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Abstract. The research results on the derivation of equations of 
motion (a mathematical model) of a mechanical system constrained 
by holonomic constraints of the first and second kind, which 
contains only tangential components of the constraint of the second 
kind, are presented in the article. These tangential components are 
taken as control parameters. Besides, the controllability of the plate, 
considered in the Appel problem, is investigated. 

1 Introduction 

The study aims to identify the tangential components of the constraints of the second kind 
and consider them as a control influence. 

Consider the motion of a mechanical system consisting of N material points relative to 
some inertial Cartesian reference systemOxyz . 

Let a ideal constraints of the first kind be imposed on the system 
 

,0),( txf 
2cf    ( N3,...,2,1 ; a,...,2,1 )     (1) 

 
and c servoconstraints of the form [1] 
 

0),( tx ,      
2c ),...,2,1( c    (2) 

 
It is assumed that constraints (1) and (2) are independent, and their number satisfies the 

condition Nca 3 . In addition, we consider that relations (1) refer to the N.G. 
Chetaev's class [2, 3] and variations of coordinates x are related ca  by the following 
conditions 
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In what follows, we assume that servoconstraints are imperfect. Then the issue arises of 

the need to separate the normal and tangential components of the reactions of 
servoconstraints from the general reactions of constraints (2) since our goal is to control the 
system's motion under consideration with reactions of servoconstraints induced by 
servomotors. A servomotor is an unpretentious working element that is a part of industrial 
equipment. Servomotors have high-speed characteristics and high positioning accuracy. 
When properly operated, the servomotor is capable of operating 24 hours a day [4]. 

Modern servomotors have combined all the achievements of scientific and technical 
innovative progress; therefore, they can develop high rotational speed with very high 
power. A wide range of adjustments of the servomotor shaft rotation using software under 
significant acceleration or deceleration makes this equipment simply irreplaceable for use 
in machine tools or production lines and many other structures. 

In [5-7], the movements of the system are investigated by the methods of the theory of 
elasticity, the theory of viscoelasticity, mathematical analysis, numerical methods, methods 
of mathematical modeling, algorithms and methods of the theory of systems with 
servoconstraints, under given displacements, on which the work of the reaction force of 
servoconstraints is zero, i.e., servoconstraints are ideal on these displacements. 

The dynamics of systems with servo-constraints are discussed in [8] when the 
constraints are realized by controlling the inertial properties of the system. It is shown that 
the presence of symmetries allows reducing dynamic equations to a closed system of 
differential equations with quadratic right-hand sides. 

In [9-11], mechanical systems are considered under the influence of various forces; 
nonlinear positional, potential, dissipative, gyroscopic forces, and the forces of radial 
correction. Gyroscopic forces are considered dominant, which is expressed by the presence 
of a large parameter-multiplier in the equations of motion. Conditions of the growth rate of 
the parameter were established; they guarantee the asymptotic stability of the equilibrium 
position both for a linear system and for essentially nonlinear dissipative forces given by a 
homogeneous Rayleigh function. 

It is shown that for any values of the system's parameters (weight of loads, stiffness of 
springs), it is possible to provide asymptotic stability of the equilibrium position by 
attaching an additional load with a damper using a nonlinear spring. An approach to the 
study of stability and stabilization of mechanical systems with nonlinear positional forces 
proposed based on the decomposition of the equations of disturbed motion into two isolated 
subsystems. Conditions for stabilization of systems with nonlinear unsteady potential forces 
due to the forces of another structure are determined. 

In [12–14], the results of studies on the control of the technological parameters in the 
process of extracting excess liquid from multilayer moisture-saturated fibrous materials (on 
the example of leather)are presented. Mathematical dependencies of the amount of 
extracted moisture for each layer of wet skin on their feeding rate, when supplied between 
the working shafts rotating at constant angular velocities and their squeezing pressure, were 
obtained. 

However, in these studies, the explicit types of tangential and normal components of 
servoconstraints, which determine the number of control parameters, were not 
distinguished. 

Let us designate the components of the reactions of constraints of the first and second 
kinds N and  , respectively. 
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2 Methods 

Consider the motion of a mechanical system consisting of N material points relative to 
some inertial Cartesian reference system Oxyz . 

1. Let the constraints (1) and (2) be imposed on the system. Taking into account 
relations (3), we write down the generalized reactions of constraints (1) and (2) as: 
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where   ,  are the Lagrange multipliers, i are certain coefficients. 

Then the differential equation of motion has the form 
 

  




















 


 




i i
i q
x

xx
fXxm ~                   (4) 

 

Let us multiply each of the equations (4) by x and sum up over  from 1 to N3 . 
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Let equations of constraints (1), expressed in terms of generalized coordinates

Sqqq ,...,~,~ 21 , be satisfied by the relations 
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Writing down the last relations in variations and substituting them into equations (5), 

we determine 
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From that follows the system of differential equations  
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Here  

),,(~~ tqqTT jj  is the kinetic energy of the system; 
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 are the known functions of time and generalized coordinates jq . 

Equation (6) contains only tangential components of the reactions of servoconstraints 
(2). Let us write equation (6) in the expanded form [16, 17]; assuming that the expression 
for kinetic energy has the following form 
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In the case of stationary constraints, we obtain 
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Solving equations (7) and (8) with respect to jq we find 
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3 Results and Discussion 

Now let us consider some special cases. 
If it is required to consider the normal components of the reactions of servoconstraints 

(2), then it is advisable to introduce generalized coordinates taking into account constraints 
(1). 
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These equations are coupled with equations of constraints (2) expressed in generalized 

coordinates yyy ,...,, 21 , i.e. 
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If a system for which constraints of the first kind have already been taken into account 

is additionally superimposed with constraints of the form 
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where *T is the kinetic energy of the system, determined with an account of (9). 
If we introduce the notation 
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then equation (6) can be written in the form of Hamilton's equations [16] (here, the 

velocities jq should be expressed in terms of the moment) 
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and we obtain n2  equations of the first order concerning n3  unknown functions of 

time jq , jp  and  .  When studying the motion of systems with friction, in addition to 

the given forces, it is necessary to consider known expressions for the coefficients 

depending on   , jq , jq , t; the form of these functions is found empirically [18]. If the 

values  are not set in advance, then the resulting uncertainty can be useful when 
considering optimal (in one way or another) modes of motion [19]. 

As an example of the application of equation (10), consider the problem of the plane 
motion of a plate hinged to a circular disc [1, 15]. 

The plate Σ, located on a fixed horizontal plane, is hinged at point C with a circular disc 

Σ1lying in the same plane and moving around its fixed centerO . Constant force F


 parallel 
to a fixed straight line Ox  acts on the plate at a point A  lying on a straight line connecting 
the point C  with the center of gravityG . The servomotor M with a special coupling makes 
direct contact between ΣandΣ1 so that the following constraint is constantly realized 
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servo-constraint is non-zero on virtual displacements determined by the following condition 
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where 1J is the moment of inertia of the disc relative to the pointO , and the virtual work 

of a constant force F
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If the servomotor was installed on a disc 1 , then the differential equation of motion of 

the system could be written in the form: 
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i.e., the system is completely controllable with the tangential component of the servo-

constraint reaction. 
Let the quality of the transient process in system (13) be estimated by the functional 
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The dynamics of the transient process of a closed system, that is, the time changes of the 

coordinates of a dynamic system, up to a certain steady-state, is 
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is a negative definite function. Therefore, the impact
0u  provides asymptotic 

stability of undisturbed motion. 

4 Conclusions 

Considering the P. Painlevé constraint-based method, the equations of motion of 
mechanical systems with ideal and non-ideal holonomic constraints, containing only 
tangential components of non-ideal constraints, were derived. These tangential components 
of the servoconstraints were proposed as control parameters. 

The equations of motion obtained are given in the form of the Lagrange and Hamilton 
equations. A plate hinged to a circular disc is considered an example. Unlike A. Beguin, it 
is assumed that servomotor forces act on the hinge. The equations of the disturbed motion 
were derived, and the optimal control was determined. It was shown that the tangential 
components of the servoconstraints of a plate hinged to a circular disc are quite 
controllable. 
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