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Abstract. In this work, we present an alternative methodology to solve the particle-fluid interaction in the
resolved CFDEM R©coupling framework. This numerical approach consists of coupling a Discrete Element
Method (DEM) with a Computational Fluid Dynamics (CFD) scheme, solving the motion of immersed particles
in a fluid phase. As a novelty, our approach explicitly accounts for the body force acting on the fluid phase when
computing the local momentum balance equations. Accordingly, we implement a fluid-particle interaction
computing the buoyant and drag forces as a function of local shear strain and pressure gradient. As a benchmark,
we study the Stokesian limit of a single particle. The validation is performed comparing our outcomes with the
ones provided by a previous resolved methodology and the analytical prediction. In general, we find that the
new implementation reproduces with very good accuracy the Stokesian dynamics. Complementarily, we study
the settling terminal velocity of a sphere under confined conditions.

1 Introduction

The recent advances in particle-fluid simulations allowed
the description of many industrial and natural processes
[1–4]. For instance, the sedimentation of particles in dilute
and dense conditions and the flow of particles through sub-
merged hoppers have been recently examined [1, 2, 5]. In
general, experimental and simulated data agreed very well
when exploring intermediate Reynolds number regimes. It
suggests that the CFD-DEM coupling can resolve the hy-
drodynamics interactions in those scales with enough ac-
curacy.

In the field of particle suspension modeling, re-
searchers have been able to reproduce classical results,
applying a variety of methods combining Eulerian and La-
grangian approaches [1, 2, 6]. When examining simulation
domains that are much larger than the dimensions of the
particle, unresolved methods are typically applied. In these
methods, the local interactions are determined by auxiliary
fields, which represent the particles in the CFD domain. In
contrast, in resolved methods, the individual particles are
fully discretized, and their dynamics are addressed with
better accuracy. They are often used for smaller system
sizes.

The resolved coupled CFD-DEM approach described
in this paper is an extension of a previous Fictitious Do-
main Method (cfdemSolverIB) [2]. In this implementa-
tion, there is no body force acting on the fluid, which im-
plies that the local pressure profile is solely determined by
the local variations of the velocity field. Accordingly, to
account for the buoyancy acting on the particle due to the
presence of the fluid, an exact term (ρ f gVi) is added, ex-
plicitly.
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In our approach, the gravitational field is directly in-
cluded in the incompressible Navier-Stokes equation as a
body force term. Consequently, the pressure profile also
contains the gravitational contribution. That is why we no
longer need to impose an explicit buoyant force acting on
the particles. Thus, our approach does rely on the assump-
tion that the use of absolute pressure to calculate the par-
ticle dynamical response is relevant when numerical cor-
rections must be implemented at this scale. Although not
relevant differences will be expected when a single parti-
cle is analyzed, such differences might be relevant for very
dense suspensions where the local pressure varies due to
the dynamical coupling between particles.

The present work is structured as follows: in Sec-
tions 2.1 and 2.2, we briefly explain the used CFD-DEM
scheme. Moreover, in Section 2.5, we briefly comment
on a theoretical framework that describes the settling of a
sphere in confined conditions. Finally, in Section 3, we
present some numerical results highlighting the validity of
our methodology.

2 Model Description

2.1 Fluid phase

The governing equation for the fluid phase is the incom-
pressible Navier-Stokes equation:

ρ f
dU
dt

+ ρ f (U · ∇) U = −∇p + µ∇2U + ρ f g . (1)

Our approach explicitly considers the body force term,
which was not considered in the previous implementations
[1, 2, 7].

When discretized for a CFD time step ∆t, equation 1
becomes:
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ρ f
Û − Ut−∆t

∆t
+ ρ f

(
Ut−∆t

· ∇
)

Ut−∆t =

− ∇ p̂ + µ∇2Ut−∆t + ρ f g (2)

where p̂ is the estimated pressure, Û the interim solution
for U and Ut−∆t is the solution found in the previous time
step. Likewise, the continuity equation holds:

∇ · U = 0 . (3)

For each particle, we determine its occupation region
Ti in the CFD grid by applying a correction to the velocity
field in all the corresponding cells. In the cell c ∈ Ti, we
retrieve the velocity Ûc and pressure pc fields.

Once we apply the velocity correction in region Ti, the
divergence-free condition for the velocity is violated in the
rest of the simulation domain and equation 3 is valid only
if we define U = Û − ∇Φ, where Φ is a scalar field. From
equation 3, ∇2Φ = ∇ · Û, which is equivalent to apply a
force-term to equation 1. This approach and its potential
to resolve the motion of particles in liquids has been ex-
tensively discussed by Kloss et al. [8].

2.2 DEM Method

The Discrete Element Method was first presented in 1979
by Cundall [9]. One of the main characteristics of DEM
simulations is its efficacy when resolving the granular
medium at the particle scale. The DEM is a Lagrangian
method, meaning that all particles in the computational
domain have their trajectories solved explicitly in every
time step. Thus, the DEM is capable of simulating a wide
range of phenomena, such as dense and dilute particulate
systems, as well as rapid and slow granular flow. Here,
we briefly discuss the main features of the model, and a
more detailed description of the method was published by
Goniva et al. [1].

For a particle i sedimenting under gravity in a liquid,
its trajectory is calculated using the following force and
torque balances:

miẍi = mig + Fi, f +

Np∑
j=1

Fi, j +
∑
Nw

Fi,w (4)

and

Ii
dω
dt

=

Np∑
j=1

ri, j × F⊥i, j + Ti, f (5)

where i represents the index of the particle, mi is its
mass, xi its position vector and Ii its moment of inertia.
Np represents the number of neighboring particles, and Nw

the number of near walls.
In Table 1 we describe the forces and torques from

equations 4 and 5. The particle-particle Fi, j and the
particle-wall Fi,w contact forces are written in terms of
their ortoghonal and parallel components with respect to
the plane of contact.

Table 1. Summary of forces and torques acting on the particle.
For a full description of the contact forces, refer to [1].

Description Interactions
Particle-particle contact force Fi, j F⊥i, j + F‖i, j
Particle-wall contact force Fi,w F⊥i,w + F‖i,w

Particle-fluid torque Ti, f

∑
c∈Ti

(xc − xi) × Fi,D

Fluid-particle force Fi, f [10]

∑
c∈Ti

Vc[µ∇2Uc−

∇p (1 − φc)]

In the method originally presented in [2], the buoyant
force was explicitly accounted for in the total fluid force
acting on the particles. The current implementation ex-
plicitly considers the gravitational field acting on the fluid
phase. Thus, we represent the fluid-particle interaction
force by the last equation in Table 1. It generalizes the
original approach presented by Shirgaonkar et al. [10].
Importantly, the new approach includes a multiplicative
term (1 − φc) in the pressure gradient accounting for the
shape of the particle. Note, the void fraction field φc rep-
resents the fluid occupation in the volume element c.

2.3 CFD-DEM coupling

The coupling procedure can then be described by the fol-
lowing steps:

- Determine the position and velocity of each particle in
the domain from the DEM state.

- Assign the particles to the cells that contain their centers.

- Solve the incompressible Navier-Stokes equations for
the fluid phase using the PISO algorithm.

- Correct the velocity found in the previous step in the grid
cells where particles are located.

- Calculate Fi,D for all particles, this force is applied in the
next set of DEM time steps.

- Lastly, the boundary conditions are applied in the fluid
phase, and we return to the first step.

2.4 Simulation Details

Here, we simulate the motion of a single particle in a 3D
viscous fluid. The radius and density of the particle are
R = d/2 = 1 mm and ρp = 7850 kg/m3, respectively. The
fluid has density ρ f = 970 kg/m3 and several kinematic
viscosities are explored ν = [1000, 2000, 5000, 12500] in
cSt. Specifically, we examine a sphere left to settle from
rest in a quiescent fluid. In this scenario, we expect the par-
ticle to settle with terminal velocity vS = 2

9µ (ρp − ρ f )gR2

and characteristic time τ = 2
9µρpR2. We set a grid reso-

lution equal to ∆x = d/8 and CFD and DEM time steps
∆t = τ/35. In all cases, the total simulation time was 20τ
seconds and the Reynolds numbers were inferior to 0.1.

2

EPJ Web of Conferences 249, 09004 (2021) https://doi.org/10.1051/epjconf/202124909004
Powders and Grains 2021



2.5 Sphere settling between plane parallel walls

Complementarily, we study the settling terminal veloc-
ity of a sphere under confined conditions. Back in 1923,
Faxén studied the effect of plane parallel walls on reduc-
ing the settling velocity of spheres [11]. In a low Reynolds
number regime, for a sphere centered between two plane
parallel walls separated by a distance H, Faxén proposed
that the drag force applied to the particle by:

Fz =
6πµRv

1 − 1.004s + 0.1475s2 − 0.131s4 − 0.0644s5 (6)

where s = 2R
H = d

H , R the sphere radius and v the settling
velocity. This expression approximates the actual force
acting on the sphere when it is located far from the walls
(s−1 > 2). A more general solution for the drag force was
later introduced by Ganatos et al., covering configurations
that were out of the validity of Faxén’s solution [12].

3 Results and discussions

3.1 Validation

As a first step, we explore a system with dimensions 10d×
10d×25d. Initially, the particle is centered in the xy-plane
at the location of z = 17.5d. Then, it is left to settle from
rest, it accelerates and reaches its terminal velocity.

Figure 1 illustrates the system state obtained after 20τ
seconds, using both approaches. It compares the kinematic
pressure (Figs. 1a and 1b) and velocity (Figs. 1c and 1d)
fields. Note that the cfdemSolverIB approach (Fig. 1a)
does not account for the pressure gradient imposed by the
external field in the fluid. It is also noticeable that the kine-
matic pressure perturbation of the particle movement is
significantly smaller than the hydrostatic pressure gradi-
ent (Fig. 1b). Remark that when using cfdemSolverIB, the
local pressure field is solely defined by the corresponding
variations in the velocity field, as a result of the momen-
tum balance equations. In our approach, apart from that
local pressure contribution, we also have the gravitational
field acting on the fluid. However, no relevant impact is
detected in the velocity fields (Figs. 1c and 1d).

Next, we investigate the stability of our method when
computing very low Reynolds number conditions. Thus,
we perform a systematic study, running a set of distinct
scenarios increasing the fluid viscosity ν. Fig. 2a and
Fig. 2b illustrate the outcomes obtained using both ap-
proaches, in comparison with the analytical prediction
of Stokes’ law. Our results indicate that both methods
yield a reasonable description of the settling process and
the particle reaches a viscous-dependent terminal veloc-
ity v

′

S at the long-time limit. As expected, the results ob-
tained using both methods collapse in a single curve using
vS = 2

9µ (ρp − ρ f )gR2 and τ = 2
9µρpR2. It is noticeable

that both approaches slightly fails to reproduce the analyt-
ical solution during the initial acceleration process (see the
insets in Figs. 2c and 2d).

However, assuming a negligible impact of the finite
size boundary conditions implemented (in line with the re-
sults introduced in [12]), the present approach compares

Figure 1. Comparison of p/ρ f and Uz fields for our approach
and cfdemSolverIB [7]. a) and b) represent the pressure field, c)
and d) the velocity field Uz.

Figure 2. a) and b) Time evolution of the settling velocity of the
sphere for both methods. c) and d) Time evolution of the settling
velocity scaled by the corresponding Stokesian terminal veloc-
ity. The insets represent the relative differences in each case.
Note that a more accurate asymptotic limit velocity is reached
in our method. All solid lines represent the expected Stokesian
dynamics.

better with the asymptotic limit behavior. We speculate
that the difference arises from the impact of dynamic pres-
sure gradients acting on the particle surface for the original
particle discretization. Hence, when a volumetric correc-
tion is applied to compute the pressure gradients to calcu-
late the force Fi, f , we account for the local solid fraction,
resolving the corresponding pressure gradient more accu-
rately.

3.2 Neighboring walls effect

Complementarily, we examine the impact of the confine-
ment on the dynamics of a settling particle. Specifically,
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Figure 3. a) Settling velocity of a sphere between two planes
scaled by the terminal velocity in a large system when varying
the distance between walls H for a liquid with ν = 1000 cS t. The
solid red line represents the inverse of the denominator of Equa-
tion 6. b) When analyzing the same velocities ratios of a) varying
the viscosity, we observe a similar pattern for the confinement ef-
fect on the terminal velocity.

we explore the behavior of a particle located between two
parallel walls. The particle is centered in the xy-plane of
a box with dimensions 10d × Hd × 25d and is left to set-
tle from rest. We systematically vary the distance between
the walls H/d = [1.2, 1.4, 1.8, 2.6], in terms of particle di-
ameter.

Fig 3a shows the terminal velocity of the sphere mov-
ing between two walls and obtained for different confine-
ment conditions, fixing the fluid viscosity ν = 1000 cS t.
For simplicity sake, the data values are rescaled using the
terminal velocity v

′

S that corresponds to the infinite system
size limit. We observe that the simulations can reproduce
a decrease in the terminal velocity when reducing the dis-
tance between the confining walls. Although, the sphere
settles with a velocity larger than the analytical solutions
provided by Faxén [11] and Ganatos et al. [12]. Mean-
while, Fig 3b shows that our implementation has a consis-
tent behavior for the range of viscosities investigated here.
A similar result was previously obtained for a sphere in a
creeping flow condition using an incompressible method
based on OpenFOAM software [13].

4 Conclusions

We introduce an alternative methodology to
solve the particle-fluid interaction in the resolved
CFDEM R©coupling framework. The new approach

explicitly accounts for the body force acting on the fluid
phase, when computing the local momentum balance
equations. The proper representation of the pressure
profile in the fluid phase led to a single force model that
no longer requires an explicit buoyant force to account
for the gravitational interaction. Our method was able to
outperform the cfdemSolverIB method for the settling
velocity of a sphere, exhibiting more accurate results.

Complementarily, we study the dependence of the set-
tling velocity of a sphere under confined conditions. The
results indicated a consistent velocity decrease when re-
ducing the distance between confining walls. Neverthe-
less, our numerical outcomes did not reproduce the ana-
lytical solutions found in the literature.
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