
usage/nextflow
Bite-sized webinars
(under events):
https:
//nf-co.re/events

Deep Learning Tensorflow is an open source library for
computation, used for DL applications
because well equipped to handle
multidimensional data arrays (i.e.,
tensors), and exploit different
computing architectures (particularly,
GPUs). Its website has a series of very
useful tutorials, which we suggest as a
starting point to approach this
environment.

https:
//bit.ly/3wbABYo

Deep Learning If you use R, you will find particularly
useful the resource that RStudio has
put together on the topic: a large
number of tutorials is available for both
beginners and advanced R users

https:
//bit.ly/31sBcXs

Deep Learning If you prefer a more in depth overview,
with conceptual information, Manning
Publications offer a video course freely
available, which covers a wide range of
topics for DL with R

https:
//bit.ly/3fo1q5H

by Knoppers (2014), proposing the constitution of The
Global Alliance for Genomics and Health (GA4GH), an
international, non-profit alliance aimed to accelerate the
potential of research and medicine to advance human health
and bringing together 600+ leading organizations working
in healthcare, research, patient advocacy, life science, and

information technology21. A similar community should be
constituted among the groups working in the field of aging,
working together to create frameworks and standards to enable
the responsible, voluntary, and secure sharing of genomic and
health-related data.

In conclusion, we believe that aging is by definition an omics
science. New bioinformatics tools will strengthen this nature
and provide new insights into healthy aging, as well as suggest
actions to improve our quality of life. We provide here a few
recommendations which, in our view, will help and facilitate
this development.

Recommendations
Recommendation One: Prioritize Diversity
Researchers should prioritize the inclusion of multiple types
of data (ancestral, geographical, environmental, temporal and
demographic) and from different populations

Benefits
Ancestral diversity strengthens findings, and increases the chance
to find actionable mechanisms, thus implementing new strategies
to improve quality of life and healthy aging.

Recommendation Two: Invest in Data Sharing
Scientists responsible for large population-studies in aging
should put an extra-effort in making the data they have
collected, especially when funded by public bodies, into
accessible repositories.

Benefits
The availability of larger datasets, with a wide range of data types,
will facilitate reanalysis with new methods, and potentially new
insights into the determinants of healthy aging.

Recommendation Three: Promote Community-Driven
Bioinformatics
Like in other areas of research, there is an increasing need
to standardize and share new bioinformatics methods for data
mining and omics data integration. This can only be achieved
through community discussion and collaborative efforts.

Benefits
New pipelines can be developed using artificial intelligence
approaches, and they can be available open source to facilitate
research activities and analysis of new and existing data.

Recommendation Four: Promote Engagement and
Participation
Scientists in aging research, and particularly those working on
bioinformatics who are often less in contact with the participants
of the studies they analyze, should invest in a responsible research
and innovation (RRI) for their activities, and dedicate part of their
time to community engagement and participation.

21https://genomicsandhealth.org/
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Benefits
Better awareness about the study impact on quality of
life will increase chances for funding, and community
engagement will improve both quality of data collection,
as well as provide often unexpected insights during the
analysis of data.
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