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Circulating tumor DNA (ctDNA) in plasma has been used as a biomarker for cancer
detection and outcome prediction. In this study, we collected the five precipitates
(fractions 1–5) and leftover supernatant plasma component (fraction 6) by a sequential
centrifugation in plasma samples from nine small cell lung cancer (SCLC) patients. The
fractions 3, 5 and 6 were large vesicles, exosomes and extracellular vesicles (EVs)-
depleted plasma, respectively. Fragment size analysis using DNAs from these fractions
showed dramatical differences from a peak of 7–10 kb in fraction 1 to 140–160 bp in
fraction 6. To determine ctDNA content, we performed whole genome sequencing and
applied copy number-based algorithm to calculate ctDNA percentage. This analysis
showed the highest ctDNA content in EV-depleted plasma (average = 27.22%), followed
by exosomes (average = 22.09%) and large vesicles (average = 19.70%). Comparatively,
whole plasma, which has been used in most ctDNA studies, showed an average of
23.84% ctDNA content in the same group of patients. To further demonstrate higher
ctDNA content in fraction 6, we performed mutational analysis in the plasma samples from
22 non-small cell lung cancer (NSCLC) patients with known EGFR mutations. This
analysis confirmed higher mutation detection rates in fraction 6 (14/22) than whole
plasma (10/22). This study provides a new insight into potential application of using
fractionated plasma for an improved ctDNA detection.

Keywords: ctDNA, liquid biopsy, plasma, exosome, copy number variation
INTRODUCTION

Cancer is a serious public burden with an estimation of 1,898,160 new cancer cases and 608,570
cancer deaths in the United States in 2021 (1). To reduce cancer-related morbidity and mortality,
more effective approaches in diagnosis and treatment are urgently needed. It is well known that
genomic abnormalities are not only hallmarks of cancers but also in evolution during cancer
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progression (2). Due to intratumor heterogeneity, however,
genomic sequencing from a single tumor biopsy may not fully
capture the genomic profile of tumors (3). Moreover, tissue
biopsy is limited on tissue availability and sampling frequency.
It may increase patients’ risk of complication because of the
invasive procedure. To address these issues, analysis of
circulating cell-free DNA (cfDNA) in blood has been used as a
non-invasive method for molecular characterization of tumor
genome variations. This blood-based approach has been referred
to as liquid biopsy and has demonstrated great potential in
cancer diagnosis and outcome prediction (4–6).

Due to lack of adequate oxygen and nutrition, rapidly growing
tumor cells often become stressed, and experience apoptosis and
necrosis. DNA fragments released from these dead cells eventually
end up in circulating blood (7). In patients with cancer, a fraction of
cfDNA is tumor-derived and is termed circulating tumor DNA
(ctDNA). Analysis of ctDNA has an advantage of identifying
genomic alterations that are specific to tumor (8, 9). Interestingly,
ctDNA has also been reported in isolated extracellular vesicles (EVs)
(10–12). Analysis of vesicles-associated nucleic acids for BRAF,
KRAS, and EGFRmutations has shown higher sensitivity compared
to plasma ctDNA in non-small cell lung cancer (NSCLC) patients
(13). Microvesicles isolated from plasma of NSCLC patients can be
used for EGFR genotyping for the detection of drug-resistance
mutations, demonstrating improved concordance with tumor tissue
compared to a conventional ctDNA (14). Additionally, exosomes
from patients with metastatic pancreatic cancer showed a higher
mutant KRAS allele frequency than exosomes from patients with
local disease (15). These studies suggest that EVsmay enrich ctDNA
and may be used as a preferred source of material for cancer
biomarker discovery. However, a recent study showed that the
extracellular DNA may not be associated with exosomes, but could
instead be co-purified with the small EV fraction during standard
isolation protocols (16). Nevertheless, these studies suggest that EVs
and/or their co-precipitates enrich ctDNA and may be used to
increase sensitivity of cancer biomarker detection.

To systematically determine DNA size distribution and
ctDNA content in different fractions of plasma, in this study,
we collected plasma from nine small cell lung cancer (SCLC)
patients with known high ctDNA content (17). We performed
five consecutive centrifugations, collected each of precipitates
and analyzed DNA size distribution in each collection. We also
performed low-pass whole genome sequencing and estimated
ctDNA content using a novel copy number-based algorithm in
each of these fractions. In a separate set of plasma samples
consisting of 22 non-small cell lung cancer (NSCLC) patients
with known EGFR mutations, we compared the mutation
detection rate in the fractionated plasma and whole plasma.
MATERIALS AND METHODS

Patients and Plasma Collection
We selected nine SCLC patients whose plasma demonstrated
relatively high ctDNA content based on our previous study (17),
and 22 NSCLC patients with known EGFR mutations in tumor
Frontiers in Oncology | www.frontiersin.org 2
tissues. We collected the plasma samples from the Medical
College of Wisconsin Tissue Bank and the Second Affiliated
Hospital of Nanjing Medical University. Original plasma
samples (platelet-rich) were prepared by one time 3,000 rpm
for 10 min as previously described (17–19). All samples were
uniformly processed and stored at −80°C prior to this study.
Cancer diagnosis was confirmed in all cases by routine
histopathologic examination. All participants provided written
informed consent. This study was approved by the Medical
College of Wisconsin Institutional Review Broad and the
Research and Ethical Committee of the Second Affiliated
Hospital of Nanjing Medical University.

Characterization of Fractions 3
(Large EVs) and 5 (Exosomes)
A total of 10 ml pooled plasma from 20 healthy individuals
(0.5 ml of each) was used for fractions 3 and 5 preparation
(Figure 1 for detail). Transmission electron microscopy (TEM),
Nanosight and flow cytometry were used to characterize the two
fractions. The fractionated samples were first fixed in 2.5%
glutaraldehyde solution for 2 h. About 10 ml of the diluted
mixtures were then transferred to a cleaned copper net and
images were obtained by TEM (JEM-1010, JEOL, Japan) after
staining with 2% phosphotungstic acid solution. For Nanosight
analysis, fractionated samples were diluted 2,000-fold in PBS for
size distribution analysis using a Zetasizer Nano ZS (Malvern
Instruments Ltd, UK). For flow cytometry analysis, the fractions
3 and 5 were first resuspended in 100 ml PBS and then incubated
with anti-CD63 and anti-CD81 specific monoclonal antibodies
(BD Biosciences, San Jose, CA, USA) with fluorescent direct
labeling. BD Accuri C6 Flow Cytomenter (BD Accuri, San Jose,
CA, USA) was used to examine the characteristic protein
markers of the two fractions.

DNA Extraction and Quantification
For each SCLC patient, 1 ml platelet-rich plasma (one spin at
3,000 rpm for 10 min) was used for fraction separation. For each
NSCLC patient, 2 ml platelet-poor plasma (double spins at 3,000
rpm for 10 min) was used for DNA extraction and subsequent
mutational analysis. DNAs from all samples were extracted using
DNA Blood Mini Kit (Qiagen, Valencia, CA, USA). Final DNA
eluent (50 µl) was quantified by Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA). High Sensitivity DNA
Analysis Chip (Agilent Technologies, Santa Clara, CA, USA)
was used to examine the DNA size distribution of different
fractions. The extracted DNA was stored at −20°C until use.

Library Preparation and Whole
Genome Sequencing
DNA libraries were prepared using a ThruPLEX DNA-seq
Library Kit (Takara Bio, Mountain View, CA) according to the
manufacturer’s instructions. About 0.5–1 ng DNA was used for
library preparation including end repair, adaptor addition, and
15 cycles of high-fidelity amplification. Following amplification,
libraries were purified using a 1:1 ratio of DNA sample to
Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis,
June 2021 | Volume 11 | Article 691798
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IN, USA). The library quality and insert size were examined
using High Sensitivity DNA Analysis Chip. Sequencing Libraries
were diluted to a concentration of 10 nM and every 12 index
libraries were pooled for 50 bp single-read sequencing on a
HiSeq2500 Sequencing System (Illumina, San Diego, CA, USA).

Copy Number Variation (CNV) and ctDNA
Content Calculation
Raw sequencing data (fastq files) were first mapped to the human
reference genome (NCBI37/hg19) using SeqMan NGen 12
(DNASTAR, Madison, WI, USA) and assembled in Partek
Genomics Suite (St. Louis, MO, USA). The mapped reads were
then binned into 1 Mb genomic bins and rescaled to 10 million
reads after excluding sex chromosomes. Read count in each
genomic window was normalized to mean read count from 33
healthy controls as previously described (19). The resulting ratios
were further transformed with log2 and adjusted for GC content
(20). The fully normalized log2 ratios in genomic bins were
subjected to segmentation using the copy number analysis
method (CNAM) algorithm (Golden Helix, Bozeman, MT,
USA). To estimate ctDNA content, we developed a CNV-based
algorithm to quantify ctDNA percentage in plasma cfDNA (21).
In these studies, we used mean log2 values of genomic segments
generated from CNAM algorithm for ctDNA content
calculation. Segment sizes were evaluated to test ctDNA
Frontiers in Oncology | www.frontiersin.org 3
content stability. We selected mean log2 values from most
significant deletion segments (>20 Mb in size) in each patient
and calculated ctDNA content by 1–2segment log2 ratio (21).

EGFR Mutational Analysis
For 22 NSCLC patients with known EGFRE19del/L858R mutations
in tumor tissues, we applied ARMS-PCR method and tested their
mutational status in fraction 6 and platelet-poor plasma samples
using EGFR Mutations Detection Kit (Amoy Diagnostics, Xiamen,
Fujian, China). Mutational analysis was performed on the ABI 7500
Real-Time PCR System (Thermo Fisher Scientific, Foster City, CA,
USA). PCR was prepared by mixing 5 µl DNA with 5 µl control
reaction mix or mutation mix (E19del, L858R). PCR was set up as
follows: 95°C/5min; 15 cycles of 95°C/25 s, 64°C/20 s and 72°C/20 s;
31 cycles of 93°C/25 s, 60°C/35 s and 72°C/20 s. The signal is
collected at 60°C in the third stage.
RESULTS

Plasma Fractions
To estimate cfDNA size and ctDNA content from different
plasma fractions, we selected nine SCLC patients (Table S1)
who have been previously analyzed and showed relatively high
tumor burden (17). As described in previous publications,
A B

FIGURE 1 | Workflow of study design. (A) Preparation of plasma fractions by five consecutive centrifugations. (B) Conventional plasma cfDNA extraction. Fraction 1:
Precipitates after centrifugation at 500g. Major components of this fraction are some cells and large cell debris. Fraction 2: Precipitates after centrifugation at 2,000g
from fraction 1 supernatant. Major components of this fraction are small cell debris and large vesicles, such as apoptotic bodies. Fraction 3: Precipitates after
centrifugation at 10,000g from fraction 2 supernatant. Major component of this fraction is large microvesicles. Fraction 4: Precipitates after centrifugation at 10,000g
from fraction 3 supernatant treated with Thrombin at room temperature for 5 min (9.5 ul Thrombin per 950 ul sample). Major component of this fraction is fibrin.
Fraction 5: Precipitates after centrifugation at 1,500g from fraction 4 supernatant treated with Exoquick (System Biosciences, Mountain View, CA, USA) at 4°C
overnight. Major component of this fraction is believed to be exosomes. Fraction 6: Supernatant from fraction 5. This fraction is the leftover supernatant after
removing precipitates from five consecutive centrifugations.
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increasing centrifugation speed may generate sequential
precipitations of different components including cells, cell
debris, larger vesicles, apoptotic bodies, and microvesicles (11,
12, 22, 23). Based on these publications, we performed sequential
centrifugation using 1 ml plasma sample/patient and collected
six fractions for separate cfDNA extraction. Figure 1 shows
overall workflow of this study. To test higher ctDNA content in a
plasma fraction, we compared mutation detection rate between
the plasma fraction and whole plasma in 22 NSCLC patients with
known EGFR mutations in tumor tissues.

Characterization of Extracellular Vesicles
in Fractions 3 and 5
We first applied transmission electron microscopy and
nanoparticle tracking analysis (Nanosight) to estimate vesicle
size in the fractions 3 and 5 (Figures 2A, B). This analysis
showed that all particles in fraction 3 were within the range 200–
600 nm with peak size at 405.5 nm while 83.7% particles in
fraction 5 were within 20–200 nm with main size at 100.3 nm.
We then applied flow cytometry to examine characteristic
protein markers in the two fractions. This analysis showed that
CD63 and CD81 positive ratio were 26.4 and 11.3% in fraction 3,
and 66.4 and 88.2% in fraction 5, respectively (Figures 2C, D).
Clearly, the fraction 3 is featured as large microvesicles while
fraction 5 is featured as exosomes.

DNA Yield in Each Plasma Fraction
To evaluate DNA yield from each plasma fraction, we isolated
DNA and quantified the DNA concentration using a high
sensitive Qubit assay in a total of 54 fractionated biospecimens.
Frontiers in Oncology | www.frontiersin.org 4
From 1 ml starting plasma, an average yield of each individual
fractions was 5.03 ng (median = 1.66 ng, range 0.23–17.01 ng) in
fraction 1, 1.73 ng (median = 0.86 ng, range 0.47–5.15 ng)
in fraction 2, 0.99 ng (median = 0.50 ng, range 0.18–2.84 ng)
in fraction 3, 0.68 ng (median = 0.40ng, range 0.18–1.48 ng) in
fraction 4, 4.17 ng (median = 2.65 ng, range 0.58–13.05 ng) in
fraction 5 and 4.28 ng (median = 1.55 ng, range 0.22–12.15 ng)
in fraction 6. Although the average DNA yields in fractions 1, 5
and 6 were among top three and accounted for 79.9% of all DNA
yields, their variations were also among the top three. In contrast,
fractions 2–4 showed relatively low but stable DNA yield
(Figure 3A).

DNA Size Distribution in Different
Plasma Fractions
To investigate DNA size distribution, we measured each of the
six DNA samples using Agilent Bioanalyzer. This analysis
revealed distinct peak sizes in different fractions. The fraction 1
showed a peak size of 7,000–10,000 bp which was gradually
reduced in fractions 2–3. Although barely seen in fraction 1, the
density of a smaller fragment at ~160 bp was gradually
intensified from fractions 3 to 6 (Figure 3B). In some samples,
the fraction 6 showed a peak size at ~140 bp (Figure 3C). The
fragment sizes are similar to the DNA length of a mono-
nucleosome (∼147 bp) (23). Overall, we observed clear trend
that the larger fragment (~10,000 bp) was slowly diminished
from fractions 1 to 3 while smaller fragment (~160 bp) was
gradually increased from fractions 4 to 6. Clearly, larger DNA
fragments in fractions 1 and 2 are more likely derived from
genomic DNA contamination of cell debris and platelets.
A B

DC

FIGURE 2 | Identity analysis of fraction 3 (large microvesicles) and fraction 5 (exosomes). (A) Transmission electron microscopy. The round shape of large
microvesicles (LMV) and exosomes by negatively staining the background with phosphotungstic acid. The bar represents 200 nm. (B) Nanosight analysis. Particle
sizes of fractions 3 and 5 are different with 405.5 nm and 100.3 nm in the main peak value, respectively. (C, D) Flow cytometry of characteristic protein analysis.
Results of CD63 (C) and CD81 (D) positive ratio show 26.4 and 11.3% in fraction 3, and 66.4 and 88.2% in fraction 5, respectively.
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ctDNA Content in Different Fractions
of Plasma
To estimate ctDNA content (defined as ctDNA percentage in a total
cfDNA) from each plasma fraction, we first performed low-pass
whole genome sequencing and received approximately 20 million
(range 9.4–42.1 million) mappable reads per fraction (Table S2).
We then performed log2 ratio-based segmentation analysis using 1
Mb genomic windows. This analysis showed a significant change of
detectable copy number among different fractions. In general, the
fractions 1 and 2 might show detectable copy number variations
(CNVs) but call confidence was relatively low. In contrast, the
fractions 3 (large EVs), 5 (exosomes) and 6 (EVs-depleted plasma)
were more likely to demonstrate detectable CNVs with high
confidence call (Figure 3D).

To calculate ctDNA content, we selected mean value from most
significantly deleted segments in each patient and estimated ctDNA
proportion in each individual fraction (21). This analysis showed that
the average ctDNA content was 12.12% (median = 9.30%, range
0.39–27.09%) in fraction 1, 14.25% (median = 16.93%, range 3.53–
22.82%) in fraction 2, 19.70% (median = 20.18%, range 6.53–37.94%)
in fraction 3, 19.23% (median = 18.42%, range 4.93–38.60%) in
fraction 4, 22.09% (median = 20.45%, range 7.16–40.51%) in fraction
5, and 27.22% (median = 27.04%, range 10.76–40.12%) in fraction 6.
Clearly, ctDNA content in EVs-depleted fraction 6 was the highest
among the six components. Fractions 5 (exosome) and 3 (large EVs)
Frontiers in Oncology | www.frontiersin.org 5
showed the 2nd and 3rd highest ctDNA content, respectively
(Figures 4A, B and Table S3). We also compared the fractionated
plasma DNA to platelet-poor plasma DNA for their ctDNA content
differences. The ctDNA content in platelet-poor plasma showed an
average of 23.84% (median = 23.34%, range 6.71–41.22%), further
support that the fraction 6 has the highest ctDNA content among all
plasma fractions and whole platelet-poor plasma.

To further demonstrate ctDNA content difference between
fraction 6 and whole plasma, we performed clustering analysis
using GC-corrected log2 ratio as input. Although fraction 6 and
platelet-poor plasma from the same patients clustered perfectly across
all chromosome regions, the heatmap showed clear intensity
differences in most regions showing CNVs (Figure 4C). Of nine
cases, seven showed higher intensity (hence, higher ctDNA content)
in fraction 6 than in whole plasma. For example, based on mean
absolute log2 ratios at these selected genomic segments (Table S4), we
estimated that ctDNA content in patient 7 was 37.2% in fraction 6
while 23.3% in platelet-poor plasma, indicating 13.9% more ctDNA
content in fraction 6 than whole plasma sample in the patient.

Detection of EGFR Mutations
in Fractionated Plasma and
Platelet-Poor Plasma
Since fraction 6 showed the highest ctDNA content, we
hypothesized that the fraction 6 had higher sensitivity in
A

B

D

C

FIGURE 3 | DNA yield, size and overall view of genomic alterations in six fractions collected from a sequential centrifugation of 1 ml plasma sample. (A) DNA yield
(ng) from six different fractions. (B) DNA size (bp) distribution in six plasma fractions of patient 1. (C) DNA size (bp) distribution in six plasma fractions of patient 7.
(D) Overall view of genomic alterations in six plasma fractions and their corresponding whole plasma from patient 1. Segmentation-based copy number variation
analysis shows different genomic variations across chromosomes 1–22. Most significant segments losses (arrows) on chromosome 6 were used to calculate ctDNA
content. The log2 ratio scale in y axis was from −0.4 to 0.4. F1–6 represent fractions 1-6, respectively.
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mutation detection. To test this, we selected 22 non-small cell
lung cancer (NSCLC) patients with known EGFR E19del/L858R
mutations in tumor tissues (Table S5). The positive percentage
of serum tumor biomarkers including CEA (Carcino-embryonic
antigen) and CYFRA 21-1(Cytokeratin-19-fragment) was 36.4
and 40.9%, respectively, in these NSCLC patients. We applied the
amplification-refractory mutation system (ARMS)-PCR assays
to detect these mutations in the DNAs derived from the fraction
6 and platelet-poor plasma. Among the 22 patients, we identified
EGFRmutations that matched to tumor tissues in 14 of fraction 6
samples and 10 of platelet-poor plasma samples. Sensitivity of
the EGFR mutation detection was 63.6% (95% CI: 40.8 to 82.0%)
in fraction 6 and 45.5% (95% CI: 25.1 to 67.3%) in platelet-poor
plasma, respectively (Table 1). This result suggests that
compared to traditionally used platelet-poor plasma, the
fraction 6 derived from a series of centrifugations including
removal of EVs may improve EGFR mutation detection.
DISCUSSION

It is well known that ctDNAs are detectable in plasma samples of
peripheral blood (24–26). The ctDNAs appear to demonstrate
unique DNA fragmentation pattern and smaller fragment size
(27). However, effect of plasma preparation methods on ctDNA
Frontiers in Oncology | www.frontiersin.org 6
content has not been reported. In this study, we isolated DNA
from six fractions of plasma samples by multiple physical and
chemical precipitations. We applied low-pass whole genome
sequencing technology to determine CNVs for ctDNA content
estimation. Our results showed that DNA fragment size and
ctDNA content varied among the six fractions with fraction 6
showing enrichment of smaller DNA fragments and tumor-
derived cfDNA. Fraction 6 also showed higher sensitivity in
mutation detection than whole (unfractionated) plasma. These
results suggest that plasma preparation before DNA extraction is
an important step for sensitive detection of low level ctDNA in
peripheral blood.

By separating whole plasma into six fractions, we were able to
compare DNA yield, size distribution and ctDNA content
differences among these fractionated samples. For fractions
1–3, ~10,000 bp DNA fragments are dominant but total DNA
yields are gradually decreased. Since fractions 1–2 are primarily
composed of contaminated cell debris, platelets and larger
vesicles such as apoptotic bodies, it is not surprised to see
higher molecule weight DNA fragments. The fraction 3 is
believed to contain primarily large EVs, which have shown
predominantly large size (~10,000 bp) dsDNA by chip-based
capillary electrophoresis (11), which is consistent with our
observation. Additionally, a recent report showed that
centrifugation protocols had an effect on DNA integrity (28).
A B

C

FIGURE 4 | Differences of ctDNA content in fractionated plasma components and whole plasma. (A) Overall view of ctDNA content from fractionated plasma
components and whole plasma. The average ctDNA content is the highest in EVs-depleted fraction 6. (B) Differences of ctDNA content among fractions 3, 5 and 6.
(C) Heatmap of log2 ratio in 1 Mb genomic window across chromosomes 1–22 in fraction 6 (F6) and whole plasma (WP) from nine patients (P1–P9). Red color
represents copy number gain, while blue represents loss. Intensity of the color is proportional to the value of log2 ratio and reflects the weight of ctDNA in overall
background cfDNA.
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This study reported longer DNA fragments almost exclusively in
CPBasic Fraction (plasma after 400g for 10 min centrifugation)
and CPAdBasic_P Fraction (pellet after 400g for 10 min and max
speed for 1 min), which is also consistent with our observation.
Fractions 4–5 are dominated by 160 bp fragments. This DNA
size is similar to commonly reported cfDNA and is
corresponding to the size of chromatosomes (nucleosome +
linker histone; ∼167 bp) (23). Fraction 4 is thrombin-
precipitated fibrin. Thrombin acts as a serine protease that
converts soluble fibrinogen into insoluble strands of fibrin, as
well as catalyzing many other coagulation-related reactions.
Fraction 5 is derived from Exoquick-precipitated exosomes and
other small EVs. Studies have shown that the exosomes contain
DNA from parent tumor cells (10–12). Interestingly, DNA sizes
from fraction 6 seem sample-dependent with some samples
being at ~160 bp while others showing ~140 bp. Fraction 6 is
the leftover supernatant after five consecutive precipitations and
can be considered as EVs-depleted plasma. Clearly, the smaller
mono-nucleosome derived DNA has been preserved after
multiple centrifugations. Further study is needed to determine
whether the mono-nucleosome sized DNA is free in true free
state or in histone-bound state.

By comparing different plasma fractions, we observed a clear
trend of higher ctDNA content in fractions 3 (large EVs), 5
(exosomes) and 6 (EVs-depleted plasma). Consistent with our
findings, a previous study showed that large vesicles from cancer
patients enriched ctDNA (11). Another study showed that DNA
from nanoscale vesicles (30–220 nm, the size of exosomes) is
better than whole plasma cfDNA for mutation detection in early
stage NSCLC (12). It is known that ctDNA tends to be shorter
than normal cfDNA in plasma (29). An animal model-based
study demonstrated that the most common fragment length of
ctDNA was 134–144 bp, which is significantly smaller than the
most common 167 bp fragment present in noncancer cfDNA
(30). Since fraction 6 has smaller fragments (∼140 bp) than any
other fractions, it may be one reason to explain why fraction 6
shows an increased ctDNA content and thus higher sensitivity in
mutation detection. Additionally, detection of EGFR mutations
in plasma samples of NSCLC patients are predictive of survival
and resistance to EGFR TKI (31). Therefore, our results strongly
support that the enriched ctDNA in fraction 6 will increase
mutation detection sensitivity and facilitate identification of
tumor-specific biomarkers.

An innovative feature of this study is the assessment of
ctDNA content in multiple fractions of plasma. Since all
Frontiers in Oncology | www.frontiersin.org 7
fractions were derived from the same 1 ml of plasma by
consecutive centrifugations, we were able to directly compare
ctDNA contents in different fractions from the same patients.
Another feature is ctDNA content estimation using a novel
algorithm. To determine ctDNA content, mutant allele
frequency is commonly used. However, it is difficult to
calculate ctDNA content when cfDNA input is low. In this
study, we applied a CNV-based algorithm to estimate ctDNA
content (21). The CNV-based method uses an average log2 ratio
values across multiple genomic bins (windows). Therefore, the
estimate is expected to be more stable when compared to single
mutant allele-based method. Additionally, we selected patients
with high tumor burden from our previous study (17). The high
tumor burden is necessary to accurately determine ctDNA
content and to demonstrate difference of the ctDNA content
among these fractions. It is worth mentioning that the plasma
fractionation may allow maximum use of valuable plasma
samples for a wide variety of studies. For example, supernatant
fraction of a plasma sample may be used for ctDNA-based
genetic analysis while exosome fraction of the same plasma
sample may be used for microRNA-based biomarker study.
This approach resembles blood transfusion of components in
clinic to efficiently use different blood fractions.

Although we observed significant ctDNA content differences
in fractionated plasma components and showed higher
sensitivity in mutation detection in EV-depleted plasma
fraction, this study also has some limitations. First, we were
not able to remove any possible DNA that may be co-purified
with exosomes in fraction 5. A new study has shown that
extracellular DNA could be co-purified with the small EV
fraction during standard isolation protocols (16). Therefore,
the origin of ctDNAs detected in fraction 5 needs further
investigation. Second, we made double stranded DNA library
for sequencing analysis. It seems that double stranded DNA
might not be associated with exosomes or with any small EVs at
all (32). Single strand DNA library preparation method may be
needed to evaluate the presence of ctDNA in exosomes. Third,
we tested plasma EGFR mutations in 22 patients only. Although
the EV-depleted plasma fraction showed higher mutation
detection rate than whole plasma (63.6% vs 45.5%), the
difference did not reach statistical significance. Further study in
large sample size is needed. Fourth, the current study used a
sequential centrifugation process, which was involved in multiple
pipetting and sample transfer, significantly increasing risk of
sample contamination. Future study to optimize the
TABLE 1 | Comparison of the EGFR mutation status between fraction 6 DNA and cell free DNA in NSCLC patients.

EGFR
genotype

Tissue Plasma (n = 22)

Fraction 6 DNA cfDNA

Mutant type Wild type Mutant type Wild type

Mutant type 22 (100.0%) 14 (63.6%) 0 10 (45.5%) 0
Wild type 0 0 8 (36.4%) 0 12 (54.5%)
Sensitivity (%) (95% CI) 63.6% (40.8–82.0) 45.5% (25.1–67.3)
Specificity (%) (95% CI) NA NA
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centrifugation steps will help simplify the sample processing.
Finally, because tumor genome is evolving during disease
progression, it is interesting to analyze ctDNA content changes
in different plasma fractions at different blood draw time points.
Nevertheless, our study provided a new insight into potential
application of fractionated plasma for an improved ctDNA
detection. The result supports that different plasma fractions
may enrich different types of tumor-associated molecules.
Further understanding of DNA origins in different plasma
fractions will facilitate cancer biomarker discovery.
CONCLUSIONS

cfDNA from different fractions of plasma varies in fragmentation
sizes and ctDNA contents. Due to its higher ctDNA content and
increased sensitivity of mutation detection, the fraction 6 is the
preferred source of material for ctDNA-based genomic analysis.
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