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Abstract. Magnetic beads attract each other forming rather stable chains. We consider such chains formed by
magnetic beads and push them into a Hele-Shaw cell either from the boundary or from the center. When such
a chain is pushed into a cavity, it bends and folds spontaneously forming interesting unreported patterns. These
patterns are self-similar and an effective fractal dimension can be defined. As found experimentally and with
numerical simulations, the numbers of beads, loops and contacts follow power laws as a function of packing
fraction and, depending on the injection procedure, even energetically less favorable triangular configurations
can be stabilized.

1 Introduction

Due to its many applications in mechanics and biology, the
folding and crumpling of threads and wires is of increas-
ing interest. A rich spectrum of patterns has been found
depending on friction, stiffness, aspect ratio and the type
of confinement [1]. Self-assembling systems like origamis
have been devised by adding attractive forces [2]. Much
less is known, however, when the wire has a chirality, as
it is the case for a chain of magnetic particles. In fact,
threads of magnetic beads can be found in Nature on dif-
ferent scales: on nanometric scale in magnetic colloids [3]
and as chains of magnetosomes in magnetotactic bacteria
[4]. Here we will consider macroscopic metal beads to
study two-dimensional folding patterns by injecting them
into a Hele-Shaw cell. Depending on the type of injection
one can get two different folding orientations which then
lead to completely distinct types of macroscopic patterns.

The injection of wires into cavities has been of in-
terest to model the coiling of long DNA in globules and
viral capsids [5] as well as a minimally invasive treat-
ment of saccular aneurysms [6]. Fractal filling patterns
have been observed, while the injection force diverges
with a power law [7, 8]. Three different filling patterns
have been observed depending on friction and the bending
elasto/plasticity of the wire: a spiral phase, a folding phase
and a chaotic phase [1, 9]. Also deformable cavities have
been considered [10, 11]. Here we replace the wire by a
chain of magnetic beads allowing for attractive and repul-
sive interactions between sections of the wire. This opens
up a spectrum of new possibilities including the patterns,
about which we will report here.
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2 Experiment
For the experiment we use magnetized neodymium beads
of d = 5 mm diameter. The cavity consists of a flat acrylic
cylinder of varying radius and 6 mm height put on a black
dish and covered with a transparent plate of acrylic. Two
step motors control the quasi-static (at 4.3 mm/s) injec-
tion into two diametrically opposed holes. Additionally,
feeding into the center of the cavity through a hole in the
bottom plate is possible. Images are recorded above the
cavity with a digital camera Canon PowerShot SX510 HS
in 30 frames per second at 23 cm and used to determine the
particle positions. The magnetic beads naturally assem-
ble with aligned dipole moments into wires that exhibit
macroscopically elasto-plastic bending stiffness [12, 13].
These wires of beads are pushed into the cavity from op-
posite sides until the step motor is unable to proceed fur-
ther. When the two chains come together they connect to
each other (a little differently depending on the polarity of
their tips). Typical patterns formed by the crumpling wires
are shown in the lower row of Fig. 1a.

3 Results
Due to the attractive forces between opposite magnetic
dipoles, neighboring chains tend to collapse into square
lattice structures, which are energetically the most favor-
able configuration [13, 14] and the competition between
this crystallization and the elastic bending forces of the
chains produces the flower-like shapes seen in Fig. 1a. The
network formed by contacting beads is shown for one pat-
tern in Fig. 1b. Besides their compact core these patterns
resemble the "classical" patterns of Ref. [1]. For our pat-
terns the number of loops and the number of contacts in-
crease with the packing fraction φ like power laws with
exponents α = 1.72 ± 0.06 for loops and β = 1.19 ± 0.03
for contacts, as shown in Fig. 2.
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Figure 1. (a) Patterns obtained injecting wires of magnetic beads
from opposite sides. First column: simulations using a molecu-
lar dynamics method (MD). Second column: experiments per-
formed for two different cavity radii, namely, R = 10d and
R = 20d. (b) Contact network (graph) of the pattern obtained
in a cavity of R = 20d radius. Edges are established when the
distance between the centers of the spheres are less than or equal
to the sphere diameter. A typical loop is highlighted in red.

If the radius of the cavity exceeds 25 particle di-
ameters the two injected chains start to self-interact be-
fore reaching the opposite chain and the patterns become
anisotropic. Beyond a radius of 40 particle diameters two
separate aggregates independently grow on each side.

In order to characterize the aggregate morphology we
choose the relationship between radius of gyration and
number of beads to determine an effective “fractal dimen-
sion“ [15–17],

Rg(N) ∝ N1/d f

where Rg(N) is the radius of a circle around the center and
N the number of particles inside the circle. The average
is taken over nine samples and the results can be seen in
Fig. 3. Unfortunately, due to the small system sizes the
range of validity of the power-law is too narrow to allow
for the proper definition of a fractal dimension. From R =

10d to R = 20d the effective fractal dimension decreases
from d f = 1.55±0.03 to d f = 1.33±0.03. For comparison,
the fractal dimension found in Ref. [17] was d f = 1.54 ±
0.03 and d f = 1.71 ± 0.01 in Ref. [16].

Quite different is the situation when one chain is in-
jected from the bottom into the center of the cavity as
depicted in Fig. 4. We see that then eventually space is
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Figure 2. Log-log plot of (a) number of loops Nl and (b) number
of contacts Nc as a function of the packing fraction φ. The open
and full symbols correspond to a cavity of radius R = 10d and
R = 20d, respectively. The solid and dashed lines correspond to
least-squares fits to the data, giving the scaling exponents α =

1.72 ± 0.06 for loops (a) and β = 1.19 ± 0.03 for contacts (b).

completely filled with beads. Besides their hexagonal tex-
ture these patterns resemble the “spiral“ patterns found in
Ref. [1]. What is spectacular about these compact patterns
is their triangular crystallization, which clearly is energet-
ically less favorable than the square lattice.

From the sequence of images in Fig. 4 we see that
from the beginning, stripes of attached chains do not form
squares as in Fig. 1, but triangles. By injecting from the
bottom, the spheres in the chain and their magnetic mo-
ments undergo some rotations, which weakens their forces
in the direction of the chain while allowing for out of plane
interactions. As explained in Ref. [18] this favors a trian-
gular lattice as shown in Figs. 5a and b.

In order to get a deeper understanding behind the ener-
getic stability of the observed patterns we also performed
Molecular Dynamics simulation. Short-range repulsions
are accounted for through the repulsive part of a Lennard-
Jones potential, while the magnetic pair forces FFF i j and pair
torques τττi j due to point-like magnetic dipoles at the centers
of the beads are computed through
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Figure 3. Radius Rg(N) of a circle around the center versus
the number N of particles inside the circle. The lines are least-
squares fits to the data, giving the exponents d f = 1.55± 0.04 for
R = 10d (open circles) and d f = 1.34 ± 0.03 for R = 20d (full
circles).

Figure 4. Four snapshots taken during the filling of the cavity.
Here a chain of magnetic beads is injected into the cavity into the
center from the bottom.

FFF i j = ∇∇∇
(
mmmi · BBB j

)
(1)

τττi, j = mmmi × BBB j (2)

where

BBB j(rrri j) =
µ0

4π

3
(
mmm j · r̂rri j

)
r̂rri j −mmm j

r3
i j

 (3)

is the magnetic field produced by bead j at the position of
bead i, rrri j is the vector pointing from the center of the bead
i to the center of the bead j, r̂̂r̂ri j =

rrri j

|rrri j |
and µ0 is the vacuum

permeability.
The equations of motion for the translation and rota-

tion of all beads, FFF i = dpppi/dt and τττi = dLLLi/dt, were

Figure 5. Lowest energy configuration of a triangular lattice for
(a) experiment injecting the chain through the center of the cav-
ity and (b) Monte Carlo simulation of dipoles on a triangular net-
work with periodic boundary condition in both directions (top-
bottom and right-left). Here, the dipoles can only rotate (not
move) to reach the lowest energy configuration. In both cases,
the dipoles are identified by painting in red the hemisphere (the
heads of the dipoles) into which the dipole vector points. For
the sake of clarity, we have added green lines along the direction
of the dipoles on the experimental images as shown in (c). (d)
For better visualization we magnify part of the Fig. 5 (b). We
surround with a dashed green line a region of the packing, exper-
imentally and numerically obtained where the magnetic dipole
orientations exhibit considerable similarity. Those regions are
shown in c and d, respectively. In these selected regions the pat-
tern of the magnetic dipoles corresponds to the lowest energy
configuration.

solved using a 6th order predictor-corrector method, where
pppi and LLLi are linear and angular momentum, respectively.
After adjusting parameters we obtained simulated patterns
that agree quite well with the experimental ones as seen in
Fig. 1. We verified that our simulations also reproduce the
experimental data quantitatively by calculating the number
of loops and contacts as shown in Fig. 2 and the radius of
gyration as shown in Fig. 3. Using the positions of the N
beads from the simulation, the total magnetic potential en-
ergy E can be obtained by summing over all pairs of beads
in the patterns according to Eq. (4).

E = −

N−1∑
i=1

N∑
j=i+1

mmmi · BBB j (4)

As seen in Fig. 6, for the case of flower-like patterns,
we find that the total magnetic energy increases linearly
with packing fraction, while the magnetic energy per par-
ticle tends to approximately 1.29E0, where E0 = −2 µ0m2

4πd3

is the energy per particle for a pair of aligned dipoles of
moment m separated by a distance d equal to the diameter
of the beads.

On the square lattice, the configuration of the mag-
netic dipole moments with the lowest energy is very sim-
ple since it corresponds to the antiferromagnetic ground
state of the Ising model. The situation on the triangu-
lar lattice is much more complicated, since it corresponds
to the Heisenberg model on a triangular lattice which is
known to be frustrated, exhibiting many ground states at
low temperatures [19]. Fig. 5 shows that the lowest energy
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Figure 6. Total magnetic energy E normalized by E0 (the mini-
mum energy of a pair of dipoles of moment mmm at distance equal
to the particle’s radius) as a function of packing fraction ob-
tained from the simulation. The simulation was performed for
the flower-like pattern for two different cavity sizes, R = 10d
(open symbols) and R = 20d (full symbols). The inset shows the
energy density versus the packing fraction.

configurations on the triangular lattice involve magnetic
dipole moments that are strongly aligned with the plane.
To understand how the system evolves to the minimal en-
ergy configuration we realized a Monte Carlo simulation
of dipoles on a triangular network with periodic boundary
condition in both directions (top-bottom and right-left).
Here, the dipoles can only rotate (not move) to reach the
minimal energy configuration. As in the experiment, the
results shown in Fig. 5b also reveal domains of parallel
dipoles that are all rather strongly aligned with the plane of
the cell. Once the metastable magnetic situation is locked
in, the slight pressure pushing the chain against the cavity
wall is sufficient to achieve the densest packing configura-
tion and stabilize the pattern of Fig. 4. In fact, a transition
to the flower-type pattern can be achieved by tilting the
Hele-Shaw cell beyond the friction angle[18].

4 Conclusion

We have reported here new patterns that appear while feed-
ing a chain of magnetic beads into a cavity. Precisely,
if two chains are simultaneously injected from opposite
sides, we observe flower-like structures having a square
lattice in the center and loops as petals. If one chain is in-
jected in the center, then the cavity is filled with a hexagon
of six triangular lattices. We explained how this energeti-
cally metastable state can be attained.

We have shown with our model experiment how inter-
actions between elements of a chain can modify its crum-
pling when injected into a cavity. This applies for instance
to the coiling of long polymers in globules or viruses in
capsids [5], which in fact not only exhibit magnetic ef-
fects but also many other types of interactions. Therefore,
it would be interesting to also include electric, entropic,
van der Waals and other forces in the future. It would
also be important to study in the future the filling of three-
dimensional cavities.
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