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Over decades, substantial progress has been achieved in understanding the
pathogenesis of proteinuria in diabetic kidney disease (DKD), biomarkers for DKD
screening, diagnosis, and prognosis, as well as novel hypoglycemia agents in clinical
trials, thereby rendering more attention focused on the role of renal tubules in DKD.
Previous studies have demonstrated that morphological and functional changes in renal
tubules are highly involved in the occurrence and development of DKD. Novel tubular
biomarkers have shown some clinical importance. However, there are many challenges to
transition into personalized diagnosis and guidance for individual therapy in clinical
practice. Large-scale clinical trials suggested the clinical relevance of increased
proximal reabsorption and hyperfiltration by sodium-glucose cotransporter-2 (SGLT2)
to improve renal outcomes in patients with diabetes, further promoting the emergence of
renal tubulocentric research. Therefore, this review summarized the recent progress in the
pathophysiology associated with involved mechanisms of renal tubules, potential tubular
biomarkers with clinical application, and renal tubular factors in DKD management. The
mechanism of kidney protection and impressive results from clinical trials of SGLT2
inhibitors were summarized and discussed, offering a comprehensive update on
therapeutic strategies targeting renal tubules.

Keywords: renal tubular dysfunction, tubular biomarkers, sodium-glucose cotransporter-2, diabetic kidney
disease, therapeutic strategies
INTRODUCTION

Along with the disease spectrum that evolved around the world over the past 30 years, diabetic
kidney disease (DKD) has become the leading cause of end-stage kidney disease (ESKD) at daunting
rates in both developed and developing countries (1, 2). Due to the increased risk of morbidity and
mortality of DKD, the number of DKD related studies rapidly increased over the past two decades,
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with more than 27,500 papers published from 2000 to 2017 (3).
Growing evidence suggests the underlying pathogenesis of DKD
involves the renal proximal tubular epithelial cell dysfunction in
a high glucose environment, oxidative stress, inflammation,
fibrosis, and apoptosis (4). In addition, a large number of
tubular biomarkers for DKD screening, diagnosis, and
prognosis are tightly associated with the prognosis of the
kidney in DKD, providing evidence for potential shifting of the
paradigm from glomerulocentric to tubulocentric theory (5). It
has been repeatedly shown that compared with the glomerular
lesions, the extent of tubulointerstitial lesions correlates well with
renal function, and the associated biomarkers have been
identified (6). Urinary tubular injury markers may increase in
patients with diabetes even before the onset of microalbuminuria
(7, 8). Plasma tubular markers, which may reflect inflammatory
and fibrotic responses, oxidative stress, and capacity of
reabsorption in DKD, were also reported to be associated with
early renal function decline and DKD progression (9, 10).
Moreover, the biomarkers of tubulointerstitial function and
structural changes were ultimately proven to be better
predictors of disease progression and long-term prognosis than
the current markers (11). Current prognostic markers of DKD
have certain limitations. Estimated glomerular filtration rate
(eGFR) and albuminuria are only modestly useful for risk
prediction in type 2 diabetes mellitus (T2DM) patients with
preserved renal function, and DKD progresses even in the
absence of albuminuria (12, 13). Most importantly, inhibition
of proximal tubule glucose transport via sodium-glucose
cotransporter-2 (SGLT-2) has shown nephroprotective effects
in a variety of large-sample, multicenter, placebo-controlled, and
randomized clinical trials. By investigating the mechanism of the
newest disease-modifying treatments for DKD, an accumulating
body of research had documented the vital role of tubule
function in regulating glomerular fi ltration through
tubuloglomerular feedback. Moreover, the growth of the
proximal tubule in the diabetic context supplies muscular
strength to the established status of renal tubules in DKD (14,
15). The tubuloglomerular feedback mechanism begins with the
theory that diabetic hyperfiltration and glomerular capillary
hypertension are significant treatable stressors contributing to
the progression of DKD (16–19). In diabetic conditions, the
increased filtered load of glucose results in an increase in sodium-
coupled glucose reabsorption by the proximal tubule. Decreased
sodium delivery to the macula densa subsequently inhibits
adenosine-triphosphate (ATP) conversion into adenosine,
which results in the vasodilation of the afferent arteriole and
the intrarenal activation of the renin–angiotensin–aldosterone
system (RAAS), ultimately inducing glomerular hypertension and
kidney hyperfiltration (15, 16). Hence, hyperreabsorption of
water and solutes has a central role in the regulation of eGFR,
highlighting the importance of alteration in the tubuloglomerular
feedback for the development of DKD.

This review aimed to summarize the latest updates on the
pathogenesis of renal tubular dysfunction in DKD, potential
applications of tubular biomarkers, and renal tubule-targeting
therapeutics based on evidence from recent trials in DKD.
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NEW INSIGHTS INTO THE
PATHOPHYSIOLOGY OF RENAL
TUBULES IN DKD

Morphological Changes
Recently, there has been a growing consensus that tubular
abnormalities, a consistent feature of DKD, are not the
aftermath of glomerular damage. Tubular cells have the
potential to be the primary targets for diverse pathophysiological
influences (20). The shift has been suggested from the traditional
paradigm of glomerulus-centered pathophysiology extended to
the tubule-interstitium (21, 22). Morphological changes of
tubulointerstitial lesions in DKD include thickening of the
tubular basement membrane, tubular atrophy, interstitial
inflammation, interstitial fibrosis, and vascular abnormalities
(23). The association of tubulointerstitial lesions with DKD
progression has been validated in several reports. A study in a
Chinese population with an early stage of biopsy-proven DKD
suggested that interstitial lesions and glomerular injuries were
independently predictive of the time to ESKD (24). Another study
from the United States population at relatively late stages of
biopsy-proven DKD showed that interstitial fibrosis and tubular
atrophy were of univariate significance for their ability to predict
clinical prognosis (25). Moreover, the association of histological
lesions with renal progression may differ in type 1 and type 2
DKD. In type 1 diabetes mellitus (T1DM), glomerular damage was
observed through all stages. Nevertheless, minimal or no
glomerular lesions but notable tubulointerstitial and/or arteriolar
abnormalities were observed in type 2 DKD patients with
microalbuminuria or overt proteinuria (26–28). Additionally,
tubulointerstitial lesions were observed mainly in advanced
disease and might contribute to the progression to ESKD in
patients with T1DM (28, 29). The pathological disparity in
different types of DM may be attributed to various other
diabetogenic stimuli other than high glucose, including insulin
resistance and growth factors and cytokines, which activate
inflammatory, apoptosis, ischemic, pro-oxidant, and fibrotic
pathways. A growing number of studies have proven that genes
associated with pathological features of DKD are regulated not
only by classical signaling pathways but also by epigenetic
mechanisms involving chromatin histone modifications,
deoxyribonucleic acid (DNA) methylation, and non-coding
ribonucleic acid (RNA) (30).
Functional Changes
Tubular functional changes in DKD mainly correspond to the
modulation of high-glucose, oxygen metabolic disorder,
inflammation, fibrosis, and apoptosis (31). Figure 1 displays the
primary mechanism of tubular damage in DKD. Hyperglycemia
directly destroys renal tubular cells, resulting in a wide range of
cellular and metabolic dysfunctions. Three interrelated and
cardinal pathways, including overproduction of reactive oxygen
species (ROS), initiation of autophagy, and activation of the
apoptotic pathway, are triggered by high glucose and are
associated with the progression of DKD (32, 33). Oxidative
June 2021 | Volume 12 | Article 661185
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stress is a state of imbalance in the production of ROS and
antioxidant activity in the body, resulting in the activation of
downstream inflammation (34) and tubulointerstitial fibrosis-
related genes such as transforming growth factor (TGF)-b1 and
RAAS-related genes (35). Nitric oxide (NO) synthase, xanthine
oxidase, nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidase enzymes, and the mitochondrial respiratory
chain contribute to kidney ROS generation in a physiological
context (36). The pro-oxidant nitrogen oxide (Nox) family
members, especially Nox4 and Nox5 isoforms, have been
reported to have an important role in the generation of renal
ROS in diabetes. Thallas-Bonke V et al. indicated that targeted
deletion of NADPH oxidase Nox4 from proximal tubules was
dispensable for DKD development (36, 37).

Recent studies stress that the oxygen metabolic disorder
which leads to oxidative stress, advanced glycation, hypoxia,
and other harmful effects, plays a vital role in renal tubules injury
(38, 39). Production and utilization of ATP by the proximal
tubular cells are balanced by kidney blood flow, oxygen, and
metabolite reabsorption, delivery, and consumption. This
balance is now believed to the principal mechanism for
regulating tubuloglomerular feedback and maintaining kidney
function in diabetes (5, 33). A lately report found that hypoxia-
inducible factor-1a (HIF-1a) activation in tubular cells played
an important protective role against diabetic kidney injury by
modulation of mitochondrial dynamics through heme
Frontiers in Endocrinology | www.frontiersin.org 3
oxygenase-1 (HO-1) upregulation, highlighting the potential
mechanism and target in DKD (40).

Tubular inflammation is a hallmark of the progression of
kidney disease in patients with DM (4). DKD inflammation
produces several chemokines, which promote a pro-
inflammatory microenvironment and amplify renal injury (41,
42). The majority of the pro-inflammatory responses observed in
diabetic kidneys involve the activation of the transcription factor
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB). The activation of NF-kB and the transcription of
certain pro-inflammatory chemokines in tubular epithelial cells
are the markers of progressive DKD (43). Gene expression
profiling of the tubulointerstitial compartment of patient
biopsies has also identified 54 upregulated NF-kB target genes
in progressive DKD (44). These studies showed that NF-kB
activation stimulated macrophage recruitment and production of
inflammatory cytokines [monocyte chemotactic protein-1
(MCP-1)], tumor necrosis factor (TNF)-a, interleukin (IL)-1b,
and IL-6) in diabetic kidneys, which were associated with the
progression of the disease (45, 46).

In diabetic kidneys, excessive amount of plasma proteins,
including albumin, filtered through the damaged glomerulus
appears in the glomerular filtrate. Conventional perspectives
have emphasized the role of glomerular hypertension and
hyperfiltration in the early stage of DKD, which induce the
increase in serum creatinine and urinary albumin excretion (47).
FIGURE 1 | The main mechanism of tubular damage in DKD. Diabetogenic stimuli including high-glucose, oxygen metabolic disorder, inflammation, fibrosis, and
apoptosis result in a wide range of injured pathway such as MAPK, PKC signaling. High-mobility group box 1 (HMGB1), s100/calgranulins and advanced glycation
end products (AGEs) are danger-associated molecular patterns (DAMPs) that activate cell surface pattern recognition receptors (PRRs), induce signaling events to
promote the development of inflammation in DKD. Another mechanism that also might contribute to tubular damage is the increased renal content of HIF1-a.
Multiple effects on proximal tubule ultimately result in impaired reabsorption, inflammation and fibrosis, which contribute to tubule injury and therefore DKD.
June 2021 | Volume 12 | Article 661185
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However, more recent studies have focused on an unchanged
glomerular albumin filtration and reduced tubular albumin
reabsorption (7, 48). A membrane-associated endocytic
receptor megalin (low-density lipoprotein receptor-related
protein 2; LRP2) drives the reabsorption of nearly all filtered
plasma proteins in cooperation with the receptor protein
cubilin (49–51). Protein-overloaded condition occurs in the
proximal tubular epithelial cells of the diabetic kidney.
Several experimental studies have indicated that protein
overload induces proximal tubular cell apoptosis (52),
oxidative stress (53), inflammation, and tubulointerstitial
fibrosis (54–56). The clinical relevance of increased proximal
reabsorption and hyperfiltration in diabetes has been
demonstrated by the ability of SGLT2 inhibitors (SGLT2is) to
improve renal outcomes in patients with diabetes in large-scale
clinical trials, promoting the emergence of the renal
tubulocentric hypothesis (15).

A Link of Diabetogenic Stimuli to
Morphological and Functional Changes
in Tubules
High levels of glucose-induced oxidative stress contribute to cell
death in tubule injury and tubulointerstitial fibrosis in DKD (57).
In addition, persistently high levels of glucose can cause
abnormal activation of mitochondrial and endoplasmic
reticulum stress and intracellular signal transduction pathways,
leading to further activation of downstream inflammatory factors
and induction of innate immune response (58). The innate
immunity in native kidney cells is upregulated at the stage of
diabetic microalbuminuria, while tubulointerstitial kidney cell
infiltration is associated with albuminuria and fibrosis at a more
advanced stage (59). Moreover, it was shown that macrophage
accumulation in the interstitium, but not glomeruli, was
associated with albuminuria and renal function loss (58).
Clustered renal neutrophils were mostly observed in the
peritubular space and were associated with accelerated
progression and eventual kidney function loss (60). Mast cell
accumulation and degranulation were observed in patients with
T2DM at varying stages in the periglomerular, peritubular, and
perivascular regions of the interstitium. Their presence
correlated with tubulointerstitial injury and disease progression
(61). These studies suggested that renal tubulointerstitial
infiltration by inflammatory cells could accelerate tissue
damage. Besides, the components of the glomerular filtrate,
such as albumin, advanced glycation end products, growth
hormones, etc., interacted with the tubular system and
contributed to increased energy consumption, renal oxidative
stress, cortical interstitial inflammation, impairment of
autophagy, stimulation of hypoxia, and tubulointerstitial
fibrosis in DKD (6, 62–64). More convincingly, Vallon et al.
illustrated that several diabetogenic stimuli (oxidative stress,
tubular renin–angiotensin system, enhanced filtration, and
tubular expression of growth factors) induced the growth of
the proximal tubules and enhanced tubule reabsorptive capacity,
resulting in inflammation, fibrosis, scarring, and impairment of
renal function in the diabetic kidney (15).
Frontiers in Endocrinology | www.frontiersin.org 4
CHALLENGES AND PROGRESS IN THE
APPLICATION OF NOVEL TUBULAR
BIOMARKERS

In clinical practice, therapeutic strategies for early identification
of the kidney lesions in diabetic conditions and consequent
slowing of the progression of DKD are still limited and
currently mostly rely upon conventional biomarkers. The urine
albumin-to-creatinine ratio (uACR) and eGFR are well-
standardized and widely used biomarkers for evaluating kidney
function and determining different stages of kidney disease in
clinical practice. Although carrying prognostic information,
eGFR is subject to variation owing to the analytical error of the
creatinine measurement and biological variation derived from
serum creatinine, patient’s age, and gender (65, 66). ACR, a
tubuloglomerular-centric marker, has been recognized as the
hallmark of DKD and precedes renal function loss in years. It not
only reflects the capacity of glomerular permeability but is also a
valuable indicator of tubular damage or dysfunction. The
increase in albuminuria followed by glomerular hyperfiltration
places a burden on the proximal tubule and elicits an
inflammatory response leading to tubulointerstitial damage
(67). Nevertheless, a substantial proportion of patients with
T1DM or T2DM have renal function impairment without
proteinuria, which is known as non-proteinuric DKD (68–70).
The data on clinicopathological characteristics, renal prognosis,
and all-cause mortality are limited to a handful of clinical trials
and longitudinal studies focused on this phenotype. In 2018, the
Chronic Renal Insufficiency Cohort (CRIC) study showed that
the absence of albuminuria or proteinuria was common and
carried a much lower risk for ESKD, chronic kidney disease
(CKD) progression, or rapid decline in eGFR than those with
albuminuria or proteinuria did (71). In line with this, another
propensity score-matched analysis of a nationwide, biopsy-based
cohort reported that non-proteinuric DKD patients presented
better-controlled blood pressure and fewer typical morphological
changes. They were also at a lower risk of CKD progression and
all-cause mortality (72). The possible mechanism of developing
non-proteinuric DKD may rely on racial/ethnic differences,
aging, and response to RAAS inhibitors or other glomerulus-
protective drugs before the diagnosis of DKD (68, 73). Therefore,
there is still a compelling need to discover potential novel
biomarkers for early diagnosis and timely risk stratification
in DKD.

Recent advancements in omics-based biomarkers including
proteomics, metabolomics, genome, transcriptome, or lipidome
and the integration of these different approaches continue to
unveil new potential biomarkers (74). Urinary novel proteomics,
peptidomics markers may be associated with impaired proximal
tubular reabsorption that almost all of these filtered proteins are
reabsorbed into the proximal tubules through megalin/cubilin-
mediated endocytosis (75). One study also demonstrated that
empagliflozin, the SGLT2i, significantly impacts urinary peptides
(76). However, their detection is relatively expensive and still
needs time to promote clinical use. Rigorous technical and
clinical validation studies are demanded to clarify the specific
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role and the underlying mechanism. Future research in DKD
should attempt to explain how the novel biomarkers can be
combined with traditional clinical and biochemical biomarkers
in clinical practice to guide screening programs, improve risk
stratification, predict response to treatment, and provide a
method of monitoring response to treatment. The tubular
biomarkers in DKD are summarized in Figure 2, which
outlines three main classes of the principal tubular biomarkers
that may be helpful in early detection and risk-stratification of
DKD. The potential applications of these biomarkers in DKD
were shown in Table 1.

Neutrophil Gelatinase-Associated
Lipocalin
NGAL is a 24 kDa secreted glycoprotein that belongs to the
lipocalin protein family. As mainly released by neutrophils and
distal tubular cells, it rapidly increases when acute tubular
damage of various causes occurs (109). Following the discovery
that NGAL levels are also raised in the CKD setting, this marker
has been suggested to correlate with CKD progression (77, 78).
More importantly, a great number of studies have demonstrated
the important role of NGAL in predicting the evolution of DKD.
In a study of T2DM patients and healthy controls, Fu et al.
reported that NGAL increased across the four groups from
controls to normoalbuminuric, microalbuminuric, and
macroalbuminuric patients (79). In several observational
single-center follow-up studies, elevated urine NGAL level was
Frontiers in Endocrinology | www.frontiersin.org 5
shown to be associated with urinary albumin excretion (80), the
rapid decline in eGFR and increased serum creatinine (81), renal
progression to ESKD (83), and progressive tubular structural and
functional impairment (84). Consistently, our cohort study
found that the best predictive cutoff value of urinary NGAL to
creatine ratio (uNCR) for DKD diagnosis was 60.685 ng/mg, and
T2DM patients with the increased level of uNCR had a higher
risk of nephrotic-range proteinuria and worse renal outcome
(82). Furthermore, a more recent report from the CRIC study
conducted at seven US clinical centers provided solid evidence
that higher urinary NGAL levels were not only strongly
associated with cardiac markers, but were also linked to an
approximately twofold or greater risk of CKD progression in
patients with DM (10). It has been postulated that NGAL
captures some of the variability in the rate of kidney function
decline independently of albuminuria or other risk factors and
reflects tubular injury and inflammation in the setting of DKD
(10, 85).

Kidney Injury Molecule 1
KIM-1 is a transmembrane protein expressed on the apical
membrane of proximal tubule cells (110). KIM-1 facilitates the
repair of the injury by removing apoptotic bodies and cellular
debris from the damaged tubulointerstitial compartment (8).
Han et al. reported that urinary KIM-1 was not detectable in
normal kidneys while its levels were upregulated with the
occurrence of kidney injury (86). Consistently, renal KIM-1
FIGURE 2 | Potential tubular biomarkers in DKD. TGF-b, transforming growth factor-b; NGAL, neutrophil gelatinase-associated apolipoprotein; KIM-1, kidney injury
molecule 1; YKL-40, chitinase-3-like protein 1; MCP-1, monocyte chemoattractant protein-1; L-FABP, liver-type fatty acid binding protein; NAG, N-acetyl-b-D-
glucosidase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transpeptidase; Gpnmb, glycoprotein Nmb; EGFR, epidermal growth factor receptor; TNFR1/2,
tumor necrosis factor receptor 1/2; suPAR, soluble urokinase receptor; CTGF, connective tissue growth factor; INF-g, interferon-g; TNF-a, tumor necrosis factor-a;
IL-6/10/18, interleukin 6/10/18; MDA, malondialdehyde; AOPP, advanced oxidation protein products; SOD, superoxide dismutase; HO-1, hemeoxygenase-1; GSH,
glutathione; PA, pantothenic acid; OAT1/3, organic anion transporter1/3; 3-HIBA, 3-hydroxyisobutyrate; CKD, chronic kidney disease; TAS, total antioxidant status.
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expression was largely restricted to tubular cells in areas with
tubulointerstitial damage in an experimental model of
tubulointerstitial damage induced by overload proteinuria (55),
and it was also upregulated in patients with proteinuric
nephropathy (87). Hence, KIM-1 was suggested to be a specific
and sensitive biomarker of proximal tubular damage. However,
there has been a controversy about the changes in its serum and
urine levels, as well as its association with kidney progression in
DKD. In several studies, urine KIM-1 was elevated in T2DM
patients with normal or mildly increased albuminuria (88) and in
Frontiers in Endocrinology | www.frontiersin.org 6
T1DM patients who developed from macroalbuminuria to late-
stage CKD (89). However, Siddiqui et al. found that urinary
KIM-1 was elevated in the high-risk group (stratified by both
ACR and eGFR) and reduced in the very high-risk group. Also, it
was not found to be associated with either eGFR or albuminuria
(84). The disparity of those studies may be due to the limited
sample sizes and selected population. In a large-sample
randomized-controlled trial in T1DM conducted by Panduru
et al., KIM-1 had no predictive value for progression to ESKD
independently of albumin excretion rate (AER) and added no
TABLE 1 | Summary of principal tubular biomarkers of DKD in clinical use.

Tubular
biomarkers

Clinical Importance Sample Ref.

NGAL increased when acute tubular damage of various causes occurred; correlated with CKD progression urine (77, 78)
associated with urinary albumin excretion, rapid decline of eGFR, and increased serum creatinine urine (79–82)
associated with renal progression to ESKD, progressive tubular structural and functional impairment urine (10,

83–85)
best predictive cutoff value of urinary NGAL to creatine ratio (uNCR) for T2DKD diagnosis was 60.685 ng/mg; urine (82)
7.595 times higher risk of nephrotic-range proteinuria in T2DKD patients with uNCR >60.685 vs.≤60.685 ng/mg.
twofold or greater risk for CKD progression in patients with diabetes; urine (10)
1.5-fold or greater risk for CKD progression in patients without diabetes

KIM-1 repaired injury by removing apoptotic bodies and cellular debris urine (8)
upregulated when kidney damages urine (86)
largely restricted to tubular cells in areas with tubulointerstitial damage induced by overload proteinuria; upregulated in proteinuric
nephropathy and associated with renal fibrosis and inflammation.

tissue (55) (87)

elevated in T2DM with normal or mildly increased albuminuria urine (88)
increased in T1DM patients who developed from macroalbuminuria to late-stage CKD urine (89)
elevated in the high-risk group which was stratified by both ACR and eGFR; decreased in the very high-risk group; not associated
with either eGFR or albuminuria

urine (84)

no predictive value for progression to ESKD independently of albumin excretion rate (AER); no prognostic benefit to conventional
biomarkers (AER, eGFR); causal impact of KIM-1 on the decrease of eGFR in T1DM by Mendelian randomization analysis

urine (89)

no association with uKIM-1-to-creatinine ratio and eGFR decline in patients with T2DM urine (13)
contains most of the predictive information for eGFR progression in T1DM urine (90)
predictive value for the rapid decline of renal function in DKD urine/

serum
(81, 91,
92)

associated with DKD progression and yearly decline in eGFR plasma (9)
the most important predictor by cross-omics technologies urine (93)

YKL-40 a marker of inflammation and endothelial dysfunction; an indicator of tubular injury severity / (94, 95)
associated with albuminuria in T1DM and in early stage of nephropathy in T2DM plasma (96)

(13, 94,
97)

elevated among macroalbuminuric T2DM patients urine (98)
not associated with eGFR decline and varying levels of baseline eGFR and albuminuria in T2DM plasma (99)
a plasma marker of DKD progression plasma (9)

MCP-1 upregulated and expressed in the diabetic glomerular and renal tubular epithelium urine (100)
correlated with the extent of interstitial inflammatory infiltrate urine (101,

102)
associated with severity of proteinuria in DKD urine (103)
elevation in renal tubuli contributes to renal tubular damage in DKD tissue (103)
MCP-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline, severity of kidney damage in T2DM urine (13) (84)
associated with an increased risk of DKD progression only among patients with baseline eGFR<45 ml/min per 1.73 m2 plasma (9)

Cubilin and
megalin

increased in microalbuminuria groups compared with non-albuminuric groups in T1DM urine (104)
genetic association exists between a cubilin and a rare megalin variant with diabetes-associated ESKD in populations with recent
African ancestry

gene (105)

upregulated renal megalin expression in early T2DM rats tissue (106)
elevated in two models of insulin-deficient diabetes in drug-inducible megalin knockout mice tissue (107)
megalin in both segment 1 and segment 2 participated in clearing the ultrafiltrate from proteins in both cortical and juxtamedullary
nephrons under normal conditions

tissue (108)

megalin in segment 3 was inactive with regard to protein endocytosis; it was activated by the presence of proteins in the lumen of
the tubule in normal physiology

tissue (108)
June 2021 | Volume
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prognostic benefit to conventional biomarkers (AER, eGFR).
However, the causal impact of KIM-1 on the decrease of eGFR in
T1DM was confirmed by Mendelian randomization analysis
(89). Nadkarni et al. did not find any association with uKIM-
1-to-creatinine ratio and eGFR decline in patients with T2DM
and preserved renal function from the ACCORD Trial
population (13). Another recent report in T1DM patients from
the Scottish Diabetes Research Network Type 1 Bioresource
(SDRNT1BIO) and the Finnish Diabetic Nephropathy
(FinnDiane) study showed that just the serum KIM-1, as well
as CD27, contained most of the predictive information for eGFR
progression among a large set of associated biomarkers evaluated
with the Luminex platform and LC electrospray tandemMS (LC-
MS/MS) (90). More recent evidence still emphasizes the
important role of KIM-1 in DKD. In 2020, a multicenter and
prospective cohort within the CRIC Study suggested that higher
plasma KIM-1 levels were associated with DKD progression and
yearly decline in eGFR (9). Kammer et al. reported that the
discrimination of eGFR trajectories in individuals with the
incident or early DKD and maintained baseline eGFR was
modest, and KIM-1 was the most critical predictor by cross-
omics technologies (93).

YKL-40
YKL-40, which is composed of three N terminal amino acids
tyrosine (Y), lysine (K), and leucine (L), is a low-molecular-weight
(40 kDa) heparin- and chitin-binding glycoprotein. Also known as
cartilage glycoprotein-39 or chitinase 3-like protein 1 (CHI3L1),
YKL-40 is a product of the chitinase 3-like 1 gene and a growth
factor for several cell types. It has an established role in extracellular
matrix remodeling and angiogenesis (111). Moreover, YKL-40 acts
as a marker of inflammation and endothelial dysfunction. It is
secreted by various cells such as neutrophils and activated
macrophages in different inflamed tissues and vascular smooth
muscle cells (94). Increasing evidence stressed the role of YKL-40 in
kidney disease. YKL-40 was demonstrated to be an indicator of
tubular injury severity, and it was upregulated in kidney
macrophages after ischemia–reperfusion injury (95). It played a
role in limiting tubular cell apoptosis during the repair phase of
acute kidney injury (AKI) (95). The association of YKL-40 with
DKD has also been suggested. Several studies have suggested that
urine YKL-40 has a limited role. In contrast, plasma YKL-40 was
independently associated with albuminuria in T1DM and in the
early stage of nephropathy in T2DM patients (13, 94, 96, 97).
However, one study documented that urinary excretion of YKL-40
was significantly elevated amongmacroalbuminuric T2DM patients
(98), while another study reported that plasma YKL-40 was not
associated with eGFR decline in participants with type 2 diabetes
and varying levels of baseline eGFR (mean eGFR 78 ml/min per
1.73 m2) and albuminuria (99). More convincing results were
obtained from a multicenter, prospective, large-sample cohort
within the CRIC Study, providing new insights on YKL-40 as a
plasma marker of DKD progression. Increased plasma YKL-40
concentrations were associated with DKD progression and decline
in eGFR over time, even after adjustment for potential confounders
and other plasma biomarkers (9).
Frontiers in Endocrinology | www.frontiersin.org 7
Monocyte Chemoattractant Protein-1
MCP-1 (or C-C chemokine ligand 2) is a member of the C-C
chemokine family, recruiting monocytes and influencing
macrophage accumulation (112, 113). As an inflammatory
biomarker, MCP-1 is highly upregulated in the diabetic
glomerular and tubular epithelium (100). Previous studies have
documented that urinary MCP-1 levels not only correlate with
the extent of interstitial inflammatory infiltration but also are
associated with the development of albuminuria and renal
damage (101, 114). Morii et al. found that MCP-1 was
produced in renal tubular cells and released into the urine in
proportion to the degree of albuminuria. Increased renal tubular
MCP-1 expression contributed to tubular damage in DKD (103).
The ACCORD trial enrolled 10,251 T2DM patients with
preserved renal function and examined the association of four
biomarker-to-creatinine ratio levels; only MCP-1-to-creatinine
ratio concentrations were strongly associated with the sustained
renal decline (13). Siddiqui et al. also found that elevated urinary
MCP-1 was related to the severity of kidney damage, and it was
expressed more in progressive renal impairment in T2DM (84).
The 2020 CRIC Study first reported an association of plasma
MCP-1 concentrations and DKD progression among individuals
with moderate to severe kidney disease. Higher plasma MCP-1
levels were associated with an increased risk of DKD progression
only among patients with baseline eGFR<45 ml/min per
1.73 m2 (9).

Cubilin and Megalin
In physiological conditions, proximal tubule epithelial cells have
the capacity of reabsorbing nearly all low-molecular-weight
serum proteins and ultrafiltrated albumin, along with glucose,
phosphate, amino acids, and various ions. The key contributor
for the uptake ability of the epithelial cells essentially relies on the
collective effort of two apical membrane receptors cubilin
(CUBN) and megalin (LRP2), which form a complex expressed
at the brush border (115). Both cubilin and megalin are huge
multiligand receptors (460 and 600 kDa, respectively), each of
which could independently bind to an amount of identified
substrates including albumin and vitamin D binding protein
(VDBP) (49). After ligand binding, cubilin/megalin ligands
interact and are internalized to proximal tubular epithelial
cells’ (PTECs) endosomes and lysosomes for catabolic
degradation and receptor recycling (116). Using a GeLC/MS
platform proteomics approach, Thrailkill et al. first propose that
enhanced cubilin and megalin excretion might serve as
important markers of DKD, considering that urinary cubilin
and megalin were significantly higher in microalbuminuria
groups than in non-albuminuric groups in T1DM patients
(104). Both album infiltration and reabsorption were observed
elevated in two models of insulin-deficient diabetes and drug-
inducible megalin knockout mice (107). A study published in
2020 explained that megalin in both segment 1 and segment 2
participated in clearing the ultrafiltrate from proteins in both
cortical and juxtamedullary nephrons under normal conditions.
Although megalin in segment 3 was inactive concerning protein
endocytosis, it was activated by the presence of proteins in the
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lumen of the tubule in normal physiological conditions (108).
These studies provided a theoretical rationale and backbone for
early treatment to improve the capacity of proximal tubule to
avoid the development of proteinuria.
RENAL TUBULE-TARGETING
THERAPEUTICS: A NEW ERA FOR DKD
MANAGEMENT

In addition to the new tubulocentric insights for DKD
mentioned above, the emergence of new anti-hyperglycemic
agents has considerably altered the therapeutic landscape of
DKD. For decades, the cornerstone of DKD therapeutics relied
on lifestyle interventions, strategies for hyperglycemia and
hypertension in combination with the use of angiotensin-
converting enzyme inhibitors (ACEIs) or angiotensin receptor
blockers (ARBs) (117). Recent advances in studies on novel
glucose-lowering agents promote the new era in the advanced
glycemic control and concurrently promise cardiorenal
protection in DKD management. Figure 3 depicts the current
high-profile classes of potential novel anti-hyperglycemic agents
for DKD, mainly grouped into renal tubule-targeting therapies,
incretin therapies, and energy pathways-targeting therapies (117,
118). The tubule-targeting medicine, SGLT2i also affects the
energy pathway associated with enhanced sirtuin1 and
hypoxia-inducible factor (HIF)-2a signaling (119). In addition
to SGLT2i, incretin drugs include glucagon-like peptide 1
receptor (GLP1R) agonists and dipeptidyl peptidase 4 (DPP4)
inhibitors, which also have the potential to improve
tubulointerstitial function. GLP1R expression was detected in
macrophages, endothelial cells, juxtaglomerular cells, and
proximal tubules within the kidney in various animal models
and human tissue (117). Endogenous GLP1R signaling exerts a
natriuretic action in DKD. Direct GLP1R-stimulation induces
diuresis and natriuresis by increasing GFR and inhibiting the
Frontiers in Endocrinology | www.frontiersin.org 8
activity of the sodium-hydrogen exchanger isoform 3 (NHE3) in
the proximal tubule (120, 121). Nevertheless, DPP4 inhibitors
demonstrate modest kidney-protective effects. Compared with
the GLP1R agonists, they mainly attenuate albuminuria without
an impact on eGFR decline. DPP4 inhibitors indirectly modulate
glucose-dependent insulin secretion and suppress glucagon
secretion from pancreatic a-cells by elevating endogenous
GLP1 levels (122). Linagliptin, the only available DPP4
inhibitor, showed a significant improvement in albuminuria
progression but not in kidney outcomes in the Cardiovascular
and Renal Microvascular Outcome Study with Linagliptin
(CARMELINA) trial (123). No significant placebo-adjusted
changes in eGFR or albuminuria with linagliptin therapy were
observed in the Modification of Albuminuria in T2D and CKD
with the LINAgliptin (MARLINA-T2D™) study (124).

Among diabetic medications, SGLT2i attracts considerable
attention for their pleiotropic effects on glycemic control, renal
protection, cardiovascular benefits, blood pressure control, and
attenuation of lipid levels. SGLT2 is a low-capacity and high-
affinity glucose transporter with 1:1 Na+/glucose stoichiometry. It
is located in the S1–2 segment of the proximal convoluted tubules
and is responsible for reabsorption of 90% of glucose filtered
through the glomerulus (125). Multiple mechanisms are explored
involving the kidney protection of SGLT2 inhibition, mainly
characterized into (1) attenuation of proximal tubular oxidative
stress, mitochondrial morphology, modulation of key metabolism
and reabsorptive proteins, pro-inflammatory and profibrotic
cytokines, and improvement of tubulointerstitial fibrosis; (2)
through activation of tubuloglomerular feedback to regulate
glomerular hemodynamic stability and metabolic effects (126,
127). Table 2 summarizes the underlying mechanism of kidney
protection by SGLT2 inhibition in DM reported in recent years.

There is increasing evidence suggesting that SGLT2i has renal
protective effects in addition to cardiovascular protection, as
reported by diverse clinical trials (summarized in Table 3). The
first clues involving the potential nephroprotection with SGLT-2
FIGURE 3 | Outlines of potential novel glucose-lowering agents for DKD. AMPK 5-AMP-activated protein kinase; PGC-1a peroxisome proliferator-activated receptor
g coactivator-1 alpha.
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inhibitors originated from glucose-lowering trials that set
albuminuria as a secondary outcome (167). In the
Empagliflozin Cardiovascular Outcome Event (EMPA-REG
OUTCOME) trial, the treatment of empagliflozin significantly
reduced the primary end points which were defined as
progression to macroalbuminuria, doubling of the serum
creatinine level (D-Scr), initiation of kidney replacement
therapy, or renal death, and incident albuminuria (159)
(Table 3). In addition, all individual renal end points showed
notable attenuation (31, 168). In the subsequent published
Canagliflozin Cardiovascular Assessment Study (CANVAS)
and CANVAS-Renal (R) program studies, clear renal
protective effects were also noted (160, 161). Kidney function
declined in a relatively stable manner, and urine albumin loss
decreased in participants who received canagliflozin vs. placebo.
Regarding the Dapagliflozin Effect on Cardiovascular Events-
Thrombolysis in Myocardial Infarction 58 (DECLARE-TIMI 58)
trials, although treatment with dapagliflozin showed a non-
inferior rate of major adverse cardiovascular events (MACEs)
than placebo, a possible lower rate of adverse renal outcomes in
the dapagliflozin group than in the placebo group was observed
(163). Although the above cardiovascular trials indicated
nephroprotective effects of SGLT2i, it should be noted that the
recruitment of participants was biased, considering that the
selected patients had a high risk of cardiovascular events and
mostly normal kidney function (169). Canagliflozin and Renal
Events in Diabetes with Established Nephropathy Clinical
Evaluation(CREDENCE) was the first dedicated renal
outcomes trial of an SGLT2i canagliflozin, the recruitment of
Frontiers in Endocrinology | www.frontiersin.org 9
which was randomized in 4,401 T2DM patients with CKD,
severely elevated albuminuria, and already ACEIs or ARBs
receivers (162). The incidence rates of primary composite
outcomes (D-Scr, ESKD or renal/CV death) and the renal-
specific composite outcomes (D-Scr, ESKD or renal death)
were significantly lower in the canagliflozin group than in the
placebo group. Subsequently, two trials embarked on
investigating the kidney effects of SGLT-2 inhibitors in CKD
patients with or without DM (169). The Dapagliflozin and
Prevention of Adverse Outcomes in Chronic Kidney Disease
(DAPA-CKD) trial enrolled 4,304 CKD patients with an eGFR
ranging from 25 to 75 ml/min/1.73 m², and uACR range from
200 to 5,000 mg/g (164). The trial aimed to evaluate the effect of
dapagliflozin 10 mg once daily compared with placebo in
addition to a maximum tolerated labeled dose of an ACEI or
ARB. Reductions of the same magnitude in the primary
outcomes (a composite of a sustained decline in the estimated
GFR of at least 50%, ESKD, or renal/CV death) and renal-specific
composite outcomes (D-Scr, ESKD, or renal death) were noted.
The benefit was comparable for patients with diabetic and non-
diabetic CKD. The Heart and Kidney Protection with
Empagliflozin (EMPA-KIDNEY) trial commenced in
November 2018, with a plan to recruit 5,000 participants and
to be completed in June 2022 (170). The empagliflozin on
estimated extracellular volume, estimated plasma volume, and
measured glomerular filtration rate in patients with heart failure
(Empire HF Renal) trial focused on the effects of empagliflozin in
both heart failure and CKD patients. It enrolled 391 patients with
left ventricular ejection fraction (LVEF) ≤40% and eGFR >30 ml/
TABLE 2 | Proposed hypotheses for the kidney protective mechanisms of SGLT2 inhibitors in DKD.

Mechanisms Ref.

decreased sodium uptake by Na+/H+ exchanger isoform 3 (NHE3) expression in proximal convoluted tubules (PTs) (128–133)
reduced urinary excretion of angiotensin II and angiotensinogen levels in SGLT2 inhibitor-treated T2DM rats (134)
did not further activate RAS in the long term, which prevented the RAS-mediated aggravation of cardiovascular and renal events (134, 135)
reduced urinary angiotensinogen excretion in patients with T2DM (136)
increased urinary angiotensinogen excretion in patients with T1DM (137, 138)
modulated the tubular expression of proteins governing the medullary concentration activity, further had an effect on fluid and electrolyte balance (139, 140)

(132)
blocked the activation of the apoptotic-associated protein within PT cells (141)
glomerular fibrosis or injury was not alleviated in SGLT2-knockout diabetic mice (142)
modulated oxidative stress and intraglomerular inflammation and could thus alleviate renal fibrosis (143)
alleviated the generation of vanin-1, the biomarker for oxidative stress within the kidney (144)
lessened the epithelial-to-mesenchymal transition by modulating miR21 (145)
alleviated renal fibrosis by lowering lipid accumulation-induced inflammation mediated by CD68 macrophages (146)
activation of tubuloglomerular feedback: alleviated apoptosis by increasing autophagosomal formation within glomerular mesangial cells and podocytes (147, 148)
anti-inflammatory effects: decreased the levels of several cytokines such as tumor necrosis factora (TNFa), interleukin-6, high-sensitivity C-reactive
protein, and leptin

(149, 150)

restored oxygen supply, thereby alleviating the metabolic stress state in the mitochondria and restoring the hematocrit level in patients with DM (151, 152)
reduced ECM fibrosis by inflammation reduction and RAAS overactivation (153)
the EPO-producing ability in patients with DM might be reversed after treatment with SGLT2i (154)
suppressed HIF-1a-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. (155)
inhibited aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions. (156)
via the reduction of megalin O-GlcNAcylation and the following megalin internalization and endocytic functional suppression to attenuate protein overload
in renal proximal tubule in progressive DKD.

(56)

promoted elevation of ketone bodies, which subsequently inhibited mTORC1 in the proximal renal tubules, explaining their protective effects s in non-
proteinuric and proteinuric DKD.

(157)

Empagliflozin protected against proximal renal tubular cell injury induced by high glucose via regulation of hypoxia-inducible factor 1-alpha. (158)
June 2021 | Volume 12 | A
NHE3, Na+/H+ exchanger isoform 3; PT, proximal convoluted tubule; SGLT2, sodium-glucose co-transporter 2; T1DM/T2DM, type 1/2 diabetes mellitus; RAS, renin-angiotensin system;
RAAS, Renin-angiotensin-aldosterone System; TNFa, tumor necrosis factora; ECM, extracellular matrix; EPO, erythropoietin; DM, diabetes mellitus; HIF-1a, hypoxia inducible factor-1a;
PTEC, Proximal Tubular Epithelial Cell; DKD, Diabetic Kidney Disease; mTORC1, mammalian target of rapamycin complex 1.
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TABLE 3 | Summary of the main renal outcomes of the SGLT2 inhibitors trials.

vs. placebo) Renal
benefits

vs.
placebo

Ref.

.40–0.75) Superior
(159)

.53–0.70)

.47–0.77) Superior
(160)

0.67–0.79
·33–0·84) Superior

(161)

·47–0·77)

0.59–0.82) Superior
(162)

0.53–0.81)

.67–0.87) Superior
(163)

.43–0.66)

.51–0.72) Superior
(164)

0.45–0.68)

lume (adjusted mean difference
0.00056), estimated plasma

001), and measured GFR (−7.5
; p = 0.00010)

Superior
in Fluid
volume
changes

(165)

0.63 to 1.04) No
significant
benefit

(166)
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Trial name/
drug

Study population Primary endpoint Renal outcomes Effect size (SGLT2i

the EMPA-
REG
OUTCOME/
empagliflozin

7,020 T2DM, established
cardiovascular disease,
with eGFR >30 ml/min/
1.73 m²

progression to macroalbuminuria D-Scr,
initiation of KRT, or death from renal disease,
and incident albuminuria

Doubling of Scr with eGFR
≤45 ml/min/1.73 m2,
initiation of KRT, or renal
death

HR 0.54 (95%CI 0

Incident or worsening
nephropathy

HR 0.61(95%CI 0

the CANVAS
Program/
Canagliflozin

10,142 T2DM, high
cardiovascular risk, with
eGFR >30 (ml/min/1.73
m²)

a composite of death from cardiovascular
causes, non-fatal myocardial infarction, or
nonfatal stroke

At least 40% reduction in
eGFR, need for KRT, or
renal death

HR 0.60 (95%CI 0

Progression of albuminuria HR 0.73 (95% CI,
the CANVAS-
R Program/
Canagliflozin

10,142 T2DM a composite of sustained and adjudicated D-
Scr, ESKD, or renal death

D-Scr, ESKD, or renal death HR 0.53 (95% CI

40% reduction in eGFR,
ESKD, or death from renal
causes

HR 0.60 (95% CI

the
CREDENCE
Trial/
Canagliflozin

4,401 T2DM and
albuminuric CKD

D-Scr, ESKD, or renal/CV death D-Scr, ESKD, or
renal/CV death

HR 0.70 (95% CI,

D-Scr, ESKD, or renal
death

HR 0.66 (95% CI,

the
DECLARE-
TIMI 58/
Dapagliflozin

17,160 T2DM MACE and a composite of cardiovascular
death or hospitalization for heart failure

At least 40% reduction in
eGFR to less than 60 ml/
min per 1.73 m2, ESKD, or
renal/CV death

HR 0.76 (95% CI

At least 40% reduction in
eGFR to less than 60 ml/
min per 1.73 m2, ESKD, or
renal death

HR 0.53 (95% CI

DAPD-CKD 4304 CKD, with eGFR25-
75(ml/min/1.73 m²), uACR
200 to 5,000 mg/g

a composite of a sustained decline in the
estimated GFR of at least 50%, ESKD, or
renal/CV death

Primary outcome HR 0.61 (95% CI

Renal-specific composite
outcome (D-SCr,
ESKD, or renal death)

HR 0.56 (95% CI,

Empire HF
Renal trial/
Empagliflozin

391 heart failure patients,
LVEF <=40%, with eGFR
>30(ml/min/1.73 m²)

the between-group difference in the changes
in estimated extracellular volume, estimated
plasma volume, and measured GFR from
baseline to 12 weeks.

Primary outcomes reductions in estimated extracellular vo
−0.12 L, 95% CI −0.18 to −0.05; p =

volume (−7.3%, −10.3 to −4.3; p < 0·0
ml/min, −11.2 to −3.8

VERTIS CV
trial/
ertugliflozin

8,246 patients with type 2
diabetes and established
atherosclerotic
cardiovascular disease

a composite of death from cardiovascular
causes, nonfatal myocardial infarction, or
nonfatal stroke (i.e., a major adverse
cardiovascular event).

renal-specific composite
outcome (D-SCr, ESKD, or
renal death)

HR 0.81 (95.8% CI,

D-Scr, doubling of the serum creatinine level; KRT, kidney replacement therapy; ESKD, end-stage of kidney disease; LVEF, left ventricular ejection fraction; MACEs, major advers
myocardial infarction, or ischemic stroke; uACR, urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams); HR, hazard ratio.
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min/1.73 m². The results showed that empagliflozin reduced
estimated extracellular volume, estimated plasma volume,
and measured GFR after 12 weeks, implying that fluid volume
changes might be an important mechanism underlying
the beneficial clinical effects of SGLT2i (165). However, the
recent Evaluation of Ertugliflozin Efficacy and Safety
Cardiovascular Outcomes Trial (VERTIS CV) reported no
significant benefit of ertugliflozin for the renal composite
outcomes (death from renal causes, renal replacement therapy,
or D-Scr) (166). Further analyses in the trial using renal different
end points are underway and may give more clues. To sum up,
both in the cardiovascular outcomes trials, which set different
definitions of renal outcomes as secondary end points, and in
the dedicated trials in CKD patients in which cardiorenal
composite outcomes were primary end points, SGLT2i
mostly displayed a convincing significant hindering of
kidney progression.

These impressive clinical trials and mechanistic studies of
SGLT2i promoted the clinical guidelines and recommendations
to update the optimal approaches for the prevention and
management of DKD. In 2019, the American Diabetes
Association (ADA), European Association for the Study of
Diabetes (EASD), and European Society of Cardiology (ESC)
published updated recommendations for the management of
patients with T2DM and a high cardiovascular risk, highlighting
the cardiorenal benefits of SGLT2i and glucagon-like peptide-1
receptor agonists (GLP-1 RA) (171–174). The ESC guidelines
suggest that SGLT2i or GLP1 receptor agonists should have
priority when patients coexist with cardiovascular disease and
those at high or very high cardiovascular risk. Likewise, the
ADA-EASD consensus report indicates that patients at high risk
of cardiorenal disease are recommended to be treated with
SGLT2i or GLP1 receptor agonists, independent of
glycosylated hemoglobin (HbA1c) levels. Additionally, SGLT2i,
as well as metformin, was recommended as first-line glycemic
management for patients with T2D and CKD according to the
2020 Kidney Disease Improving Global Outcomes (KDIGO)
guideline for diabetes management in CKD, in light of the
kidney benefits for most patients with eGFR ≥30 ml/min per
1.73 m2 (175). Empagliflozin and canagliflozin are FDA-
approved for use in patients with eGFR ≥45 ml/min/1.73 m2,
and ertugliflozin and dapagliflozin are used for those with eGFR
≥60 ml/min/1.73 m2 (166, 176).
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FUTURE PERSPECTIVES

Great research progress in understanding the pathogenesis of
tubular damage and novel biomarkers and treatments has been
made, promoting us the transition into a new era of personalized
diagnosis and therapy in DKD. As a complex and major
complication of metabolism disease, diabetic tubular
dysfunction should be regarded with close interconnection
with glomerular changes and compact interrelation with
systemic metabolic changes. The major current challenges in
discovered biomarkers in DKD include the integration of clinical
and biochemical biomarkers and omic biomarkers and
translation into the pathophysiology, differential diagnosis, risk
stratification, prognosis, and individual therapy in clinical
practice. The ongoing progress with new anti-hyperglycemic
agents provides invaluable and novel insights into the
pathophysiology and potential biomarkers of renal tubules in
DKD, the combination of which will shed light on better clinical
management of DKD.
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