

UNIVERSITI PUTRA MALAYSIA

CYTOTOXIC PROPERTIES OF ANTHRAQUINONES (NORDAMNACANTHAL AND DAMNACANTHAL) FROM ROOTS OF MORINDA ELLIPTICA

LATIFAD SAIFUL YAZAN

FSMB 2003 8

CYTOTOXIC PROPERTIES OF ANTHRAQUINONES (NORDAMNACANTHAL AND DAMNACANTHAL) FROM ROOTS OF *MORINDA ELLIPTICA*

Ву

LATIFAH SAIFUL YAZAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Doctor of Philosophy

April 2003

DEDICATION

I just want to voice out my "syukur" that beyond all question, after all, I managed to complete my PhD. Thank God for bestowing my life with the best and noblest people, my parents, SAIFUL YAZAN JALALUDDIN and MARDIAH SURDA. They are just as glorious as the sun that brings sunshine to my sullen sky. The persons who comfort me when I was crying like a baby, who always there for me the moment I felt just on my last legs, who told me again and again that I can do it, who told me not to lose heart, to take no account of what people say, and who forced me to carry on and carry out, and finally call forth this thesis. To my beloved husband, YUSUFF ABDUL LATIF, thank you for being a bosom, intimate friend of mine, to be all ears to my problems, to lend a hand when I have a hard row to hoe, and stand up for me whenever necessary. Thank God for giving me the opportunity to be a mother of two sons, AIMAN RIDHWAN and ADIB RASYDAN. The process of getting PhD showered me with fountain of experience. I learnt to take the bitter with the sweet, to take the rough with the smooth. Taking straight from the shoulder, I didn't have any intention to be head and shoulder over anybody or to compete an old hand or to get across anybody. I'm still at learning age that I need guidance to know the ropes. Do forgive me if there is a slip of the tongue. Let bygones be bygones and we have to move on because life goes on even if we don't like the way it is.

"Happiness lies for those who cry, those who hurt, those who have searched and those who have tried. For only they can appreciate the importance of people who have touched their lives"

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

CYTOTOXIC PROPERTIES OF ANTHRAQUINONES (NORDAMNACANTHAL AND DAMNACANTHAL) FROM ROOTS OF *MORINDA ELLIPTICA*

By

LATIFAH SAIFUL YAZAN

April 2003

Chairman: Associate Professor Raha Abdul Rahim, Ph.D.

Faculty: Food Science and Biotechnology

The study on the cytotoxic properties of nordamnacanthal and damnacanthal, the anthraquinones isolated from the roots of *Morinda elliptica* (family Rubiaceae) were carried out on several cancerous cell lines including CEM-SS (T-lymphoblastic leukaemia), KU812F (chronic myelogeneous leukaemia), WEHI-3 (leukaemia), HT29 (colon cancer) and HeLa (cervical adenocarcinoma). The degree of cytotoxicity of the compounds were defined by their abilities at certain concentration to cause 50% reduction in cell number relative to the untreated sample, and termed as IC₅₀ value. CEM-SS was observed to be the most sensitive cell line towards nordamnacanthal and damnacanthal with the IC₅₀ values of 1.7 μ g/ml and 10 μ g/ml, respectively, as detected by the colorimetric tetrazolium-based assay (MTT). The compounds also showed cytotoxicity to the non-cancerous cell lines such as HF19 (lung fibroblast), human peripheral blood mononuclear (PBMC), 3T3 (mouse embryo) and Vero (monkey kidney fibroblast) but at very high concentrations (>30 μ g/ml). The microscopic analysis on the treated CEM-SS cells including light microscopy without staining or following staining with haematology polychrome, Giemsa and Wright's stains, fluorescence microscopy following staining with acridine orange and propidium iodide, and scanning and transmission electron microscopy showed that these compounds induced two types of cell death, apoptosis and necrosis.

At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple of 180-200 bp fragments that are visible as a "ladder" on the agarose gel. The DNA fragmentation has been found to be due the activation of Mg^{2+}/Ca^{2+} -dependent endonuclease. The induction of apoptosis by the nordamnacanthal was different from the one induced by damnacanthal in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca^{2+} concentration were not needed for apoptosis to take place. Nordamnacanthal and damnacanthal at their IC₅₀ values showed different mechanism by which they exert their cytotoxic effects. Nordamnacanthal was found to have cytotoxic effect by inducing apoptosis in CEM-SS cells. Damnacanthal, on the other hand, showed cytostatic effect by causing arrest at the G0/G1 phase of the cell cycle. Nordamnacanthal was also found to reduce the expression of *bcl-2*, thus stimulating the process of apoptosis in CEM-SS cells.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI-CIRI SITOTOKSIK ANTRAKUINON (NORDAMNACANTHAL DAN DAMNACANTHAL) DARIPADA AKAR *MORINDA ELLIPTICA*

Oleh

LATIFAH SAIFUL YAZAN

April 2003

Pengerusi: Profesor Madya Raha Abdul Rahim, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Kajian ke atas ciri-ciri sitotoksik nordamnacanthal dan damnacanthal, antrakuinon

terhadap beberapa jujukan sel kanser seperti CEM-SS (T-limfoblastik leukemia), KU812F (kronik myelogeneous leukemia), WEHI-3 (leukemia), HT29 (kanser kolon) dan HeLa (adenokarsinoma serviks). Darjah kesitotoksikan sebatian-sebatian tersebut dinyatakan sebagai kebolehan mereka pada kepekatan tertentu yang menyebabkan pengurangan bilangan sel sebanyak 50% berbanding sampel yang tidak dirawat (kawalan), yang diistilahkan sebagai nilai IC₅₀. CEM-SS merupakan jujukan sel yang paling sensitif terhadap nordamnacanthal dan damnacanthal dengan nilai IC₅₀ masing-masing, 1.7 μ g/ml dan 10 μ g/ml, seperti yang dikesan menggunakan kaedah kolorimetri berasaskan tetrazolium (MTT). Sebatian-sebatian tersebut juga menunjukkan kesan sitotoksik terhadap jujukan sel bukan kanser yang digunakan di dalam kajian ini seperti HF19 (fibroblas paru-paru), human peripheral blood mononuclear (PBMC), 3T3 (embrio tikus) dan Vero (fibroblas ginjal monyet), tetapi pada kepekatan yang amat tinggi (>30 μ g/ml). Analisa mikroskopi terhadap sel-sel CEM-SS yang dirawat dengan sebatian-sebatian tersebut menggunakan mikroskop cahaya, tanpa atau selepas pewarnaan dengan pewarna hemotologi polikrom iaitu Giemsa dan Stain's, mikroskopi floresen selepas pewarnaan dengan akridin oren dan propidium iodida, dan mikroskopi elektron imbasan dan transmisi menunjukkan mereka menyebabkan dua jenis kematian iaitu apoptosis dan nekrosis.

Pada peringkat molekul, sebatian-sebatian tersebut menyebabkan belahan di antara nukleosom pada DNA yang menghasilkan pecahan-pecahan bersaiz 180-200 bp yang kelihatan seperti "tangga" pada gel agaros. Belahan DNA tersebut didapati disebabkan oleh pengaktifan aktiviti endonuklease bergantung-Mg²⁺/Ca²⁺. Induksi apoptosis oleh nordamnacanthal berbeza dari yang disebabkan oleh damnacanthal di mana ia berlaku tanpa bergantung kepada proses transkripsi yang berterusan. Walau bagaimanapun, di dalam kedua-dua kes, proses defosforilasi protein 1 dan 2A, sintesis protein yang berterusan serta peningkatan pada kepekatan Ca2+ sitosol tidak diperlukan untuk apoptosis berlaku. Pada nilai IC₅₀, nordamnacanthal dan damnacanthal didapati mempunyai mekanisma yang berbeza dalam menunjukkan kesan sitotoksik masing-masing. Nordamnacanthal didapati mempunyai kesan sitotoksik dengan merangsang apoptosis dalam sel-sel CEM-SS. Sebaliknya, damnacanthal menunjukkan kesan sitostatik melalui penahanan pada fasa G0/G1 dalam kitaran sel. Nordamnacantal juga didapati mengurangkan penzahiran gen bcl-2, lalu merangsang proses apoptosis di dalam sel-sel CEM-SS.

ACKNOWLEDGEMENTS

In the name of Allah, the most Gracious, the Most Merciful.

My utmost appreciation goes to Associate Professor Dr. Raha Abdul Rahim, that without her continuous support, help, limitless patience, encouragement and advice, I won't be able to continue and complete this project. I wish to express my deepest thanks to Professor Dr. Abdul Manaf Ali, Professor Dr. Nordin Haji Lajis and Associate Professor Dr. Mohamed Saifulaman Mohamed Said, for their guidance and support. I greatly acknowledge Professor Dr. Hasanah Mohd. Ghazali and Associate Professor Dr. Patimah Ismail for their advice.

I acknowledge the financial support of the Universiti Putra Malaysia for conducting my research. I also would like to express my gratitude to all the lecturers and the staffs of the Faculty of Food Science and Biotechnology, Universiti Putra Malaysia and Mr. Ho from the Electron Microscopy Unit for their help and guidance. I especially wish to thank Mr. Ong Boo Kean for introducing and teaching me every little detail and all the "tricks" and "shortcuts" to do cell culture.

I am grateful to all the warm-hearted people who helped me throughout the project, especially Ernie, Cik Pin, Bazli, Sahak, Musa, Amin and kak Intan. Last but not least, my sincere appreciation to Fezah, Hasiah, Khairi, Dos, Zul, Aris, Nasir, Zila and Abdah for their friendships that made working in the Faculty of Medicine and Health Sciences enjoyable.

I certify that an Examination Committee met on 4th of April 2003 to conduct the final examination of Latifah Saiful Yazan on her Doctoral thesis entitled "Cytotoxic Properties of Anthraquinones (Nordamnacanthal and Damnacanthal) from Roots of *Morinda elliptica*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

SON RADU, Ph.D.

Associate Professor Department of Biotechnology, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia. (Chairman)

RAHA ABDUL RAHIM, Ph.D.

Associate Professor Department of Biotechnology, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia. (Member)

ABDUL MANAF ALI, Ph.D.

Professor Institute of Bioscience, Universiti Putra Malaysia. (Member)

NORDIN HAJI LAJIS, Ph.D.

Professor Institute of Bioscience, Universiti Putra Malaysia. (Member)

MOHAMED SAIFULAMAN MOHAMED SAID, Ph.D.

Associate Professor Faculty of Applied Sciences, Universiti Teknologi MARA. (Member)

AZIMAHTOL HAWARIAH LOPE PIHIE, Ph.D.

Professor School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia. (Independent Examiner)

GULAM RUSUL RAIMAT ALI, Ph.D. Professor/Deputy Dean, School of Graduate Studies, Universiti Putra Malysia. Date: 2 2 JUL 2003

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. Members of the Supervisory Committee are as follows:

RAHA ABDUL RAHIM, Ph.D.

Associate Professor Department of Biotechnology, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia. (Chairman)

ABDUL MANAF ALI, Ph.D.

Professor Institute of Bioscience, Universiti Putra Malaysia. (Member)

NORDIN HAJI LAJIS, Ph.D.

Professor Institute of Bioscience, Universiti Putra Malaysia. (Member)

MOHAMED SAIFULAMAN MOHAMED SAID, Ph.D.

Associate Professor Faculty of Applied Sciences, Universiti Teknologi MARA. (Member)

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies, Universiti Putra Malaysia. Date: 15 AUG 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Infs (LATIFAH SAIFUL YAZAN)

Date: 22/7/2003

TABLES OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
DECLARATION	x
LIST OF TABLES	xv
LIST OF FIGURES	xvi
LIST OF PLATES	xviii

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	10
	Drug Discovery and Development From Plants	10
	Problems in Drug Discovery and Development	13
	Selection of Plants with Bioactivities	14
	Morinda Species	16
	Morinda elliptica	17
	Anthraquinones	18
	Nordamnacanthal and Damnacanthal	20
	Cancer	22
	Chemotherapy	25
	Antineoplastic Agents	28
	Cell Cycle	28
	Cell Cycle Phase-Specific Agents	31
	Cell Cycle Phase-Nonspecific Agents	31
	Alkylating Agents.	32
	Antimetabolites	33
	Antibiotics	33
	Plant Alkaloids (Mitotic Inhibitors)	34
	Hormones	34
	Miscellaneous Agents	35
	Investigational Chemotherapeutic Agents	35
	Assay for Cytotoxicity	36
	Cell Death	40
	Necrosis	41

Apoptosis
Sequence of Apoptosis
The Involvement of Enzymes in Apontosis
Casnases and Apontosis
Mitochondria as the Central Control Point of Apontosis:
Morphological Changes and Cellular Redistribution of
Mitochondria During Apontosis
Mitochondria as a Major Target for Bcl-2 Family
Droteins
Significance of Apoptosis
The Detection of Anontosis and Necrosis
Oncogenes and Cancer
bol 2 Gene
Pol 2 Family Protoing
DUI-2 Family Fluctures.
DITI allu DITZ Dolliallis DITZ Domoin
DDJ DUIIIaIII
BCI-2 and Apoptosis.
MATERIALS AND METHODS
Colle
Compounds
Anthroquinonos
Antinaquinones.
Commercial Drugs
I rypsinization.
Sample Preparation.
Determination of Cytotoxicity
Cytotoxicity Assay
Crystal Violet Staining.
3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium
bromide (M11) Assay
Determination of Antiproliferative Activity
Trypan Blue Dye Exclusion Method
Morphological Studies
Giemsa Staining (Freshney, 1993)
Wright's Staining (Lillie, 1977)
Scanning and Transmission Electron Microscopy
Apoptotic Response
Acridine Orange and Propidium Iodide Staining
Determination of Internucleosomal DNA Cleavage
DNA Fragmentation Assay
DNA Extraction
Agarose Gel Electrophoresis
Quantitative Measurement of Cell Death
Sample Preparation (Cellular Assay)

3

	Working Procedure for the ELISA
	Flow Cytometric Analyses
	Studies on the Bcl-2 Protein Expression
	Polyacrylamide Gel Electrophoresis (PAGE)
	Western Blot
	Blotting
	Processing of Blot
	Chemiluminescence Detection
ŀ	RESULTS
	Cytotoxicity of Nordamnacanthal, Damnacanthal and the Commercial
	Effects of Nordamnacanthal and Damnacanthal on the Viability and
	Proliferation of CEM-SS cells.
	Effects of Nordamnacanthal and Damnacanthal on Cell Morphology and
	Apoptosis in CEM-SS Cells
	Light Microscopy
	Giemsa Staining
	Wright's Staining
	Electron Microscopy.
	Fluorescence Microscopy Following Staining with Acridine Orange
	and Propidium Iodide.
	Effects of Nordamnacanthal and Damnacanthal on DNA Fragmentation in
	CEM-SS Cells.
	Effects of Nordemposenthal and Demposenthal on the European Levels
	of Bel 2 Protein in CEM SS Cells
	of Bei-2 Floteni in CEM-55 Cens
	DISCUSSION.
	Cytotoxicity of Nordamnacanthal, Damnacanthal and the Commercial Drugs
	Effects of Nordamnacanthal and Damnacanthal on the Viability and
	Proliferation of CEM-55 Cells.
	Determination of Cytotoxicity of Nordamnacanthal and Damnacanthal
	Effects of Nordamnacanthal and Damnacanthal on Cell Morphology and
	Apoptosis in CEM-55 Cells
	Effects of Nordempacenthal and Dempacenthal on DNA Fragmentation in
	CEM SS Cells
	Cell Cycle Analysis
	Effects of Nordamnacanthal and Damnacanthal on the Expression Levels
	of Bcl-2 Protein in CEM-SS Cells
	CONCLUSION
,	CONCLUSION

REFERENCES	226
 APPENDICES A Preparation of Media and Solutions B A calibration curve for estimation of protein concentration in CEM-SS cells treated with or without nordamnacanthal and damnacanthal 	255 255 260
VITA	261

LIST OF TABLES

Table		Page
1	Characteristics of cytotoxic agents (BIOMED*4090, 2002)	27
2	Apoptosis versus necrosis (Granville <i>et al.</i> , 1998)	50
3	Cytotoxicity of nordamnacanthal and damnacanthal against different cell lines based on the IC_{50} value determined by the MTT assay.	112
4	Cytotoxicity of nordamnacanthal and damnacanthal against CEM-SS cells after 72 hours in comparison to the commercial drugs based on the IC_{50} value determined by the MTT assay	114
5	Cell cycle distribution of CEM-SS cells after 24 and 48 hours incubation with nordamnacanthal and damnacanthal at their respective IC_{50} value	177

LIST OF FIGURES

Figure		Page
1	Chemical structure of nordamnacanthal	21
2	Chemical structure of damnacanthal	21
3	The cell cycle (Snustad and Simmons, 2000)	30
4	Illustration of the morphological features of necrosis	44
5	Illustration of the morphological features of apoptosis	49
6	Common pathways of apoptosis (Kim et al., 2002)	59
7	Structure of the normal <i>bcl-2</i> gene (at chromosome 18) and the site of translocation breakpoints (Seto <i>et al.</i> , 1988)	76
8	Mechanism of recombination at the t(14;18) breakpoint (Tsujimoto <i>et al.</i> , 1985)	77
9	Cytotoxic curves of CEM-SS cells treated with different concentrations of nordamnacanthal, damnacanthal and commercial drugs for 72 hours, from which the IC_{50} values were derived (Table 4).	115
10	The percentage of viability and the proliferative curves of CEM- SS cells treated with different concentrations of nordamnacanthal for a 72 hours period using the trypan blue dye exclusion method.	119
11	The percentage of viability and the proliferative curves of CEM- SS cells treated with different concentrations of damnacanthal for a 72 hours period using the trypan blue dye exclusion method.	120
12	The percentage of viability (relative to control) of CEM-SS cells treated with different concentrations of nordamnacanthal and damnacanthal at different hours determined using the trypan blue dye exclusion method.	121

13	The percentage of viability (relative to control) of CEM-SS cells treated with different concentrations of nordamnacanthal and damnacanthal for a 72 hours period determined using the MTT assay	124
14	The percentage of viability (relative to control) of CEM-SS cells treated with different concentrations of nordamnacanthal and damnacanthal for a 72 hours period. The counts were done after staining the cells with acridine orange and propidium iodide	125
15	Comparison of the percentage of viability (relative to control) of CEM-SS cells treated with different concentrations of nordamnacanthal and damnacanthal using three different methods after 72 hours	126
16	The percentage of viable, apoptotic and necrotic CEM-SS cells treated with different concentrations of nordamnacanthal at different hours. The counts were done after staining the cells with acridine orange and propidium iodide	158
17	The percentage of viable, apoptotic and necrotic CEM-SS cells treated with different concentrations of damnacanthal at different hours. The counts were done after staining the cells with acridine orange and propidium iodide.	160
18	Detection of nucleosomes in cytoplasmic fractions of cell lysates at different hours of experiments. CEM-SS cells were treated with $30 \mu g/ml$ of indicated compounds.	1 7 3
19	Enrichment of nucleosomes in cytoplasmic fractions of cell lysates at different hours of experiments. CEM-SS cells were treated with $30 \mu g/ml$ of indicated compounds	173
20	Time-dependent flow cytometric cell cycle analyses based on the DNA content of CEM-SS cells treated with nordamnacanthal at the IC_{50} value for 24 and 48 hours	175
21	Time-dependent flow cytometric cell cycle analyses based on the DNA content of CEM-SS cells treated with damnacanthal at the IC_{50} value for 24 and 48 hours.	176

LIST OF PLATES

Plate		Page
1	CEM-SS cells treated without (control) or with different concentrations of nordamnacanthal for 24 hours	129
2	CEM-SS cells treated without (control) or with different concentrations of damnacanthal for 24 hours	130
3	CEM-SS cells treated without (control) or with IC ₅₀ concentrations of different drugs/compounds for 24 hours	132
4	CEM-SS cells treated without (control) or with IC ₅₀ concentrations of different drugs/compounds for 48 hours	133
5	CEM-SS cells treated without (control) or with IC ₅₀ concentrations of different drugs/compounds for 72 hours	134
6	Giemsa-stained of CEM-SS cells treated without (control) or with different concentrations of nordamnacanthal for 24 hours	136
7	Giemsa-stained of CEM-SS cells treated without (control) or with different concentrations of damnacanthal for 24 hours	137
8	Wright's-stained of CEM-SS cells treated without (control) or with different concentrations of nordamnacanthal for 24 hours	139
9	Wright's-stained of CEM-SS cells treated without (control) or with different concentrations of damnacanthal for 24 hours	140
10	Scanning electron micrographs of CEM-SS cells treated without (control) or with different concentrations of nordamnacanthal for 24 hours.	142
11	Scanning electron micrographs of CEM-SS cells treated without (control) or with different concentrations of damnacanthal for 24 hours.	146
12	Transmission electron micrographs of CEM-SS cells treated without (control) or with different concentrations of nordamnacanthal for 24 hours.	151

13	Transmission electron micrographs of CEM-SS cells treated with different concentrations of damnacanthal for 24 hours	154
14	Fluorescence micrographs of nordamnacanthal-treated CEM-SS cells stained with acridine orange and propidium iodide showing different morphological appearances of viable (v), apoptotic (a) and necrotic cells, and apoptotic body (ab)	157
15	Fluorescence micrographs of population of nordamnacanthal-treated CEM-SS cells stained with acridine orange and propidium iodide showing different morphological appearances of necrosis, different stage of apoptosis and apoptotic body.	157
16	Effects of different concentrations of nordamnacanthal at different hours on DNA fragmentation in CEM-SS cells	164
17	The involvement of Ca^{2+}/Mg^{2+} -dependent endonuclease and protein synthesis in nordamnacanthal-induced apoptosis in CEM-SS cells at 24 hours.	165
18	The involvement of RNA synthesis in nordamnacanthal-induced apoptosis in CEM-SS cells at 6 and 8 hours	165
19	The involvement of phosphatases and RNA synthesis in nordamnacanthal-induced apoptosis in CEM-SS cells at 24 hours.	166
20	The involvement of increase in cytosolic calcium concentration in nordamnacanthal-induced apoptosis in CEM-SS cells at 24 hours	166
21	Effects of different concentrations of damnacanthal at different hours on DNA fragmentation in CEM-SS cells at 24 hours	167
22	The involvement of Ca^{2+}/Mg^{2+} -dependent endonuclease and protein synthesis in damnacanthal-induced apoptosis in CEM-SS cells at 24 hours.	169
23	The involvement of RNA synthesis in damnacanthal-induced apoptosis in CEM-SS cells at 24 hours	169
24	The involvement of RNA synthesis in damnacanthal-induced apoptosis in CEM-SS cells at 24 hours	170

25	The involvement of increase in cytosolic calcium concentration and phosphatases in damnacanthal-induced apoptosis in CEM-SS cells at 24 hours	170
26	The involvement of increase in cytosolic calcium concentration in damnacanthal-induced apoptosis in CEM-SS cells at 24 hours	171
27	Western blot analysis of cell lysates derived from CEM-SS cells treated with different concentrations of nordamnacanthal and damnacanthal at different hours	179

CHAPTER 1

INTRODUCTION

The incidence of cancer is increasing dramatically in the last decade worldwide. The numbers representing the patients suffering from this cruel disorder continuously increased each year. In the United States, for instance, cancer is the second leading cause of death with estimated new cancer cases and deaths of 1,284,900 and 555,500, respectively, for 2002 (Cancer Facts & Figures-2002, 2002). In Malaysia, even though there are no thorough and detailed statistical studies being done yet on the incidence of cancer, 35,000 new cases have been reported registered yearly, making it the fourth major cause of death in the country (National Cancer Registry of Malaysia, 2002).

Cancer results from the uncontrolled growth and spread of abnormal cells. In addition to inherited genetic mutations and other biological factors, environmental influences such as chemicals and radiation (including sunlight) can increase the risk of having cancer. These factors may act individually or together. The disorder takes two forms of abnormal growth of tissue. One is benign and grows slowly. Its main distinction is that, once formed, it stays where it is. In all cancers, malignant tumours sometimes grow rapidly, and they spread, affecting not only healthy tissues nearby but also often invading vital parts of the body, such as the lungs, breasts and stomach. Cancer cells break away from the original growth and travel in the blood stream.

They may also, at the same time, invade the lymphatic system that defends human body against bacterial invasion (Evans, 1991).

As cancer is considered a systemic disease due to its metastatic properties, therefore, the cure from cancer will likely come from some type of systemic treatment. Chemotherapy could be such as systemic therapy for cancer (Verweij and de Jonge, 2000). Excellent results of chemotherapy have been obtained in a small range of cancers such as lymphoma and leukaemia (Garrett and Workman, 1999). Therefore, there is still a long way to go to achieve the necessary jump in the long-term survival and curability of the major solid cancers especially those with metastatic forms.

Comparatively, chemotherapy, the use of drugs to treat cancer, is a relatively young strategy to those two treatment modalities (surgery and radiotherapy). The steadily increasing interest in the development of drugs against cancer particularly started since the late 1950s (Verweij and de Jonge, 2000). In general, anticancer drugs destroy cancer cells by stopping them from growing or multiplying at one or more points in their life cycle. They interfere with cell replication to cause either tumour cell killing (cytotoxic drugs) or cessation of growth (cytostatic drugs) (Wilkes, 1996). Even though chemotherapy can now be considered the main curative treatment, drugs for cancer are not only becoming impersonal but also expensive and highly toxic. They may be genotoxic, teratogenic and fetotoxic. In certain cases, the

drugs may increase the risk of developing a second cancer (secondary primary) (BIOMED*4090, 2002).

As a consequence, based on the fact that human survival has always depended on plants whereby the early man relied entirely on them for food and medicine, scientist are making a move into searching for more effective and less harmful drugs to treat cancer from nature. Indeed, there are thousands of interesting and important medicines from nature.

Natural products especially higher plants have historically served and remain as templates for the development of many important classes of drugs such as mitotic inhibitor and antibiotic. The World Health Organization (WHO) has estimated that at least 80 per cent of the world's population relies mainly, if not totally, on natural medicines. Even in industrialized countries, up to 40 per cent of all pharmaceuticals are derived from natural sources (Polunin and Robbins, 1992). The therapeutic properties of plants were subjected to continuous assessment and evaluation not only recently but over thousands of generations. Through previous efforts, plants have become a viable source of clinically useful anticancer agents such as vincaleukoblastine (vinblastine; Velban®) and leurocristine (vincristine; Oncovin®) from *Catharanthus roseus* (Neuss and Neuss, 1990), and taxol (paclitaxel; Taxol®) from *Taxus brevifolia* (Wani *et al.*, 1971).

Currently, Malaysian tropical rain forests that contain a disproportionate share of the earth's plants with interesting pharmacologically active constituents provide a possible 'new avenue' with the emergence of a potent antitumour compound, a styrylpyrone derivative (SPD) that has been extracted from a plant from a family of Annonaceae (Azimahtol Hawariah, 1999). It has been predicted to be another potential therapy for breast cancer besides the commercially available hormonal drug, tamoxifen.

Cancer occurs when cells become abnormal and keep dividing and forming cells without control or order. The health of all multicellular organisms, including humans, depends not only on the ability to produce new cells but also on the ability of individual cells to self-destruct when they become superfluous or disordered, through a process called apoptosis or programmed cell death. The fact that some cells are behaving aberrantly, which eventually lead to the development of various disorders, particularly cancer, are due to the failure of the cells to undergo apoptosis (Reed and Tomaselli, 2000).

Apoptosis (in classical Greek means "dropping off") is indeed an ongoing process and it is as fundamental to cellular and tissue physiology as are cell division and differentiation due to its pivotal role in normal organ development, deletion of vestigial structures in embryogenesis, control of cell numbers and elimination of nonfunctional, harmful, abnormal or misplaced cells, as well as in many genetic and acquired diseases (Granville *et al.*, 1998). Cells experiencing apoptosis give

