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Roles of Long Noncoding
RNAs in Conferring Glioma
Progression and Treatment
Jie Qin, Chuanlu Jiang, Jinquan Cai* and Xiangqi Meng*

Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China

Accompanying the development of biomedicine, our knowledge of glioma, one of the
most common primary intracranial carcinomas, is becoming more comprehensive.
Unfortunately, patients with glioblastoma (GBM) still have a dismal prognosis and a high
relapse rate, even with standard combination therapy, namely, surgical resection,
postoperative radiotherapy and chemotherapy. The absence of validated biomarkers is
responsible for the majority of these poor outcomes, and reliable therapeutic targets are
indispensable for improving the prognosis of patients suffering from gliomas. Identification
of both precise diagnostic and accurate prognostic markers and promising therapeutic
targets has therefore attracted considerable attention from researchers. Encouragingly,
accumulating evidence has demonstrated that long noncoding RNAs (lncRNAs) play
important roles in the pathogenesis and oncogenesis of various categories of human
tumors, including gliomas. Nevertheless, the underlying mechanisms by which lncRNAs
regulate diverse biological behaviors of glioma cells, such as proliferation, invasion and
migration, remain poorly understood. Consequently, this review builds on previous studies
to further summarize the progress in the field of lncRNA regulation of gliomas over recent
years and addresses the potential of lncRNAs as diagnostic and prognostic markers and
therapeutic targets.
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INTRODUCTION

Gliomas, originating from glial or precursor cells, which are categorized into astrocytomas,
ependymomas and oligodendrogliomas, are the most common malignant primary tumors of the
central nervous system (CNS) (1, 2). In addition, gliomas are graded by the World Health
Organization (WHO) into four classifications based on their malignancy. Gliomas with WHO
grades I-II are known as low-grade gliomas (LGGs), including angiocentric glioma and diffuse
astrocytoma, while those with WHO grades III-IV are considered high-grade gliomas (HGGs),
including mesenchymal astrocytoma and glioblastoma multiform gliomas (GBMs) (3, 4). In the
2016 WHO classification of CNS tumors, molecular parameters, including IDH, ATRX, TP53 and
1p/19, were considered in the classification of glioma subtypes, which is more detailed than its 2007
predecessor (5, 6). GBM has high mortality and recurrence rates and represents the most malignant
CNS tumor (3). The present criteria for treating GBM continue to be neurosurgical resection of the
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neoplasm accompanied by chemotherapy with temozolomide
(TMZ) and radiotherapy (7). Unfortunately, the median survival
for GBM patients is only 15 months, even with this combination
treatment (8). Therefore, exploring the specific mechanisms of
the occurrence and progression of glioma has drawn widespread
interest in recent years. Studies on precise biomarkers and
reliable therapeutic targets are urgently needed.

Approximately 98% of transcripts do not encode proteins in
the human genome, and this category of RNA is known as
noncoding RNA (ncRNA). Long noncoding RNAs (lncRNAs),
accounting for approximately 80-90% of ncRNAs, are transcripts
consisting of more than 200 nucleotides that typically lack protein-
coding capability and were once regarded as transcriptional noise
(9). Open reading frames are generally absent in lncRNAs (10).
Intriguingly, this “transcriptional noise” has been extensively
researched and demonstrated to not only serve an important
function in normal cellular physiological procedures but also play
an invaluable role in regulating the malignant behavior of tumors
(11). LncRNAs can be divided into sense lncRNAs, antisense
lncRNAs, bidirectional lncRNAs, intronic lncRNAs and intergenic
lncRNAs (LINCRNAs) based on genomic location (12). The order
of nucleotide arrangement constitutes the primary structure of
lncRNAs, and intricate secondary and tertiary structures
guarantee the multiple functions of lncRNAs. However, the
relationship between lncRNA secondary structure and functions
remains unclear. Recent evidence has indicated that lncRNAs
regulate gene expression at three levels: transcriptional, post-
transcriptional and epigenetic modification (13).

As mentioned above, lncRNAs are associated with both cellular
physiology and disease origination and progression by regulating
gene expression (11). Additionally, an increasing number of
investigations have suggested that lncRNAs play pivotal roles in
regulating the tumorigenesis, proliferation, aggression, metastasis,
and drug resistance of gliomas. Consequently, as the molecular
mechanism of lncRNA regulation of glioma is further investigated,
the etiology of glioma will gradually be revealed. Furthermore,
along with the advancement of sequencing technology, we will
gradually recognize the entire spectrum of lncRNAs, implying that
lncRNAs could be not only effective indicators for early diagnosis
and determination of prognosis but also therapeutic targets
for glioma.
THE FUNCTIONS AND MECHANISMS OF
LNCRNAS IN GLIOMAS

MiRNAs are a category of noncoding RNAs of approximately 20
nucleotides in length that can bind to target mRNAs via
microRNA response elements (MREs) and thus perform
negative regulatory functions, exerting critical post-
transcriptional regulatory effects (14). MREs are short
sequences of both lncRNAs and mRNAs that combine with
miRNAs. Therefore, lncRNAs absorb miRNAs as sponges,
enabling the expression of mRNAs that were previously
repressed by miRNAs, and such lncRNAs are referred to as
competitive endogenous RNAs (Figure 1) (15). Many studies
Frontiers in Oncology | www.frontiersin.org 2
have been conducted to demonstrate that lncRNAs, as ceRNAs,
impact the progression of tumors at the post-transcriptional
regulatory level (Table 1).

By analyzing GSE4290, Liu and colleagues showed that
LINC00689 was highly expressed in glioma tissue compared to
normal brain tissue. The expression of pyruvate kinase M2
(PKM2) was enhanced by LINC00689-mediated elimination of
miR-338-3p, which facilitated malignant progression of glioma
cells. As a consequence, the LINC00689/miR-338-3p/PKM2 axis
functions as a carcinogenic driver in gliomas (16). Moreover,
LINC01857 could promote tumorigenesis of glioma by sponging
miR‐1281 to upregulate TRIM65 expression (17). MALAT1 has
been proved to have a crucial role in the progression of multiple
neoplasms such as lung, colorectal and gastric cancers, and
shows a comparable regulatory role in glioma. MALAT1
promoted the level of ZHX1 by serving as a ceRNA of miR-
199a, leading to augmented glioma development (18).
LINC01579 accelerated cell proliferation and apoptosis of
GBM by the competitive binding of miR-139-5p to affect
EIF4G2 (19). Furthermore, the lncRNA SNHG1 is considered
a sponge that absorbs miR-194 to promote glioma progression
by regulating PHLDA1 expression (20). MiR-605-3p was
eliminated by lncRNA BLACAT1 to accelerate VASP
expression, contributing to glioma proliferation (21). The
expression level of NAMPT was regulated by lncRNA-
GACAT3 to promote glioma progression as a sponge for
miR135a (22). LncRNA MATN1-AS1 competitively binding
with miR-200b/c/429 also promoted the progression of glioma
by modulating CHD1 expression (23). Chai et al. demonstrated
that exosomal lncRNAe-ROR1-AS1 enhanced glioma
progression by suppressing miR-4686 (24). LEF1-AS1
promoted glioma formation by competitively binding miR-
489-3p to increase the expression of HIGD1A (25). Oncogenic
lncRNA FOXD1-AS1 promoted the proliferation and metastasis
of GBM cells by targeting miR339/342 (26). However, lncRNA
could also act as a repressor to inhibit tumor progression. Zhen
et al. indicated that NEAT1 sponged miR-107 to inhibit the
expression of cyclin-dependent kinase 14 (CDK14) to repress the
malignant progression of glioma (27). The anti-oncogene
AC016405.3 restrained GBM cell proliferation and migration
by sponging miR-19a through regulation of ten-eleven
translocation-2 (TET2) (28). LncRNA TPT1-AS1 inhibited
glioma cell autophagy by decreasing the expression of miR-
110-5p, and upregulating STMN1 expression promoted the
proliferation of glioma cells (29). In addition, mRNAs can
indirectly regulate gene phenotypes by signaling pathways via
the post-transcriptional regulation of ceRNAs. For instance,
miR-183-2-3p was sponged by lncRNA NCK1-AS1. Low levels
of miR-183-2-3p promoted TRIM24 expression and thereby
activated the Wnt/b-catenin pathway to contribute to glioma
progression (30). Correspondingly, the lncRNA AGAP2-AS1
exhibited analogous mechanisms in contributing to the
development of glioma advancement via the miR-15a/b-5p/
HDGF/WNT axis (31). The oncogene lncRNA SNHG16, in
contrast, functioned in the proliferation, aggression and
migration of glioma cells through the miR373/EGFR/PI3K/
June 2021 | Volume 11 | Article 688027
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AKT axis (32). These researches illustrated that lncRNAs could
not only promote but also inhibit tumor progression.

By interacting with signaling pathways, lncRNAs can
facilitate tumorigenesis. For example, silencing lncRNA
MIR22HG inhibited GBM aggressiveness by suppressing the
Wnt/b-catenin signaling pathway (33), while cancer
susceptibility candidate 7 (CASC7) restrained the progression
of glioma through the Wnt/b-catenin pathway (34). BCAR4
promoted glioma cell progression by stimulating the EGFR/
PI3K/AKT pathway (35). LncRNA LPP-AS2 plays an
important role in regulating the miR-7-5p/EGFR/PI3K/AKT/c-
MYC feedback loop, which is correlated with glioma
tumorigenesis (36). LncRNA BCYRN1 could suppress
tumorigenesis of glioma as a molecular sponge of miR-619-5p
to modulate the PTEN/AKT/p21 pathway and CUEDC2
expression (37). Furthermore, lncRNA MT1JP suppressed
proliferation, invasion, and migration and promoted apoptosis
of glioma cells through stimulation of the PTEN/Akt signaling
pathway (38). LncRNA-THOR silencing accelerated human
glioma cell apoptosis by activating the MAGEA6-AMPK
signaling pathway (39). Accumulating studies have suggested
that lncRNA is involved in the regulation of diverse biological
behaviors in glioma through the regulation of signaling pathways
including but not limited to Wnt/b, PI3K/AKT and NF-kB.
Therefore, lncRNAs are promising biomarkers for glioma
diagnosis, prognosis and treatment in theory.

The interaction between RNA-binding proteins (RBPs) and
lncRNAs plays a non-negligible role in the advancement of
Frontiers in Oncology | www.frontiersin.org 3
glioma. The expression level of EZH2 positively correlated with
the malignancy of glioma and promoted the malignant behavior of
glioma (40). Chen et al. first addressed the mechanism of the
participation of lncRNA NEAT1 in tumorigenesis as a scaffold for
EZH2. LncNEAT1 recruited EZH2 to interact with the promoter
regions of downstream genes (Axin2, ICAT, GSK3B) to promote
trimethylation modification of H3K27, thereby silencing these
three genes. Further, the WNT/b-catenin pathway was activated,
resulting in tumorigenesis (41). Moreover, RBP DGCR8 could
bind with ZFAT-AS1, the interaction between DGCR8/ZFAT-
AS1 and CDX2 contributed to the malignant progression of
glioma (42). RBP, lncRNA and downstream gene could form
negative or positive feedback loop to modulate biological behavior
of glioma. SNHG1 regulated the miRNA154-5p/miR-376b-3p-
FOXP2-KDM5B positive feedback loop to promote the malignant
phenotype of glioma cells (43). LINC00475 silencing acted as a
tumor suppressor in glioma under hypoxic conditions by
impairing miRNA-449b-5p-dependent upregulation of AGAP2
expression (44). TRPM2‐AS inhibited the growth, migration, and
invasion of gliomas through JNK, c‐Jun, and RGS4 (45). HCG11
inhibited glioma progression by modulating miR‐496 to
upregulate cytoplasmic polyadenylation element binding protein
3 (CPEB3) expression (46). The lncRNA MNX1-AS1 reduced the
level of miR-4443, leading to the promotion of proliferation,
invasion and migration in glioma (47). NEAT1 and CDK6
could promote tumorigenesis of glioma cells; additionally, miR‐
139‐5p restrained the biological functions of glioma cells (48).
LncRNAs has diverse roles in glioma processes, such as
FIGURE 1 | Mechanisms of lncRNAs in glioma cell.
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proliferation, migration, apoptosis and angiogenesis, by distinct
mechanisms, including ceRNA, interaction with RBPs and
regulation of mRNA. Figure 2 portrays the lncRNAs associated
with glioma proliferation, metastasis, apoptosis and angiogenesis.
LNCRNAS AS DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS
OF GLIOMAS

Medical diagnosis in the twenty-first century is gradually moving
from clinical pathology to molecular pathology. With the
development of bioinformatics, an increasing number of
studies have identified lncRNAs as biomarkers for glioma
diagnosis and prognosis by exploring RNA microarrays, and
advances in microarray and high-throughput RNA-seq
technologies have provided numerous valuable lncRNAs for
the diagnosis and prognosis of gliomas.

The detection of serum HOTAIR levels can be employed for
the clinical diagnosis of glioma, as reported by Tan et al. (49)
These researchers also observed that the serum levels of
HOTAIR were significantly higher in GBM patients than in
controls, with a sensitivity of 86.1% and specificity of 87.5% (49).
Frontiers in Oncology | www.frontiersin.org 4
This report first showed that HOTAIR can function as a novel
diagnostic and prognostic peripheral biomarker of GBM. Lin
et al. screened six lncRNAs associated with low-grade glioma
prognosis by TCGA and GTEx RNA-seq databases. These
researchers constructed a prognostic risk signature with 6
lncRNAs in LGG, and this research illustrated that AL031722.1
and LINC00844 decreased when the risk score was increased,
while the expression of AL354740.1, FGD5-AS1, and NEAT1
increased (50). The team of Li et al. indicated that the expression
of LINC01060 was upregulated in glioma and significantly
related to tumor grade and poor clinical prognosis (51).
Furthermore, Liu et al. revealed that the level of RMST was
related to histological grade, and 95.6% of HGGs had higher
RMST expression (52). The lncRNA HOTAIRM1 was identified
as a prognostic factor for glioma because it can maintain the
tumorigenicity of GSCs by regulating HOX gene expression (53).
And, LINC00115 was shown to act as a key role in GSC self-
renewal and tumorigenicity by Tang et al. (54) LINC00174
accelerated glycolysis and tumor progression by competitively
binding with miR-152-3p in glioma, indicating this molecule
might act as a molecular target for glioma diagnosis (55).
LncRNA H19, which mediates the effect of curcumin in
treating glioma accompanied by miR-675 and VDR, could act
as a novel diagnostic biomarker (56). Li et al. showed that
TABLE 1 | The role of lncRNAs as ceRNA in the glioma.

LncRNA MiRNA Expression of mRNA Function Study

LINC00689 miR-338-3p Upregulated PKM2 Promoting growth, metastasis and glycolysis 16
LINC01857 miR-1281 Upregulated TRIM65 Promoting growth, migration, and invasion 17
MALAT1 miR-199a Upregulated ZHX1 Promoting proliferation and progression. 18
SNHG1 miR-194 Upregulated PHLDA1 Promoting progression 19
BLACAT1 miR-605-3p Upregulated VASP Promoting progression 20
AC016405.3 miR-19a-5p Upregulated TET2 Acting as tumor suppressor 21
GACAT3 miR-135a. Upregulated NAMPT Promoting progression 22
MATN1-AS1 miR-200b/c/429 Upregulated CHD1 Promoting progression 23
TPT1-AS1 miRNA-770-5p Upregulated STMN1 Inhibiting autophagy and promoting proliferation 24
LEF1-AS1 miR-489-3p Upregulated HIGD1A Promoting tumorigenesis 26
NCK1-AS1 miR-138-2-3p Upregulated TRIM24 Promoting tumorigenesis 28
AGAP2-AS1 miR-15a/b-5p Upregulated HDGF Promoting proliferation 29
SNHG16 miR-373 Upregulated EGFR Promoting tumorigenicity 30
LINC00475 miR-449b-5p Upregulated AGAP2 Acting as a tumor suppressor 41
HCG11 miR-496 Upregulated CPEB3 Promoting progression 43
NEAT1 miR-139-5p Upregulated CDK6 Promoting proliferation, invasion and migration 45
NEAT1 miR-107 Upregulated CDK14 Promoting progression 52
BCYRN1 miR-619-5p Upregulated CUEDC2 Inhibiting tumorigenesis 50
LINC00174 miR-152-3p Upregulated SLC2A1 Promoting glycolysis and tumor progression 51
LPP-AS2 miR-7-5p Upregulated EGFR Promoting tumorigenesis 54
LINC00645 miR-205-3p Upregulated ZEB1 Promoting epithelial-mesenchymal transition (EMT) 55
HOTAIR miR-148b-3p Upregulated USF1 Regulating blood-tumor barrier (BTB) permeability 58
MIAT miR-140-3p Upregulated ZAK Regulating BTB permeability 59
Lnc00462717 miR-186-5p Upregulated PTBP1 Regulating BTB permeability 61
LINC00174 miR-138-5p/miR-150-5p Upregulated FOSL2 Regulating BTB permeability 62
TALC miR-20b-3p Upregulated c-Met Promoting MGMT expression 66
SNHG15 miR-726 Upregulated CDK6 Overcoming temozolomide (TMZ) resistance 68
AC003092.1 miR-195 Upregulated TFPI-2 Promoting TMZ chemosensitivity 71
CASC2 miR-181a Upregulated PTEN Promoting glioma growth and resistance to TMZ 72
SNHG16 miR-212-3p Upregulated USF1 Promoting vasculogenic mimicry 78
LINC00667 miR-429 Upregulated USF1 Promoting vasculogenic mimicry 78
SNHG1 miR-154-5p/miR-376b-3p Upregulated FOXP2 Promoting growth, migration, and invasion 39
PDIA3P1 miR-124-3p Upregulated RELA Promoting EMT 83
LINC01579 miR-139-5p Upregulated EIF4G2 Promoting proliferation 84
June 2021 | Volume 11 | Article 6
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LINC00645 could promote EMT, which was indispensable in the
invasion and migration of glioma cells involving TGF-b by
regulating the miR-205-3p-ZEB1 axis; thus, LINC00645 could
be a prognostic indicator for glioma (57). A novel lncRNA-
TOCN that targets the Smad2/PKCa signaling pathway to
inhibit malignant progression of glioma was highlighted by
Tang et al. and could serve as a prognostic indicator of
GBM (58). The expression of multiple lncRNAs has been
documented to correlate with the malignancy of gliomas and
to be involved in their malignant progression, providing
powerful theoretical evidence for their application as diagnostic
and prognostic markers.
LNCRNAS AS RELIABLE
THERAPEUTIC TARGETS

Treatment Strategies Involving LncRNAs
as Regulators Modulating the BTB
The BTB parallels the blood-brain barrier (BBB) and is
comprised of vascular endothelial cells, basement membrane,
and glioma cells. This structure can seriously impede the entry
of drugs into the tumor microenvironment, resulting in poor
Frontiers in Oncology | www.frontiersin.org 5
drug efficacy and extremely unfavorable patient prognosis (59–
61). Consequently, exploring lncRNAs that can regulate BTB
permeability to promote chemotherapy and thus improve drug
efficacy is one of the research directions for targeted glioma
therapy. Li et al. showed that silencing HOTAIR could increase
BTB permeability by eliminating miR-148b-3p, thereby further
reducing the expression of glioma-microvascular endothelial
cell tight junction (TJ)-related proteins by targeting USF1
(62). He et al. also indicated that MIAT regulated the
expression of ZAK to promote the delivery efficiency of
doxorubicin across the BTB (63). In addition, the IGF2BP2/
FBXL19-AS1/ZNF765 axis could regulate the permeability of
the BTB to improve the antitumor effect of doxorubicin (64).
Lnc00462717 regulated BTB permeability by interacting with
PTBP1 to restrain the miR-1865p/Occludin signaling pathway
(65). Moreover, BTB permeability was shown to be augmented
by silencing LINC00174 in glioma tissue (66). Overcoming the
obstacle of the BTB to increase the local concentration of
chemotherapeutic agents in glioma and then enhance
therapeutic efficacy is a prospective strategy. As such,
identifying appropriate targets has been a major concern. The
formulation of individual drug delivery routes based on the
corresponding targets is another strategy that can potentially
enhance chemotherapeutic efficacy.
FIGURE 2 | LncRNAs in the proliferation, migration, apoptosis and angiogenesis of glioma.
June 2021 | Volume 11 | Article 688027
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Treatment Strategies Involving LncRNAs
Overcoming TMZ Resistance
Temozolomide (TMZ) is an oral alkylating agent that passes
through the BBB, adding methyl groups to the purines of DNA
to cause DNA damage and apoptosis for therapeutic effects (67,
68). Conversely, this process is reversed by the DNA damage repair
enzyme O6-methyl-guanine-DNA methyltransferase (MGMT),
which restores the damage caused by TMZ, resulting in the
resistance of glioma cells to TMZ (69). A novel lncRNA, lnc-
TALC, was found to be highly expressed in TMZ-resistant GBM
cells by Wu et al. Lnc-TALC modulated the c-Met pathway by
functioning as a ceRNA for miR-20b-3p, facilitating MGMT
performance and in turn leading to TMZ resistance in GBM cells
(70). Sun and colleagues revealed that the overexpression of miR-
29c-3p could promote chemosensitivity to cisplatin, and CRNDE,
which competitively binds with miR-29c-3p, plays a critical role in
regulating the chemoresistance of medulloblastoma (71). In
addition, tumorigenesis of glioma was attenuated with the
downregulation of lncRNA-SNHG15 expression, and TMZ
sensitivity was increased (72). Recently, a study reported that
combining p50 and p53 with the proximal kB and p53 sites of
the MALAT1 coding region, respectively, cooperatively
downregulated MALAT1 expression, which in turn increased the
chemosensitivity of GBM cells (73). The tumor microenvironment
was remodeled with the secretion of oncogenic lncSBF2-AS1-
enriched exosomes by GBM cells, resulting in tumor drug
resistance (74). The lncRNA AC003092.1 inhibited miR-195,
increasing the expression of tfpi-2, which promoted TMZ-
induced apoptosis and thus made GBM cells more sensitive to
TMZ (75). CASC2 has an essential function in the sensitivity of
glioma to TMZ by upregulating PTEN expression through direct
inhibition of miR-181a (76). High expression of SNHG12 in TMZ-
resistant cells served as a molecular sponge for miR-129-5p to raise
the levels of MAPK1 and E2F7 to enhance the sensitivity of GBM
cells to TMZ. In contrast, knockdown of SNHG12 restored TMZ
sensitivity (77). LncRNA SOX2OT activates the Wnt5a/b-catenin
signaling pathway through upregulation of SOX2 expression,
thereby inhibiting apoptosis, promoting cell proliferation, and
resulting in resistance to TMZ (78). LncRNAs are not only
linked to chemotherapy but also closely correlated with
radioresistance. For instance, LINC-RA1 inhibited autophagy and
enhanced radioresistance by inhibiting the H2Bub1/USP44
combination in glioma cells (79). In summary, lncRNA on the
one hand can increase sensitivity of glioma to TMZ and on the
other hand induce TMZ resistance of glioma. TMZ is currently
the main chemotherapeutic agent for the treatment of glioma,
however, glioma is prone to become resistance to it. Thus, it is
feasible to target lncRNA to find drugs to overcome TMZ
resistance in glioma.
Treatment Strategy Involving LncRNAs
Mediating Angiogenesis
Angiogenesis is a requirement for the growth and metastasis of
gliomas, which are solid tumors. Additionally, extensive evidence
Frontiers in Oncology | www.frontiersin.org 6
has demonstrated that the formation of novel blood vessels
participates in the development and metabolic processes of
tumors. Therefore, vasculogenic mimicry is considered a hallmark
of malignant tumor development. Hence, antiangiogenic treatment
is anticipated to be an additional efficacious strategy for glioma.
Chen and colleagues demonstrated that overexpression of NKILAT
was negatively correlated with survival time in glioma patients, and
NKILAT augmented theWarburg effect and angiogenesis in glioma,
suggesting that it may be a promising therapeutic strategy (80). In
addition, Yang et al. elucidated the key role of the ANKHD1/
LINC00346/ZNF655 feedback loop in regulating angiogenesis in
glioma (81). Likewise, Wang et al. demonstrated that knockdown of
USF1 suppressed angiogenesis in gliomas by stressing SNHG16/
miR-212-3p and the LINC00667/miR-429 axis (82). Furthermore,
overexpression of lncRNA PAXIP1-AS1 promoted glioma
vasculogenic mimicry by recruiting the transcription factor EST
to upregulate KIF4 expression (83). SNHG20 played a crucial role in
the ZRANB2/SNHG20/FOXK1 axis to regulate vasculogenic
mimicry of glioma (84). These studies provide compelling
evidence that lncRNAs potentially act as therapeutic targets by
regulating angiogenesis in gliomas.

In addition, lncRNAs that exert regulatory effects by binding
to RBP also have the potential to become therapeutic targets.
Lin28a elevated the expression and stability of SNHG14, while
deletion of SNHG14 increased the expression of IRF6, which
inhibited the transcription of PKM2 and GLUT1 and thus
impaired glycolysis and proliferation of glioma cells and
induced apoptosis. Therefore, considering the lin28a/SNHG14/
IRF6 axis as a target provides novel insight for the treatment of
glioma (85). Additionally, the TAF15/LINC00665/MTF1(YY2)/
GTSE1 axis is crucial for regulating the malignant biological
behaviors of glioma cells, which might help in the development
of a novel therapeutic strategy for human glioma (86). The
PABPC1-BDNF-AS-RAX2-DLG5 axis was shown to play the
same role as the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in
regulating the biological behavior of gliomas (87). LncRNA
PDIA3P1 promoted glioma mesenchymal transition by
competit ively binding to miR-124-3p in a hypoxic
environment to regulate RELA expression and activate the
downstream NF-kB pathway. Consequently, the PDIA3P1-
miR-124-3p-RELA axis is a possible target for glioma therapy
(88, 89). SChLAP1 forms a complex with HNRNPL to maintain
the stability of ACTN4 and thus activates the NF-kB pathway to
promote the growth of GBM cells (90). The identification of this
complex provided a new perspective for the treatment of glioma.
The UPF1-LINC00313-miR-342-3p/miR-485-5p-Zic4-SHCBP1
positive feedback loop was capable of modulating the biological
behaviors of glioma cells, demonstrating that this loop is
probably a potential therapeutic target (91). The combination
of lncRNA and RBP forms a complex that regulates downstream
target gene to contribute to TMZ resistance of glioma. This
regulatory model provides a novel insight into the therapeutic
strategy for glioma. Thus, targeting lncRNA-regulated
angiogenesis, BTB permeability and TMZ resistance of glioma
as novel strategies for the treatment of glioma shows potential.
June 2021 | Volume 11 | Article 688027
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CONCLUSION

Over the previous decades, lncRNA studies have made major
progress in the field of glioma research due to the rapid
development of bioinformatics, and a series of lncRNAs have
been found to act as indispensable factors in the occurrence and
progression of glioma. LncRNAs act as ceRNAs in the
cytoplasm to regulate glioma progression at the post-
transcriptional level or to regulate gene expression through
interactions with proteins in the nucleus. However, the
mechanisms of most lncRNAs remain unclear. Therefore, the
specific mechanisms of lncRNAs need to be further clarified.
Glioma continues to be a major challenge to human health, and
its advanced aggressiveness, chemoresistance and recurrence are
the main factors contributing to the poor prognosis.
Theoretically, there are numerous lncRNAs, such as HOTAIR,
H19 and NEAT1, that can be applied as diagnostic and
prognostic indicators of glioma. It is also possible that many
lncRNAs can overcome TMZ resistance, modulate BTB
permeability and control glioma angiogenesis, all of which are
theoretically effective therapeutic strategies. Regrettably, no
successful clinical use of lncRNAs has been achieved yet. In
prospective research, lncRNA-centered gene regulatory
networks should be constructed to elucidate the regulatory
mechanisms of lncRNAs in tumor cells and then used as
diagnostic, prognostic, and therapeutic indicators in clinical
practice to improve the survival of glioma patients. One of the
focuses of basic research is translation to the clinic to improve
Frontiers in Oncology | www.frontiersin.org 7
the survival of patients. Translating basic research into clinical
strategies is a long road that will require generations of
researchers to eventually understand the full picture of the
function of lncRNAs in glioma at both the scientific and
clinical levels.
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