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The origin and the global spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) in early 2020 was
accompanied by high rates of mortality in regions belonging to the ancient silk road,
such as the south of China, Iran, Turkey and the northern parts of Italy. However, children
seem to be spared in the epidemic as very small percentage worldwide being ill. The
protection of children and neonates suggests the involvement of a specific component of
adaptive immunity present at early development. Native immunoglobulin belonging to the
class of IgM is abundantly present in neonates and children and is known for its
recognition of self- and altered self-antigens. Native IgM may be able to neutralize virus
by the recognition of endogenous “danger signal” encoded in the viral envelope and
originally imprinted in the membranes of infected and stressed cells. Noteworthy,
thrombosis and vasculitis, two symptoms in severely affected adult and pediatric
patients are shared between COVID-19 and patients with Behcet’s disease, an
autoimmune disorder exhibiting a region-specific prevalence in countries of the former
silk road. Molecular mechanisms and clinical indicators suggest reactive oxygen species
as trigger factor for severe progression of COVID-19 and establish a link to the innate
immune defense against bacteria. The selective pressure exerted by bacterial pathogens
may have shaped the genetics of inhabitants at this ancient trade route in favor of bacterial
defense, to the detriment of severe COVID-19 progression in the 21th century.

Keywords: COVID-19, natural IgM, children, Kawasaki-like disease, ACE-2 receptor, reactive oxygen species, silk
road, B1 B cells
INTRODUCTION

OnMarch 11, 2020, theWorld Health Organization (WHO) has declared COVID-19 as a pandemic
a disease resulting from the infection by SARS-CoV-2, a novel member of the coronoviridae family
(1). In severe cases, the disease manifests by interstitial pneumonia and alveolar damage within
approximately 7 days of symptom onset, which can lead to acute respiratory distress syndrome
org June 2021 | Volume 12 | Article 6468941
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(ARDS) (2, 3). ARDS is associated with an uncontrolled immune
activation, characterized by a massive upregulation of pro-
inflammatory cytokines, chemokines, and hematopoietic
growth factors (IFN-g, IL-1b, IL-6, IL-7, IL-8, IL-2, TNF,
CXCL10, CCL2, GM-CSF) called cytokine storm (3–5),
culminating in hyperinflammation and multi-organ disease (6),
which is the leading cause of mortality (7). Septic shock and
multiorgan failure were the most common immediate cause of
death, often due to suppurative pulmonary infection as shown by
Elezkurtaj et al. (8).

As of December 23, 2020, SARS-CoV-2 has been the cause of
infection in more than 78 million people resulting in more than 1.7
million deaths worldwide; however, comparatively, few infections
have been described in children. In contrast to infected adults, most
children with confirmed SARS-CoV-2 infection seems to have a
mild clinical course, and almost 16% of them did not show any
symptoms of infection (9). By March 25, 2020, Italy had the second
highest number of COVID-19 infections and the highest number
of deaths worldwide, but only 1% of the total number of patients
were children younger than 18 years of age, although children
comprise 10% of the total population. Only 11% of those affected
children required hospitalization, and none of them died (10).

Two distinct mechanistic checkpoints seem to determine the
disease outcome following infection with SARS-CoV-2. First, the
differential in host susceptibility to viral infection leading to
clinical symptoms, and second, the severe deterioration of
disease associated with cytokine storm and mortality. Thereby,
susceptibility and mortality were found to be a matter of age and
geographic location, respectively.

The immunity against COVID-19 in children and the
differences in mortality between geographic regions during the
initial spread of SARS-CoV-2 in the spring of 2020, prompted us
to address those questions from several perspectives,
encompassing immunology, virology, cell biology, historical,
and linguistic sciences. The synopsis across different
viewpoints culminated in two hypotheses, as proposed in
this review.

First, we summarize the current knowledge on COVID-19 in
children. The following two sections deal with less recognized
facts on the cell biology of SARS-CoV infection and the difficulty
to explain protection by an IgG-mediated mechanism directed
against spike protein. Finally, we conclude our hypothesis based
on a danger model of adaptive immunity. In the next two
chapters, we elucidate the current knowledge on B1 B cells and
natural IgM in viral defense and how these may apply to the
SARS-CoV-2 pandemic.

Our two last sections are devoted to understanding the ethnic
and global differences in COVID-19–related mortality. In section
entitled Mortality: Why Some Patients End Up on Ventilators
and Cytokine Storm in COVID-19?, we discuss the role of
receptors, signaling proteins, and enzymes involved in the
generation of reactive oxygen species and their association with
the cytokine storm. In last section (Genetics of ROS Generation
andHuman Sociographic and Linguistic Evolution), we explain our
hypothesis on polymorphisms associated with bacterial defense
and simultaneously determine the outcome of COVID-19 disease.
Frontiers in Immunology | www.frontiersin.org 2
SUSCEPTIBILITY—COVID-19 IN
CHILDREN AND SPECIFICS IN
PEDIATRIC IMMUNITY

Children with SARS-Cov-2 infection present milder symptoms
and show less laboratory and radiologic abnormalities compared
to adults (11). The same observation was reported during the
SARS and MERS-CoV epidemics in 2003 and 2012, respectively
(12, 13). Depending on the study, up to 35% of pediatric patients
with COVID-19 are asymptomatic. It remains uncertain whether
asymptomatic children transmit the virus; however, it was shown
that even asymptomatic children can have high viral loads of
SARS-CoV-2 (14).

Although most of the children infected with SARS-Cov-2
present a less severe form of COVID-19, in April 2020, the UK
reported a growing number of cases with features similar to
atypical Kawasaki disease (15). Among the first eight
hospitalized children reported, six were of Afro-Caribbean, one
of Asian and Middle-Eastern descent each, and five of them were
boys mostly overweight, suggesting that the ethnic characteristic
prone to COVID-19 infection in children resembles the group
of adults with high risk for COVID-19 mortality (16).
Interestingly, no pathological organism was identified in
seven from eight children during hospital treatment (15),
indicating a self-preserving inflammatory disease triggered by
viral exposure and persistent even after the immunologic
clearance of the virus.

Recently, a novel multisystem inflammatory syndrome in
children (MIS-C) belonging to the spectrum of Kawasaki
disease-like pathology have been reported in regions with
receding SARS-CoV-2 epidemics (17). Inflammatory shock,
gastrointestinal symptoms, and coagulopathy, which are rarely
seen in classic Kawasaki disease, are prominent features of this
syndrome, affecting mostly older children (mean age was 12 in
that study) with Black or Hispanic ethnicity. All children
harbored antibodies against SARS-CoV-2 of class IgG and IgA,
with absence of circulating IgM in most cases (18). Detection of
autoantibodies of IgG and IgA class against endothelial, mucosal,
and immune antigens together with neutrophil and monocyte
upregulation of CD54 and CD64 suggest that autoreactivity
together with inflammatory innate immune response may be
critical to the pathogenesis of MIS-C (18). The two syndromes
connected with SARS-Cov-2 infection and described in children,
Kawasaki-like disease and MIS-C, preferentially affects children
which share an ethnic background shown to be one of the factors
predisposing for severe outcome of COVID-19 infection in
adults. The cohort study in the UK, investigating the
association between patient individual factors and risk for
COVID-19 hospital death, revealed as the main risk factors in
adults the male gender, advanced age, obesity, and ethnicity
(substantially higher risk for people of Asian and African
origin) (16).

It is not known why SARS-CoV-2 infection in children
overall appears to be mild; however, recent data suggest that
children younger than 10 to 14 years are less susceptible to
infection of SARS-CoV-2 than adults, while adolescents
June 2021 | Volume 12 | Article 646894
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appeared to have similar susceptibility to adults (19). Although
the frequency of asymptomatic SARS-CoV-2 infections among
children is unknown, it is possible that the role of children as
drivers of pathogen transmission is real (20).

Despite the fact that the proportion of COVID-19 cases that
are pediatric has risen substantially from 3% of the reported cases
in April to 12% in August and 15% in September in USA (while
testing children remained at the same level since April 2020),
hospitalization and death due to COVID-19 is still rare (21).
Children made up 0.07% of total deaths, and these rates
remained stable across the study period (21).

Differences in activity of immune function between children
and adults may explain their protection from development of the
life-threatening pneumonia. Children have physiologically
elevated lymphocyte number, which persist under SARS-Cov-2
infection (22). In addition, children display a reduced production
of pro-inflammatory cytokines, such as IL-6 (the main cytokine
involved in cytokine storm induction) and a higher production
of anti-inflammatory IL-10, as compared to adults upon immune
activation (23). Because of that, children may be less prone to
develop ARDS. Frequent viral infections during childhood and
the scheduled active vaccinations may constantly trigger their
innate and adaptive immune system into a state of activation and
thus more effectively fight subsequent infections (24).
Importantly, over 75% of children seroconvert in response to
seasonal coronaviruses before their fourth birthday (20).
Although cross-reactivity of antibodies against seasonal
coronaviruses and SARS is restricted, it helps to fight SARS-
CoV-2 infection in children and young people (20).

However, none of those explanations convincingly elucidate the
riddle of the mild COVID-19 presentation in children. Since even
infants of affected mothers are protected from the development of
COVID-19, we started to believe that an adaptive immune
mechanism beyond IgG, IgA, and cytotoxic CD8+ T cells is
responsible. In order to elucidate this mechanism, we first need to
understand the cell biology of coronavirus infection.
CELL BIOLOGY OF SARS-COV-2
INFECTION

Coronaviruses (Covs) are enveloped viruses with a positive sense,
single-stranded RNA genome (25). Three of them (SARS-CoV,
MERS-CoV, and SARS-CoV-2) are known to induce zoonotic
disease in men (26). The viral genome encodes four major
structural proteins: the spike (S) protein, nucleocapsid (N)
protein, membrane (M) protein, and the envelope (E) protein,
all required to produce structurally complete viral particles.
Within S protein, there is a receptor-binding domain (RBD),
which binds to host target receptors, allowing the virus to entry
into the host. Previous investigations on SARS-CoV revealed that
the virus targets airway and alveolar epithelial cells, vascular
endothelial cells and alveolar macrophages for the initial entry
into host cells (27).

Coronaviruses are different from other well-studied enveloped
viruses in that they bud into the endoplasmic reticulum Golgi
intermediate compartment (ERGIC), from where they acquire
Frontiers in Immunology | www.frontiersin.org 3
their membrane envelope (25). Although, the endoplasmic
reticulum (ER) is able to degrade misfolded protein in a process
called ER-associated degradation (ERAD), if the capacity of ERAD
is exceeded, those misfolded proteins trigger an ER stress- and
unfolded-protein response (UPR). Further prolongation of UPR
results in initiation of apoptosis. Viral infections can also trigger
the UPR, adopted by host cells as antiviral strategy (28).
Interestingly, CoV E protein exert anti-apoptotic function in
infected cells by suppressing the UPR during infection in order
to continue viral propagation (25).

The origin of viral envelope from host’s ER in conjunction
with the ER stress-response, prompted us to compare between
the classical self-nonself and an alternative model of antigen
recognition, based on danger signals.

LIMITATIONS OF THE CLASSICAL VIEW
ON ADAPTIVE IMMUNITY

Glycosylation is one of the most important post-translational
modification of proteins and is characteristic for eukaryotic
organisms. Viruses often utilize the host glycosylation
machinery during replication and assembly in the host cells
(29). Glycans present an overall image of “self” to the immune
surveillance of the host organism and may act as protective shell
for viral peptide epitopes (30). SARS-CoV does not seem to
utilize such a mechanism in order to escape from neutralizing
immunoglobulins, like glycan shielding of the receptor-binding
site. Instead, a recombinant spike protein fragment with RBD of
SARS-CoV presented the highest immunogenicity among other
recombinant spike protein fragments tested (31, 32). If SARS-
CoV-2 would have similar properties like investigated SARS-
CoV, it would help for the successful development of
neutralizing monoclonal Abs as therapy. However, alterations
in spike proteins, which are emerging as virus spreads and
mutates, may render SARS-CoV-2 resistant to monoclonal
Abs. Even more surprising is the report that patients who died
of SARS-CoV infection achieved their peak levels of neutralizing
Abs activity earlier (at 15 days post infection) as compared with
those who survived (at 20 days post infection) (33). Adding to
this contradiction is the observation that 80% of those patients
who progress to ARDS exhibit a successful seroconversion to
antiviral IgG (34). Atyeo et al. have correlated disease outcome
with the level of specific viral antibodies in patient serum (35).
Hereby, they reported that a humoral response specific for viral
spike-protein was characteristic for convalescent individuals,
while antibodies against nucleocapsid proteins were elevated in
deceased individuals. Similarly, children with SARS-CoV-2–
associated MIS-C are spared from severe COVID-19 turnover
and produce specific IgG antibodies for spike-protein but not
against the nucleocapsid-protein (36).

THE PUTATIVE ROLE OF NATURAL IGM
IN SARS-COV-2 CLEARANCE

Due to the fact that young children and even neonates are
protected from development of COVID-19, and in view of
June 2021 | Volume 12 | Article 646894
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their naivety in terms of adaptive immunity, such as memory
cells and IgG production, we are considering IgM as possible
factor responsible for the protection. In particular, natural IgM
may play the key role in defense against SARS-CoV-2. Natural
IgM constitutes the most abundant immunoglobulin in neonates
and exhibits a high potential for self-antigen recognition. The
ability to recognize self- or altered self-antigens by the adaptive
arm of the immune system is the basic principle of the “danger
hypothesis” postulated by Polly Matzinger (37). Consequently,
SARS-CoV-2 particles budding from the infected cell are
wrapped by the host`s membrane previously modified in the
UPR process and thus, are recognized by natural IgM as “altered
self”. The same way as apoptotic debris or exosomes are
recognized by natural IgM and subsequently prepared for
phagocytosis, SARS-CoV-2 as viral particle or as infected cell
could be recognized and effectively cleared (Figure 1).

In the next sections, we will review on natural IgM and their
corresponding B1 B cells, summarize their known functions in
viral defense, and discuss their putative role in protection against
SARS-CoV-2 fatal infection.

B1 B CELLS IN VIRAL DEFENSE

B1 B cells are generated earlier in ontogeny than conventional B
cells, namely B2 B cells. The human analog to murine B1 cells is a
Frontiers in Immunology | www.frontiersin.org 4
CD45+CD27+CD70- B cells subset, reactive with non-protein
and self-antigens, such as phosphorylcholine (PC) and dsDNA
and detected both in human umbilical cord blood and in the
adult peripheral immune system (38). B1 B cells are vastly
generated before birth in the fetal liver, are present at high
percentage (70–90% of B cells are CD5+) in early childhood, drop
to a percentage below 10% of all peripheral B cells during
adulthood, and further decrease in numbers with age (39).

B1 cells are long-lived and self-renewing and produce more
than 90% of the natural antibodies (NAbs), thus providing an
important link between innate and adaptive immune systems
(40, 41). A key property of NAbs is to maintain immune
homeostasis by the clearance of apoptotic debris, the
suppression of autoimmune and inflammatory responses and
the regulation of B cell development (41). They form the first line
of defense against micro-organisms by recognition of structural
conserved antigens (both self and non-self).

Since the first study in 1999, aiming to identify natural
antibodies specific for viral antigens, many studies have
confirmed a role of natural IgM in the protection against viral
infections (42, 43). The presence of early neutralizing antibodies
during infections with several cytopathic viruses (such as polio,
influenza, and rabies) is essential for protection against lethal
disease, which often correlates with viral replication in neural
tissues (43). As B1 cells arise from fetal liver, they are functionally
FIGURE 1 | The Yang-Yin of immune defense. The genetic traits favoring the defense against bacterial pathogens in the past (ROS and IgM) appeared to be
vulnerable for COVID-19–related mortality in the 21th century. The left side demonstrates how bacterial pathogens shaped the genome in human populations by
selective survival of individuals with single nucleotide polymorphisms (SNPs) in genes facilitating bacterial defense, such as the generation of reactive oxygen species
(ROS) in phagocytes. The right side shows a newborn with the inherent high polyclonality of its natural IgM. Natural IgM recognize altered self-antigens and are
important for removal of apoptotic cells in the developing neonate. Altered self-antigens are also present in the viral envelope of corona viridae. Such as natural IgM
removes apoptotic cells in absence of inflammation, the virus is neutralized without inflammatory symptoms and disease. Reactive oxygen species represent the
inflammatory and anti-bacterial part of immune defense, associated with Yang in traditional Chinese medicine (TCM). The natural IgM represents the anti-
inflammatory and self-recognizing part of immune system involved in tissue remodeling, associated with Yin in TCM.
June 2021 | Volume 12 | Article 646894
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active in newborns and are crucial for immune protection
throughout the time of adaptive immune maturation (41) as
IgM production by B1 cells is independent of T cell activation
(44). It seems that very early B cells are responsible for the first
protection of the newborn organism and that this defense is
basically composed of polyreactive IgM (45). Because IgM is not
able to cross the placental barrier, the presence of respiratory
syncytial virus (RSV)-IgM may reflect the existence of broadly
reactive NAbs in newborns (46).

We assume that a similar mechanism in viral immune defense
will apply to SARS-Cov-2 in neonates. In contrast to MERS-Cov
and the previous SARS-CoV, pregnant women infected with
SARS-Cov-2 do not seem to be prone to unfavorable pregnancy
outcome (47). Furthermore, SARS-CoV-2 was not detected in
products of conception, breast milk, or in neonatal
nasopharyngeal swab samples at birth (48). Among mothers
with confirmed COVID-19, the virus was not detected in the
serum or throat swab of their newborns (48, 49). Interestingly,
SARS-CoV-2 IgG concentrations were elevated in five of six
infants while increased SARS-CoV-2 IgM levels were observed in
two infants (49). Although none of the infants presented any
symptoms of COVID-19, significant increase of inflammatory
cytokine IL-6 together with increased Ab levels support the
possibility of vertical transmission (49). In contrast to IgG Ab,
which is passively transmitted from mother to the fetus through
the placenta, IgM is not transferred due to its large
macromolecular size. While the elevated IgG level may reflect
maternal or infant infection, we believe that the increased level of
IgM Abs in those neonates suggests that IgM was produced by
the infant after the virus crossed the placenta similarly to
RSV infection.

Thus, the presence of IgM antibodies in neonates, even in the
absence of an elevation, may be sufficient to protect them against
COVID-19, when SARS-Cov-2 is present in their mother. The
clonal repertoire of B cells producing NAbs is likely shaped by
the early life antigenic history of an individual, as neonatal
exposure to bacterial antigens result in striking changes in
composition of antigen specific NAbs. Thus NAbs reactivity
and its potential for antiviral activity is closely related to the
species of the viral origin, which is especially important in
zoonotic viral infections (29).
THE NATURAL IGM ANTIBODY (AB)
REPERTOIRE AND ITS IMPACT ON
DEFENSE AGAINST SARS-COV-2
INFECTION

Natural antibodies are mostly of IgM isotype, followed by a much
smaller fractions of IgG, IgA or IgE isotypes (41). Polyreactive
NAbs recognize and bind phylogenetically conserved structures
like phospholipids, oxidized lipids, glycolipids, and glycoproteins
(41, 50). Current evidence suggests that the pool of B1 cells
secreting IgM results from positive selection upon recognition of
self-antigens during development. Several IgM and IgA NAbs,
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recognizing autoantigens, such as phosphatidylcholine
determinants in oxidized lipid layers on apoptotic cells, were
found binding to homologous molecules in the cell wall of
pneumococci (38). Thus, it is likely that composition of the
NAbs repertoire is modulated since early childhood by
continuous interactions with the microbiome, which is the
community of microbial commensals present in our bodies.
The cross-reactivity of NAbs between self and microbial
antigens also suggests, that vaccination may enhance Ab
production and modulate their specificity. Indeed, the
protective level of cross-reactive antibodies against oxidized
low-density lipoprotein (anti-oxLDL Ab) appeared to be
significantly higher after pneumococcal vaccination (51).
Similar mechanism may support observations that Calmette-
Guérin (BCG) vaccination against tuberculosis is negatively
associated with prevalence and mortality of COVID-19 (52).

Several distinct properties of IgM, such as its antigen-binding
polyreactivity, the high avidity assured by the ten binding sites,
the ability to access cryptic antigens hidden for IgG, and its
capacity to promote the removal of apoptotic cells support the
specific role of IgM in health and disease (42). Those unique
properties allow the recognition and removal of “altered” self-
antigens, an ability which is linked to the binding of shared
molecules on pathogens, thereby contributing to immune
homeostasis controlling inflammation and tissue damage.
Indeed, there are several known autoantigens exposed on cells
during the process of apoptotic death, which are recognized by
subsets of natural IgM (38). Interestingly, IgM that specifically
recognize oxidation-associated determinants exposed on
apoptotic cells are highly abundant in human newborns (53,
54). Having in mind that SARS-CoV-2 particles leaving the
infected cell are covered by the host’s membrane previously
modified in the UPR process and thus resembling modifications
in apoptotic cells, it is very probable that those particles might be
recognized by natural IgM as “altered self”. The same way as
apoptotic debris or modified self-particles are recognized by
natural IgM and subsequently prepared for phagocytosis,
SARS-CoV-2 as viral particle or as infected cell could be
recognized and cleared by IgM, highly represented in
children’s immune system.

Both natural and induced IgM are polymeric (pentameric)
and due to its large size of 970 kDa, IgM does not traverse easily
between vascular and extravascular compartments, and
therefore, demonstrate specific retention at sites of production
or transportation by poly-Ig receptors, such as the mucosal
surface, breast milk, or serum (55). That allows natural and
induced IgM to act as an early defense mechanism against not
only systemic but also mucosal pathogens (56). Those antibodies
are conserved in humans and recognize specialized
oligosaccharides integrated into the bacterial cell wall and
capsule (57). Interestingly, both germ-free and normal
conventional-housed mice have similar serum IgM levels,
which support the concept that serum IgM concentrations are
independent from foreign antigen exposure (42, 58).
Additionally, female mice show significantly higher level of
serum IgM than male mice (57). The presence of higher levels
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of oligosaccharide-specific serum IgM results in selective survival
of female mice and their offspring, compared to males during
bacterial infections. IgM secreting cells seem to be regulated by
estrogens, and estrogen-driven antibodies are maternally
transferrable to offspring and conferred protection during
infancy (57). That might be a reason for the lower fatality rate
of severe COVID-19 in females as well as lower incidence of
more severe COVID-related diseases in girls in comparison to
boys (10, 59).
MORTALITY: WHY SOME PATIENTS END
UP ON VENTILATORS AND CYTOKINE
STORM IN COVID-19?

The respiratory system is most of all organs involved in
continuous environmental exchange and exposed to microbial
organisms, due to its large alveolar and mucosal surface, and due
to the liters of air moving with every breath. Its essential role in
gas exchange and oxygen delivery made it necessary for the lung
to evolve strategies to control the inflammation accompanied by
antimicrobial defense. Multiple receptors expressed on epithelial
and mucosal immune cells directly interact with microbial
pathogens, in order to orchestrate the balance between
immune defense and inflammation. One of those receptors
early associated with SARS-CoV infection is ACE-2, a type I
membrane protein proven to be the functional receptor of SARS-
CoV and SARS-CoV-2 in the lung (60). ACE-2 is a component
of the renin-angiotensin-aldosterone system (RAAS), which
represents a cascade of vasoactive peptides, controlling main
processes in human physiology like blood pressure, wound
healing, and inflammation (61). The key role of ACE-2 is to
covert angiotensin II (AngII) into angiotensin-(1-7), which was
shown to have anti-oxidant and anti-inflammatory (including
antithrombotic and anti-fibrotic) effects (62, 63).

Although the role of ACE-2 in SARS-CoV-2 infection is
conflicting, there is increasing evidence in published literature
that a high level of ACE-2 expression is rather beneficial than
harmful in patients with lung injury (61). ACE-2 expression is
high in infants, reaching a plateau in adolescence, and decrease
during adulthood, in males faster than in females (64). It was
speculated, that the decline in sex hormones contribute to the
observed decrease in expression of ACE-2 with age, as estrogen
and androgens activate ACE-2 expression (64). The analysis of
ACE-2 expression across age, gender, and ethnicity showed that
ACE-2 expression level is high in Asian females and young
people, suggesting a negative correlation between ACE-2
expression and SARS-CoV-2 severe outcome (64). Compared
to children, older patients present reduced the number of ACE-
2–expressing cells and lung progenitor cells, which made those
patients more vulnerable to develop severe pneumonia with poor
recovery potential from COVID-19 (65).

Thus, children having high expression of ACE-2 seem to be
protected against angiotensin II accumulation and its harmful
cytotoxic effects and benefit from the anti-inflammatory
properties exerted by angiotensin-(1-7).
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Another receptor playing a key role in pulmonary viral
defense and inflammation is retinoic acid-inducible gene
(RIG)-I which recognize RNA of a variety of virus families
(66). Upon viral RNA recognition, RIG-I together with adapter
molecule mitochondrial antiviral-signaling (MAVS) protein
triggers a cascade leading to the activation of the
inflammasome, culminating in the expression of antiviral
interferons (67). Most recent evidence suggests that
overactivation of the inflammasome by SARS-CoV-2 is the
responsible factor for the cytokine storm (68). Interestingly,
inflammasome and certain adaptor molecules for RIG-I
signaling are located at the mitochondrial outer membrane
(67). Mitochondria serve a key role in the supply of Krebs
cycle and lipid metabolites and are the main responsible
organelles for maintenance of the cellular redox equilibrium.
The level of inflammasome activation via RIG-I and viral RNA is
dependent on ROS (69) through upregulation of the
mitochondria-associated adapter MAVS (70). The activity of
complex multiunit enzymes belonging to the NADPH oxidase
(NOX)- and the dual oxidase (DUOX) families, both expressed
in airway- and alveolar epithelial cells, is catalyzing the local
generation of ROS subsequent to viral challenges (71).

In this review, we hypothesize that a massive increase in
production of ROS triggered by assisted ventilation under high
oxygen pressure and facilitated by the downregulation of ACE-2
and the viral load leads to a vicious cycle between RIG-I
signaling, exacerbated inflammasome activation and ROS
production, ending up in a cytokine storm. There is
accumulating evidence that the assisted ventilation in patients
with COVID-19 does not change the disease course (2, 72). In
addition, iron as limiting element for the continuous activity of
NOX and DUOX is reduced in its availability by the upregulation
of ferritin, in order to avoid accumulation of ROS and thereof
cellular toxicity. Indeed, patients presenting a severe form of
COVID exhibit high levels of serum ferritin (73–75), suggesting
an inflammatory process accompanied by high levels of ROS.
GENETICS OF ROS GENERATION AND
HUMAN SOCIOGRAPHIC AND
LINGUISTIC EVOLUTION

The key regulatory checkpoints in ROS production are
determined by activity and localization of the multiunit
enzymes NOX and DUOX. While epithelial cells of the upper
respiratory tract express several isoforms of NOX and DUOX,
alveolar epithelial cells, macrophages, and vascular endothelial
cells express only two isoforms of NOX, namely NOX2 and
NOX4 (76). Macrophages and granulocytes require NOX2 for
generation of sufficient ROS in lysosomal compartments for the
elimination of bacterial pathogens. The significance of NOX2
function for bacterial defense is apparent in patients with chronic
granulomatous disease (CGD), where several identified
mutations in any of the five subunits of NOX2 lead to high
susceptibility for bacterial infection, giving rise to a low life
expectancy (77). Since the first description of a genetic mutation
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in a NOX subunit as cause for CGD in the 1980s, single
nucleotide polymorphisms (SNPs) in several NOX subunits
and in enzymes involved in neutralization of ROS were
identified and associated with atherosclerosis (78), type II
diabetes mellitus (79), diabetic nephropathy (79), and
thrombosis (80). However, besides the relevant SNPs, the
genetic background of patients in those studies, as reflected by
their ethnicity, seems to have a significant impact on the
outcome. Interestingly, the small p22(phox) subunit, shared
between NOX 1- 4 enzymes, serves a crucial role in the
assembly and intracellular localization of all other enzymatic
subunits and was found to be highly polymorphic with
functional differences in ROS generation (81).

Consistent with the role of ACE-2 in neutralizing ROS and
decreasing angiotensin II, there is evidence that a persistent high
activity of angiotensin II is at least in part responsible for the
organ injury observed in COVID-19 (82, 83). SARS-CoV-2
downregulates ACE-2 expression after using it for cellular
entry, resulting in unopposed angiotensin II accumulation and
local RAAS activation (84, 85). The level of plasma angiotensin II
correlates with the degree of lung injury and total viral load in
COVID-19 patients (83).

Before the invention and wide applications of antibiotics in
the 1950s, bacterial infection represented the major cause of
death in the human population (86). Bacteria and its ability for
host adaption has shaped human evolution for thousands of
years by maintaining selective pressure on immune function in
young individuals before attaining their reproductive age.
Polymorphisms in genes associated with functional differences
in generation or neutralization of ROS, or its subcellular
localization in phagocytes, may had a profound impact on
survival and subsequent genetic inheritance during the pre-
antibiotic times (Figure 1). In human history, populations
migrated and settled in regions supporting and improving their
livelihood. Ancient trade routes, such as the silk route, provided
an economic belt for settlement, connecting Southeast Asia with
Southern Europe and spanning a period of 1,500 years. Along
this route, the movement of people with diverse ethnic and
genetic background was accompanied by rodents, parasites, and
pathogens. Thus, ancient trade routes, such as the silk route, may
have generated and selected genetic variants for bacterial
immune defense, facilitated by merging the genetic background
of multiple ethnic groups under the challenge of an aggravated
bacterial exposition. Until today, the prevalence of Behcet’s
disease, an autoimmune vasculitis of unknown etiology, is
located along the countries of silk road (87), suggesting a
selection process for distinct immunological traits along this
route. Remarkably, a predisposition for distinct symptoms, such
as vasculitis and thrombosis, is shared between Behcet’s disease
and severe COVID-19. Interestingly, mutation of GM-CSF—one
of the major cytokine initiating and perpetuating inflammatory
diseases was shown to be also one of the risk alleles in developing
Behcet-like disease (88). Thrombosis is frequently observed in
COVID-19 patients suffering an aggravated disease course (89),
and vasculitis resembling Kawasaki disease was specifically
observed in children, subsequently to a suspected contact with
Frontiers in Immunology | www.frontiersin.org 7
SARS-CoV-2 (90). When connecting countries and regions with
high mortality due to COVID-19 or persistent high infection rate
of SARS-CoV-2 on a map in the early 2020, those countries are
part of the former silk road, such as Iran, Turkey, northern Italy
and southern China. Wuhan, the epicenter of COVID-19 is in
less than 1,000 km distance from Guangzhou, the beginning of
the ancient silk road, both cities were haunted by an
extraordinary high rate of mortality during the epidemics (2,
91). On the other end, France and south of Switzerland sharing
linguistic, cultural, and economic connections to northern Italy
over a long-lasting period in human history. Both regions were
heavily affected by COVID-19 related mortality (92). A similar
indication is found in Canada, where exclusively the French-
speaking Quebec is severely affected by COVID-19 mortality.

Thus, we propose the hypothesis, that during ancient times,
over a period of 1,500 years along the silk road, distinct genetic
traits affecting the redox equilibrium were shaped in the local
inhabitants. As much those genetic traits favored the defense
against bacterial pathogens in the past by an appropriate
production of bactericidal ROS, the same genetic traits prove
them vulnerable for COVID-19 related mortality in the 21st

century as presented in Figure 1.
DISCUSSION

The pathology of COVID-19 extends far beyond a pulmonary
disease and does not resemble any other viral pneumonia
reported so far (23). In order to search for therapeutic
approaches, COVID-19 needs to be viewed as complex
interaction between pulmonary, hematologic, and endothelial
dysfunction in the context of an inflammatory condition. To
solve such an intertwined mechanism, it is of great value that
medical scientists investigate children and young adults due to
their vastly different clinical outcomes.

Although a vast amount of clinical data and results in the
basic science on COVID-19 are published up to date,
the mechanism of severe disease progression, the differential in
the rates of mortality depending on geographic location or
ethnicity, and the reason why children and young adults are
mostly protected from development of disease are unknown. In
this review, we performed an approach to answer those questions
by integrating historical circumstances, current clinical data and
little noticed elements of immunity. Hereby, we propose that
infants, children and young adults are protected from SARS-
CoV-2 due to the polyclonality of natural IgM, able to recognize
viral particles or infected cells by endogenous self-antigens,
according to the danger model of immunity. The differences in
severity of COVID-19 observed in adults, may have their roots
in the genetics of bacterial defense mechanisms, revealing
themselves as harmful in COVID-19 when combined with
mechanical ventilation under high oxygen pressure.

In order to test our hypotheses, we propose the genetic
analysis of children with Kawasaki-like disease and MIS-C
with attention to genes involved in IgM Ab response and
reactive oxygen metabolism. Furthermore, retrospective
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analysis and prospective studies on the use of nutritional
supplements with antioxidant properties, such as vitamin C,
are required to assess their potential impact on disease outcome
in COVID-19. The search for correlations between the severity of
SARS-CoV-2 infection and single nucleotide polymorphisms in
genes involved in ROS metabolism would test our hypothesis.

Recent clinical observations support our hypothesis.
Although it is currently uncertain whether immunomodulating
agents, such as biological disease-modifying anti-rheumatic
drugs (bDMARDs), affect the outcome of SARS-CoV-2
infections, the individual cases reported that bDMARDs
treatment does not correlate with worse COVID-19 outcome
(93). Also according to the guidelines of European League
Against Rheumatism (EULAR), the immunomodulatory
treatment advised to rheumatic patients should be continued
(94). However, due to recently reported two fatal cases, some
caution should be applied when using rituximab (RTX), a B-cell
depleting bDMARD in patients with immune-mediated diseases
(95). This observation is supported by a report on persistent
SARS-CoV-2 viremia in two rituximab-treated patients with
severe COVID-19 pneumonia and death without any sign of
viral clearance (96). Alarming data from the German National
Registry for patients with IRD infected with SARS-CoV-2 show
that 61% patients treated with RTX required hospitalization
while 50% needed ventilation (97). Indeed, the consequence of
the RTX administration is very low IgM concentration, which
may support our hypothesis of an important role of IgM in
protective immunity against COVID-19 (98). Additionally, the
mild clinical course of COVID-19 in patients with
agammaglobulinemia suggest that it is not IgG that protect
from severe or fatal COVID-19 course (99).
CONCLUSIONS AND SUGGESTIONS FOR
POTENTIAL THERAPEUTIC
INTERVENTIONS

Concluding from our hypothesis on reactive oxygen species as
key factor for COVID-19 related mortality, we suggest the use of
Frontiers in Immunology | www.frontiersin.org 8
an amphiphilic antioxidant for targeting ROS in lysosomal
compartments. The mild sedative drug melatonin shares
antioxidant and amphiphilic properties, along with a low
potential for adverse effects (100). Another alternative to
COVID-19 treatment due to its antioxidant activity and
cytoprotective effects may be the most abundant free
amino acid in humans, taurine (101). Taurine regulates
inflammatory processes associated with oxidative stress, such
as the detoxification of hypochlorous acid, which results in
formation of less toxic and anti-inflammatory taurine
chloramine. We suggest the identification of polymorphisms in
genes related to reactive oxygen metabolism to estimate
the potential susceptibility of infected patients for severe
disease progression and clinical trials with intravenous
immunoglobulin preparations, enriched for IgM in the early
stage of disease.
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