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Abstract. Whereas the original Boltzmannt4-theorem applies to elastic collisions, its rigorous gatiza-

tion to the inelastic case is still lacking. Nonetheles$iais been conjectured in the literature that the relative
entropy of the velocity distribution function with respeotthe homogeneous cooling state (HCS) represents
an adequate nonequilibrium entropy-like functional foriswlated freely cooling granular gas. In this work,
we present molecular dynamics results reinforcing thigeminre and rejecting the choice of the Maxwellian
over the HCS as a reference distribution. These results waktatively predicted by a simplified theoreti-
cal toy model. Additionally, a Maxwell-demon-like velogiinversion simulation experiment highlights the
microscopic irreversibility of the granular gas dynamit&nitored by the relative entropy, where a short “anti-
kinetic” transient regime appears for nearly elastic sals only.

1 Introduction tic scheme. Then, the proper entropy-like functional must
solve these issues.
Granular gases are modeled in their simplest form as in-  The quest of such a quantity in the homogeneous case
elastic hard spheres with a constant féoent of resti-  has been addressed mathematically in Refs. [11-13] in the
tution, @ [1-4]. It is well known that granular gases context of the inelastic Boltzmann equation, and in Ref.
are intrinsically out of equilibrium and that a description [14] from a stochastic point of view. Both approaches
by means of kinetic theory is meaningful. In a kinetic- converge into a single functional, which is proved in the
theoretical description of a granular gas, one defines théluasielastidimit, i.e., 1 - @ < 1, to be the entropy-like
granular temperature as the mean kinetic energy per parfunctional associated with this system. In the case of free
ticle, as an analogue to its definition for molecular gases cooling, the conjectured quantity is the relative entropy o
Even though this temperature is nah@rmodynamitem-  the reduced velocity distribution functiog, with respect
perature, one can look for the nonequilibrium entropy-like to the homogeneous cooling state (HC&), chosen as
functional of this system, i.e., a Lyapunov functional, in the proper reference distribution. This conjecture was re-
analogy with Boltzmann’si-functional and the celebrated cently reinforced with computer simulations in the whole
H-theorem for elastic collisions range of inelasticity [15].

The problem introduced and solved by Boltzmann in  In this work, we complement the study carried out in
1872 [5] is not easy to extend in the context of granular Ref. [15] with new simulations. First, we study the prob-
gases and the associated inelastic form of the renownetem by means of a simplifietby model[15] and inves-
Boltzmann equation. The origindd-functional is pre-  tigate how it highlights the possible Lyapunov character
cisely the Shannon measure [6] of the one-particle veloc-Of the proposed functional for two ftierent reference dis-
ity distribution function [7, 8]. However, it is known that, tributions, namely the Maxwellian and the HCS distribu-
in its continuous description, Shannon’s entropy presentdions. Next, molecular dynamics (MD) results are pre-
the so-calledneasureproblem [9], i.e., it does not weigh sented and compared with the predicted theoretical behav-
properly the phase space. In the elastic case, this probor, including three systems not considered in Ref. [15].
lem is easily solved by considering the relative entropy (or Finally, as a fully original contribution of this work, we-re
Kullback—Leibler divergence [10]) of the one-particle ve- port MD results for a sort of Maxwell-demon experiment
|ocity distribution function with respect to the Maxwelia where the irreversibility of the collisional process and th
distribution, which becomes the originelHfunctional up ~ Possibility of an anti-kinetic stage are discussed.
to a constant in that case. Moreover, some relevant prop-
erties of the elastic-particle system, like collisionairsy
metry and reversibility, do not hold anymore in the inelas- 2 A toy model

*e-mail: albertom@unex.es Let us consider a granular-gas model of inelastic and
**e-mail: andres@unex.es smooth hard spheres with collisional rules
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The r.h.s of Eq. (6a) is non-negative, and it is zero if and
1+a e o =L only if a = af Yk > 2, thatis,¢ = ¢g, in accordance with
» (viz-@)o, vi,0 = T2 o @) the properties of the relative entropy. Next, we neglect
for the precollisional velocities, wheney, is the relative ~ €MS 9f0(83)’ formally takes = 1, and, as usually done
velocity, ands the unit intercenter vector. We will assume N the literature [3, 4, 18-24], discard terms witte: 3.
that the system satisfies the inelastic Boltzmann equation! "€ resultis
which in reduced units reads

IIZT(S)(% legler9)] = lelg.g]. - (2)

Here, x = 2+V2r is a constante = v/up is the re-
duced velocitypn(t) = V2T (t)/mis the thermal veloc-
ity, mis the mass of a particld, = mv?)/3 is the gran-
ular temperature, which decreases m?notonically foIIow-_K[1 + ay(S)] Anan(9) for the fourth cumulant [15], where
ing Haff's law [3, 4, 16, 17],s = %fo dtv(t) is the  x a(s) = ay(9)-al andK is a positive constant. Whereas
(nominal) average number of collisions per particle up 10 e rh s of Eq. (7a) is non-negative, the sign of the r.h.s of
time t, wherev(t) = knoum(t) is the collision frequency, Eq. (7b) is determined by the relative signs\ai(s) and
[[clp, ¢] is the collisio.nal operator in red_uced units, and Anao(9).
H2 == fdcc_2|[c|¢’ ¢]is the reduced cooling rate. Let us consider two dierent reference distributions:
The relative entropy, or Kullback-Leibler divergence, ino Maxwellian velocity distribution functiongy, and
of a velocity distribution,¢, with respect to a reference o Hcs velocity distribution functiongy. In the first
distribution.¢, is defined as case (R= M), one hasAyax(s) = ax(s), and, therefore,
B #(c) 3Dk (dllom) < 0 only if eitheray(s) > maxal!, 0} or
D (@lidw) = fdc 9(c)In ¢r(c)’ 3) a_z(s) < min{a}!, 0}; converselydsDxy (4ligm) > ?)zonly if
This functional is convex, non-negative, and identically &ither 0< ax(s) < ay ora) < &(s) < 0. Thus, our toy
zero if and only if¢ = ¢r [10]. model shows that a monotonic relaxatlorﬁth(¢||¢M) is
We assume that boi# and ¢r are isotropic and can not guaranteed. Let us assume, for instance, that thd initia

be expanded around the Maxwellign(c) = 326 in valueay(0) is negative and < 0.71, so that the steady-

144 —_
’012 = Vi12+

15
gas(ﬁ(c; S + Dice (¢lI9R) zFS[AR"’Q(S)]Z’ (7a)

0D (Bl6) = — TKIL + (9] Ar2e(9Mu(9). (7b)

Here, in consistency with the neglect af(s) for k >
3, we have used the evolution equatiégay(s) =

terms of Sonine polynomials valued is positive [15, 19, 21-24]; due to Bolzano's the-
’m orem, during its evolutiomx(s) must cross the zero value,
‘g) = 1+ 9S(?)]. 4 so thatDy, (¢ll¢m) would present a local minimum. Anal-
oci9) = du(e) kZ:;ak( SK( )} @) ogously, a local minimum oDk (¢ll¢m) is predicted by

the toy model ifa;(0) > 0 anda > 0.71, i.e.,a < 0.
In the case R= H, however—adsDx (4ll¢n) o« [Araz(9)]?
and the Lyapunov conditiofsDk (¢llpn) < O is fulfilled.

whereSy is thek-th Sonine polynomial ang is the X-th
cumulant of the distribution, defined ag= (Sk)/ Nk with
Nk = (2k + 1)!1/2%K1. By definition,ap = 1 anday = 0,
so that the first nontrivial cdgcient is the fourth cumulant

= (%) - 1. 3 Molecular dynamics simulations
Let us now construct a toy model @y, (4|/¢r) [15]
for an arbitrary reference distribution. Imaginperturba-  |n order to check the predictions of the toy model for the

tive parametee in front of the Sonine summation in Eg. two considered reference distributions, we have performed
(4). Expanding in powers of and keeping terms up to MD simulations using the DynamO software [25] for this

second order, we have model of granular gases. It is well known that the free
. . 00 cooling of granular gases presents long-wavelength insta-
c s ¢S
wcis), ey =SZ Aray(9)Sk(c?) bilities [4, 26]. In order to avoid them, we have simulated
dm(c)  ¢r(c) &

systems formed bi} = 1.35x 10* particles in a cubic box

23S of side lengthL/o = 407.16, which is at least 30 times
) Z Z Arak(S)Ara (9) smaller than the critical length for the development of in-
Krk=2 . stabilities, which are not observed.

x SK(c*)Sk (%) + O(e?), () Initially, all particles are arranged in an ordered crys-
whereArax(s) = a(s) - af, alt being the Sonine cée-  talized configuration from which the system melts. The
cients for the reference distribution functigg(c). Insert-  initial velocities are oriented along randomized diregtio
ing this expression into Eq. (3) and using the orthogonalitywith either a common magnitude (initial distributiohor
condition of the Sonine polynomials, one obtains with a magnitude drawn from a Gammig) (distribution.

The respective initial values of the fourth cumulant are
N[ Arak(9)]? + O(£3), (6a)  @(0) = -0.4 (5 distribution) anda(0) = 0.4 (I' distribu-
tion). Thus, according to the toy model, a nonmonotonic
relaxation ofDy, (¢ll¢m) is expected for the initial distri-
35Dk (BllgR) = € Z NiAra(9)dsau(s) + O(e%). (6b)  bution§ if @ < 0.71 and for the initial distributior if
k=2 a2 0.71.

N

- D1

€

Dk (¢llgr) = >
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In Fig. 1 one can observe that, as predicted by the toyanti-kinetic stage was not symmetric, the system rapidly
model, a local minimum is actually observed during the forgetting the correlations it had #t, and thereafter con-
evolution of Dk (#ll¢m) for @ = 0.1 and 04 when starting  tinuing to approach equilibrium.
from the initial conditions, and fora = 0.87 when start- In this section we revisit the velocity-inversion exper-
ing from the initial conditiorT". In the other three cases, imentin a freely cooling granular gas, modeled as inelas-
however, the evolution oy (¢|l¢m) is monotonic. In  tic hard spheres, where the collisional rules are given by
contrast, the relative entrofx. (¢ll¢n) decays monoton- (1). In this system, collisional symmetry is broken down
ically for the six cases, in qualitative agreement with the by the inelasticity of collisions, closely related to a el
toy model. tion of microscopic reversibility. Consider two colliding
particles with precollision velocitiegv,, v} and a rela-

A) a=087(0,T) tive orientation characterized by the unit vec@®r(with
X+ a=04(T) v12- o > 0). In that case, the postcollisional velocities are
0O a=01(T1) Co{v1, v2} = C5C_5{v], vy} = {v], v}, where

o0 PP
SAA SOOI , _
M Tt

0, 000000000000

1+a

(’012 . E)E, ’012 . E = —QUV12- 3’ (8)

Now, we invert the velocitiedv],v;} and obtain the
subsequent postcollision velocitiesiz{-v], —v5} =
{~v!, -vl}, where

AO a=087(5,T)
X+ a=04(5T) i 1-a? —~— o= 2 —~
00 a=01(,T) Vi, =12 F (vi2-0)o, vy,-0=aviz- 0.
)
: Therefore,3C53C5{v1, v2} # {v1,v2} (WhereJ is the
G . . . .
By AAAAAA inversion-velocity operator) unless = 1. We studied
o 4“4 this effect from MD simulations in a computer experiment
4 5 6 similar to those of the works discussed above [27-29].
s A waiting time s, = 0.5 was chosen, several values of

a were considered, and the evolution was monitored by

Figure 1. Evolution of Dk (¢ligr) (in logarithmic scale) for Dy (¢llpn), which plays the role o in the elastic case.
R = M (top panel) and R= H (bottom panel). Symbols repre-

sent MD simulation results for cficients of restitutiorr = 0.1, 4.0F 1
0.4, and 087, starting from the initial conditions andT". The Oa=1 “+a=1/V2
error bars are smaller than the size of the symbols, excephwh 3.5F a=099->q=04
DiL (#llgr) < 104 Symbols fors > 5 are discarded in the =087 TFa =01
bottom panel because they appear as purely noise, regresent 3.0

values that are out of the precision of the numerical scheme.

4 Velocity-inversion experiment

A discussion about entropy is not complete if the issue
of irreversibility is not included. In the case @fas- |
tic hard disks, a simulated velocity-inversion experiment ~ 1.07/
(produced by a sort of Maxwell's demon) was proposed f
more than forty years ago [27-29], where schemes with 05
“anti-kinetic” parts in the evolution were tested [30] and L %
Loschmidt's paradox was discussed. In Orban and Belle- ~ 0-0[ " ‘ ‘ :
mans’ pioneering works [27, 28], during the evolution to- 0 1 2 3 4 5
ward equilibrium the velocities of all elastic disks (simu- s

lated by MD) were inverted at a given waiting tiyeand

Boltzmann'sH-functional was analyzed and seen to revert Figure 2. Evolution of D (¢li¢w) in the velocity-inversion ex-

its decay by retracing its past values (anti-kinetic stage) Pe"ment (with a waiting time, = 0.5). Symbols represent MD
in agreement with the underlying reversibility of the equa- S'Mu!ation results (joined with straight lines as a guidete

. . . . eye). The values of the cfiient of restitution arer = 0.1, 04,
tions of m°“9”- However, théi-functional resumed It.S 1/v2,087,099, and 1. The inset magnifies the behavior around
decay after time = _2tw and, mo.re.o.ver, due to unavoid- s=0.5. The error bars are smaller than the size of the symbols.
able error propagation [31], the initial value ldfwas not

exactly recovered if the velocity inversion took place afte

a suficiently long waiting time. In a study involving irre- Figure 2 shows the time evolution 6k, (¢||¢4) when
versible particle dynamics, Aharony [29] observed that thestarting from thej initial condition and then applying the
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velocity inversion. The cd&cients of restitution consid-  [2] I. Goldhirsch, Annu. Rev. Fluid Mech35, 267

ered aren = 0.1, 04, 1/ V2, 087, 099, and 1. In the (2003)
elastic cased = 1), one recovers the results of Ref. [3] N.V. Brilliantov, T. PdschelKinetic Theory of Gran-
[27], i.e., the system almost reaches the original config- ular GaseqOxford University Press, Oxford, 2004)

uration ats = 1 but afterwards it evolves toward equilib-  [4] V. Garzé, Granular Gaseous Flows. A Kinetic The-
rium again. Whereas one expects that inelastic collisions ory Approach to Granular Gaseous FloSpringer

erase completely the possibility of a reversible period, in Nature, Switzerland, 2019)

the quasielastic cage= 0.99, although it is short, an anti-  [5] L. Boltzmann,Lectures on Gas Theo(jpover, New
kinetic transient stage exists after the velocity invarsio York, 1995)

this dfect is translated into a small growth &k (¢ll¢n). [6] C.E. Shannon, Bell Syst. Tech.2%, 379 (1948)

Of course, the duration of the anti-kinetic regime becomes 7] S. Chapman, T.G. Cowlingihe Mathematical The-
longer asr comes closer to 1. On the other hand, as inelas- ory of Non-Uniform Gases3rd edn. (Cambridge
ticity increases¢ < 0.87), the influence of the velocity University Press, Cambridge, UK, 1970)

inversion is noticeable by a change of curvature only, and [8] V. Garzo, A. SantosKinetic Theory of Gases in
this short &ect shrinks with increasing inelasticity, as ex- Shear Flows: Nonlinear TransportFundamental
pected. The fect of inelasticity on the microscopic irre- Theories of Physics (Springer, Dordrecht, 2003)
versiblity reflected by the behavior @ik, (¢]/¢H) is analo- ISBN 9781402014369 ' ’ '

gous to that observed by Aharony [29] for the conventional [9] P. Maynar, E. Trizac, Phys. Rev. Lefi06, 160603
H-functional in the evolution toward equilibrium. (éOllB)/ T » Y. ' '

[10] S. Kullback, R.A. Leibler, Ann. Math. Statis?2, 79
5 Concluding remarks (1951)

[11] S. Mischler, C. Mouhot, M. Rodriguez Ricard, J.
In this paper we have provided further evidence from MD Stat. Phys]124, 655 (2006)

simulations on the conjecture that the Kullback—Leibler [12] S. Mischler, C. Mouhot, J. Stat. Phy424, 703
divergenceDx. (¢llgn) is a possible entropy-like func- (2006)

tional for the case of isolated freely cooling granular gase [13] S. Mischler, C. Mouhot, Commun. Math. Ph88,
[14, 15], even for strongly inelastic systems. Furthermore 431 (2009)

this conjecture is supported by a simple toy model, which, 14] M.I.

. . . Garcia de Soria, P. Maynar, S. Mischler,
on the other hand, predicts a nonmonotonic behavior o y

C. Mouhot, T. Rey, E. Trizac, J. Stat. Mech. p.

DKLt'(¢|||¢M) if 612(:')) aﬂdag'bhave pprl)ositef§ignsd t‘)l’his thg— P11009 (2015)
Slr:t;gr?sexpec ation has been nicely confirme your5|m-[15] A. Megias, A. Santos, Entrof, 1308 (2020)

Finally, the classical velocity-inversion experiment [16] PK. |_-|3ﬂr,‘]_ Fluid Mech134, 401 (1983)
[27-30], originally devised for systems relaxing to equi- [17] R. Brito, M.H. Emst, Europhys. Let3, 497 (1998)

librium, has been applied on granular gases relaxing to thé18] A. Goldshtein, M. Shapiro, J. Fluid MecB82, 75

HCS and monitored vidx, (¢ll¢n). While, as expected, (19995)
the initial configuration is almost perfectly recoverediét ~ [19] J.J. Brey, M.J. Ruiz-Montero, D. Cubero, Phys. Rev.
collisions are elastica( = 1), microscopic reversibility is E 54, 3664 (1996)
frustrated by inelasticity, no matter how small. In fact, a [20] T.P.C. van Noije, M.H. Ernst, Granul. Mattér 57
(short) anti-kinetic stage, wheeDx. (4ll¢n) > 0, is only (1998)
possible in the quasielastic regime (eq@.~= 0.99) and  [21] N. Brilliantov, T. P6schel, Europhys. Lett4, 424
disappears for gficiently high inelasticity ¢ < 0.9). (2006)
[22] N. Brilliantov, T. Péschel, Europhys. Leff5, 188
cnowled (2006)
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