

UNIVERSITI PUTRA MALAYSIA

GRAPHICAL USER INTERFACE LAYOUT LANGUAGE USING
COMBINATORS

KHAIRUL AZHAR KASMIRAN

FSKTM 2006 3

GRAPIDCAL USER INTERFACE LAYOUT LANGUAGE USING

COMBINATORS

By

KHAffiUL AZHAR KASMlRAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

March 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

GRAPHICAL USER INTERFACE LAYOUT LANGUAGE USING
COMBINATORS

By

KHAIRUL AZHAR KASMIRAN

March 2006

Chairman: Associate Professor Abdul Azim Abd. Ghani, PhD

Faculty: Computer Science and Information Technology

While Java is a popular general-purpose programming language, there are certain

areas where the syntax of Java is lacking for the task at hand. One of them is in the

area of layout handling, i.e., the task of placing controls in a Graphical User Interface

(GUI) with regard to their relative position and size. This is because the syntax of

Java is targeted towards imperative programming, where code is written in the form

of a list of instructions. A list of instructions does not adequately mirror the

hierarchical structure of a layout.

To overcome that weakness, this thesis describes and evaluates a new domain-

specific programming language designed specifically for layout handling, named

Swing GUI Layout Language (SGLL). One of the primary features of SGLL is the

use of combinators, a concept used in functional languages. We propose that

combinators are a more intuitive concept compared to the approach taken by Java,

which involves adding controls to a layout m anager. Furthermore, we suggest that

e limination of clutter and better s upport for the abstractions in layout handling can

provide an increase in programmer productivity and understandability of the source

ii

code. In this thesis, we focus on the GridLayout manager class, since it is rather easy

to understand and provides a good starting point.

To validate our approach, we evaluated Java and SGLL in both productivity and

understandability. We found out that SGLL does provide a significant improvement

in productivity and understandabil ity for the task of layout handling.

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

BAHASA PENGATURCARAAN SUSUN ATUR MENGGUNAKAN
PENGHUBUNG UNTUK ANT ARAMUKA GRAFIK

Oleh

KHAIRUL AZHAR KASMIRAN

Mac 2006

Pengerusi: Profesor Madya Abdul Azim Abd. Ghani, PhD

Fakulti: Sa ins Komputer dan Teknologi Maklumat

WaJaupun Java merupakan bahasa pengaturcaraan serbaguna yang popular, masih

ada beberapa bidang di mana sintaks Java kurang sesu ai untuk tugas yang diberi.

Salah satu daripadanya adalah dalam bidang pengendalian susun atur, iaitu tugas

meletakkan alat kawalan dalam satu antara muka pengguna grafik (Graphical User

Interface) dengan merujuk kepada kedudukan sesama m ereka dan saiz mereka. Ini

adalah kerana sintaks Java lebih tertumpu kepada pengaturcaraan imperatif, di mana

kod ditulis dalam bentuk satu senarai arahan. Satu senarai arahan kurang

mencerminkan struktur hierarki sesebuah s usun atur.

Untuk membetulkan kelemahan tersebut, tesis ini menerang dan menilai satu bahasa

pengaturcaraan domain-khusus baharu yang direka bentuk khas untuk pengendalian

susun atur, dinamakan SGLL. Salah satu ciri utama SGLL adalah penggunaan

penghubung, yang merupakan satu konsep yang digunakan dalam bahasa

pengaturcaraan fungsian. Kami merasakan bahawa penghubung merupakan satu

konsep yang lebih senang difahami berbanding pendekatan yang digunakan oleh

Java, yang melibatkan penambahan alat kawalan kepada sebuah pengurus susun atur.

Tambahan pula, kami percaya bahawa penyingkiran penyelerakan dan sokongan

iv

rtnru" I H�.I-\I-\I'; ;'UL II-\I� ImUUL :lI-lIVII-IU
UNIVffi"� TI fJUTRA MALA YllA

yang lebih baik untuk pengabstrakan dalam pengendalian susun atur dapat

meningkatkan produktiviti pengaturcara dan pemahaman kod sumber. Dalam tesis

ini, kami memberikan tumpuan kepada kelas pengurus GridLayout, memandangkan

kelas tersebut senang untuk difahami dan merupakan satu titik pennulaan yang baik.

Untuk mengesahsahihkan pendekatan kami, kami telah menilai Java dan SGLL

dalam kedua-dua produktiviti dan pemahaman. Kami mendapati bahawa hasi l kami

menunjukkan bahawa SGLL dapat meningkatkan produktiviti dan pemahaman untuk

tugas pengendalian susun atur.

v

GRAPHICAL USER INTERFACE LAYOUT LANGUAGE USING
COMBINATORS

By

KHAIRUL AZHAR KASMIRAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

March 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

GRAPHICAL USER INTERFACE LAYOUT LANGUAGE USING
COMBINATORS

By

KHAffiUL AZHAR KASMIRAN

March 2006

Chairman: Associate Professor Abdul Azim Abd. Ghani, PhD

Faculty: Computer Science and Information Technology

While Java is a popular general-purpose programming language, there are certain

areas where the syntax of Java is lacking for the task at hand. One of them is in the

area of layout handling, i.e., the task of placing controls in a Graphical User Interface

(GUI) with regard to their relative position and size. This is because the syntax of

Java is targeted towards imperative programming, where code is written in the form

of a list of instructions. A list of instructions does not adequately mirror the

hierarchical structure of a layout.

To overcome that weakness, this thesis describes and evaluates a new domain-

specific programming language designed specifically for layout handling, named

Swing GUI Layout Language (SGLL). One of the primary features of SGLL is the

use of combinators, a concept used in functional languages. We propose that

combinators are a more intuitive concept compared to the approach taken by Java,

which involves adding controls to a layout manager. Furthermore, we suggest that

e limination of clutter and better support for the abstractions in layout handling can

provide an increase in programmer productivity and understandability of the source

ii

code. In this thesis, we focus on the GridLayout manager class, since it is rather easy

to understand and provides a good starting point.

To validate our approach, we evaluated Java and SGLL in both productivity and

understandability. We found out that SGLL does provide a significant improvement

in productivity and understandability for the task of layout handling.

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

BAHASA PENGATURCARAAN SUSUN ATUR MENGGUNAKAN
PENGHUBUNG UNTUK ANTARAMUKA GRAFIK

Oleh

KHAIRUL AZHAR KASMIRAN

Mac 2006

Pengerusi: Profesor Madya Abdul Azim Abd. Ghani, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

Walaupun Java merupakan bahasa pengaturcaraan serbaguna yang popular, masih

ada beberapa bidang di mana sintaks Java kurang sesuai untuk tugas yang diberi.

Salah satu daripadanya adalah dalam bidang pengendalian susun atur, iaitu tugas

meletakkan alat kawalan dalam satu antara muka pengguna grafik (Graphical User

Interface) dengan merujuk kepada kedudukan sesama mereka dan saiz mereka. Ini

adalah kerana sintaks Java lebih tertumpu kepada pengaturcaraan imperatif, di mana

kod ditulis dalam bentuk satu senarai arahan. Satu senarai arahan kurang

mencerminkan struktur hierarki sesebuah susun atur.

Untuk membetulkan kelemahan terse but, tesis ini menerang dan menilai satu bahasa

pengaturcaraan domain-khusus baharu yang direka bentuk khas untuk pengendalian

susun atur, dinamakan SGLL. Salah satu ciri utama SGLL adalah penggunaan

penghubung, yang merupakan satu konsep yang digunakan dalam bahasa

pengaturcaraan fungsian. Kami merasakan bahawa penghubung merupakan satu

konsep yang lebih senang difahami berbanding pendekatan yang digunakan oleh

Java, yang melibatkan penambahan alat kawalan kepada sebuah pengurus susun atur.

Tambahan pula, kami percaya bahawa penyingkiran penyelerakan dan sokongan

iv

\.J1:"\�'..,'::'I,'.,\P.iI'-; S:I_'N� N:DtJL SAMAD
UNlVf:fti64TI IlVTRA MALA VIlA

yang lebih baik untuk pengabstrakan dalam pengendalian susun atur dapat

meningkatkan produktiviti pengaturcara dan pemahaman kod sumber. Dalam tesis

ini, kami memberikan tumpuan kepada kelas pengurus GridLayout, memandangkan

kelas tersebut senang untuk difahami dan merupakan satu titik permulaan yang baik.

Untuk mengesahsahihkan pendekatan kami, kami telah menilai Java dan SGLL

dalam kedua-dua produktiviti dan pemahaman. Kami mendapati bahawa hasil kami

menunjukkan bahawa SGLL dapat meningkatkan produktiviti dan pemahaman untuk

tugas pengendalian susun atur.

v

ACKNOWLEDGEMENTS

Praise be to Allah for giving me the strength and wisdom to complete this work.

Without Allah's help and blessing, I would not have succeeded.

Firstly, I would like to thank my supervisor, Prof. Madya Dr. Abdul Azim Abd.

Ghani, Dean of the Faculty of Computer Science and Information Technology, for

invaluable discussion and commentary. Also, I would like to thank my co-supervisor,

Prof. Madya Dr. Hj. Md. Nasir Hj. Sulaiman, for his support and encouragement

I would also like to express my thanks to the Faculty of Computer Science and

Technology, especially the ICT unit, for providing general help and assistance for the

experiments. Also, I'd like to thank the Library and the School of Graduate Studies

for helpfully fulfilling my every request.

Special thanks to my friends and colleagues at the Faculty of Computer Science and

Information Technology for their support and advice. Your help will not be

forgotten.

Finally, I would like to thank my family for giving me the motivation and moral

support needed to complete this thesis. Only Allah can truly reward what they have

done.

vi

Khairul Azhar Kasmiran

March 2006

I certify that an Examination Committee has met on 17 March 2006 to conduct the
final examination of Khairul Azhar Kasmiran on his Master of Science thesis entitled
"Graphical User Interface Layout Language Using Combinators" in accordance with
Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian
Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the
candidate be awarded the relevant degree. Members of the Examination Committee
are as follows:

RAMLAN MAHMOD, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

FATlMAH AHMAD, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

RUSLI ABDULLAH, PhD
Lecturer
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

MD. YAZID MOHD. SAMAN, PhD
Professor
Faculty of Science and Technology
Kolej Universiti Sains dan Teknologi Malaysia
(External Examiner)

PH,. GHAZALI, PhD
P Dean

Schoo Graduate Studies
Universiti Putra Malaysia

Date: '11 JUL 2006

vii

This thesis submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Master of Science. The
members of the Supervisory Committee are as follows:

ABDUL AZIM ADD. GHANI, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chainnan)

MD. NASIR SULAIMAN, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

viii

AINI IDERIS, PhD
ProfessorlDean
School of Graduate Studies
Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations
and citations which have been duly acknowledged. I also declare that it has not been
previously or concurrently submitted for any other degree at UPM or other
institutions.

ix

KHAIRUL AZHAR KASMIRAN

Date: 13 /0 � I zoot

TABLE OF CONTENTS

ABSTRACT
ABSTRAK
A CKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

Page

ii
iv
vi
vii
ix
xii
xiii
xv

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Objective of the Research 4
1.4 Scope of the Research 4
1.5 Thesis Outline 5

2 LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Graphical User Interface Tenns and Definitions 8
2.3 Domain-specific Languages 10
2.4 Programming Language Attributes 11

2.4.1 General Language Criteria 11
2.4.2 Productivity (Writability) 15
2.4.3 Understandability (Readability) 16

2.5 Layout Handling 17
2.5.1 Functional Languages 17
2.5.2 Declarative Languages 21
2.5.3 Imperative Languages 23

2.6 Java and Swing 24
2.7 Evaluation of Programming Languages 26
2.8 Summary 28

3 METHODOLOGY 31
3.1 Introduction 31
3.2 Design ofSGLL 31

3.2.1 Syntax ofSGLL 32
3.2.2 Semantics of SGLL 33

3.3 Compiler Implementation Methodology 34
3.4 Experimental Design for the Productivity Experiment 35

3.4.1 Productivity Experiment Implementation 38
3.4.2 Confounding Factors for the Productivity Experiment 39

3.5 Experimental Design for the Understandability Experiment 41
3.5.1 Understandability Experiment Implementation 46
3.5.2 Confounding Factors for the Understandability Experiment 46

x

3.6 Summary 47

4 IMPLEMENTATION 48
4.1 Introduction 48
4.2 Syntax of SGLL (Support for Abstraction) 48

4.2. 1 Support for the Control Hierarchy 49
4.2.2 Combinators 5 1
4.2.3 Support for Control Properties 53

4.3 Semantics of SGLL 54
4.3. 1 Semantic Equivalence 54
4.3.2 Abstract Syntactic Domains 55
4.3.3 Abstract Production Rules 55
4.3.4 Semantic Domains 56
4.3.5 Semantic Functions 59
4.3.6 Semantic Equations 61
4.3.7 Auxiliary Functions 62
4.3.8 Comments 64

4.4 Compiler Implementation 65
4.4. 1 Steps Taken in Building the Compiler 70

4.5 Summary 74

5 ANALYSIS AND DISCUSSION OF RESULTS 75
5.1 Introduction 75
5.2 Productivity Experiment 75
5.3 Understandability Experiment 79
5.4 Summary 83

6 CONCLUSION AND FUTURE WORK 84
6.1 Introduction 84
6.2 Contributions of the Research 84
6.3 Future Work 85

6.3.1 Additional Features 85
6.3.2 Further Evaluation 85
6.3.3 Tool Development 86

6.4 Conclusion 87

REFERENCES 88
APPENDICES 91
BIODATA OF THE AUTHOR 1 27

xi

LIST OF TABLES

Tabl e Page

2.1 List of language criteria from Appleby and VandeKopple (1997) 1 2

3.1 Experimental design for the productivity experiment 35

3.2 Experimental design for the understandability experiment 41

5.1 Data from the Java productivity experiment 76

5.2 Data from the SGLL productivity experiment 77

5.3 Raw data for the ANOVA test for productivity (units are seconds) 78

5.4 Data from the Java understandability experiment 80

5.5 Data from the SGLL understandability experiment 81

5.6 Raw data for the Friedman test for understandability (units are percentages) 82

xii

LIST OF FIGURES

Figure

1.1 Layout handling pseudocode for Java

2.1 Layout produced by TkGofer for "(A « B) /V\ C"

2.2 Layout produced by FranTk for "title 'beside' timevalue"

2.3 Example of GroovyMarkup code

2.4 Example of E ve code

2.5 Example of Tk code

2.6 Example of Java code

4. 1 A sample layout

4.2 Partitioning of the layout in Figure 4.1

4 . 3 SGLL code for the layout in Figure 4.2

4.4 Java code for the layout in Figure 4.2

4.5 Separated containers version of Figure 4.3

4.6 The 'above' combinator

4.7 The 'beside' combinator

4.8 Setting properties in Java

4.9 Setting properties in SGLL

4.10 Overall structure of the SGLL compiler

4.11 Example SGLL layout

4.12 Layout trees for SGLL layout in Figure 4.11

4.13 A layout with no children

4.14 Tree for layout in Figure 4.13

4.15 Control table structure

4.16 Smallest SGLL program

xiii

Page

3

20

20

22

23

24

25

49

49

49

50

51

52

52

53

53

66

67

67

68

68

69

70

4.17 Example of a one-control program

4.18 Example of an n-control, one combinator program

4.19 Example of an n-combinator (single type) program

4.20 Example of a nested containers + y-axis combinator program

4.21 Example of single/multi-line comments

4.22 Example of a separated containers program

xiv

70

71

71

72

73

73

DSL

GRAIL

GUI

IDE

MSDOS

SGLL

LIST OF ABBREVIATIONS

Domain-specific L anguage

Genuinely Readable And Intuitive Language

Graphical User Interface

Integrated Development Environment

M icrosoft D isk Operating System

Swing Gill Layout Language

xv

CHAPTER 1

INTRODUCTION

1.1 Background

In 1995, Sun Microsystems presented the Java (Sun Microsystems, 2005) language

to the world. Nowadays, it is one of the most popular programming languages, as

evidenced informally by the TIOBE Programming Community Index

(Tiobe Software, 2005).

Java is an object-oriented imperative language, i.e., it has support for objects as an

abstraction method, as well as being based on the von Neumann architecture, with its

emphasis towards variables, assignment statements and the iterative form of

repetition. Imperative programming has a long history, starting with FORTRAN in

the 1950s and continuing on with languages such as C (in the 1970s) and Java

(Sebesta, 1999).

Since Java is a general-purpose programming language, its syntax will not be heavily

tailored towards any specific programming task. Therefore, there are cases where a

domain-specific language (or special-purpose language), tailored for a certain task, is

more appropriate for the job. S uch languages can provide s ignificant boosts in

productivity, usually by allowing the programmer to write less code for the same

results (Spinellis and Guruprasad, 1 997).

One area, in which we consider Java syntax to be deficient to the task at hand, is for

the task of layout handling. A layout specifies the relative position and size of

controls in an application's Graphical User Interface (GUI). While it is certainly

possible to write layout handling code in Java itself, we suggest that it would be

better for the programmer if a domain-specific language is used instead, since a

domain-specific language can provide greater expressive power (van Deursen, et al.,

2000).

Thereby, we present a new domain-specific language based on Java that is designed

for layout handling, named Swing GUI Layout Language or SGLL (Swing is the

official GUI toolkit for Java). We present evidence in this thesis that our language

provides significant boosts in programmer productivity and source code

understandability compared to Java.

In this thesis, we define productivity as the time taken to perfonn a specific layout­

handling task. We also defme understandability generally as the ease in which

programs can be read and understood, and empirically as the percentage of the

answer containing errors when converting a layout in source code form to a layout in

graphical form, given a fixed amount of time.

The compiler for SGLL is a source code generator. The generator produces Java

code from a specification written in SGLL. The Java code produced can be compiled

and executed like a normal Java program. The SGLL language itself is declarative.

We represent a layout using a data structure, rather than as computer instructions.

2

There has been work done in the literature using a source code generator with initial

results that show development of a complete user interface using that generator to be

faster than using raw Java (da Silva, et al., 2000). In this study, instead of developing

a source code generator that can produce a complete user interface in Java, we

concentrate only on the layout manager approach used by Java, since comparison of

individual language features provide the most scientific results (Furuta and Kemp,

1979).

1.2 Problem Statement

Currently, Java uses the layout manager approach for layout handling. In the layout

manager approach, each container (or parent for a group of controls) has a layout

manager associated with it. The task of this layout manager is to arrange the controls

under its supervision using a certain set of rules, specific to each layout manager.

Figure 1.1 shows the general structure of layout handling pseudocode for Java.

container.setLayout(new LayoutManager(initial parameters));
container. add (controll, layout parameters);
container. add (contro12, layout parameters);
container. add (contro13, layout parameters);

Figure 1.1: Layout handling pseudocode for Java

Therefore, we have identified the following problems with the current approach:

• The layout resulting from that code is not apparent from the code itself. More

specifically, the linear adding of controls does not correspond well to the tree

structure of a layout hierarchy, thus reducing understandability.

3

• There is redundancy in the Java approach. More specifically, the programmer

needs to type "container. add" every time he or she adds a new control

to a container. Not only does such redundancy reduce productivity by adding

the programmer's workload unnecessarily, but such redundancy also reduces

understandability by cluttering up the source code.

1.3 Objective of the Research

The objective of this research is to design and implement a GUI layout language for

Swing. During language design, emphasis will be given on the language attributes of

productivity and understandability. For productivity, the measurement to be used is

the time taken to produce a layout, using either the Java or SGLL programming

language as appropriate. For understandability, the measurement to be used is the

percentage of the answer containing errors. The answer here refers to a hand-drawn

layout that is directly derived from Java or SGLL source code as appropriate.

Our definitions of productivity and understandability are equivalent to Sebesta's

definitions of writability and readability respectively (Sebesta, 1999). We have

chosen the two attributes for evaluation in this study because, according to Sebesta

(1999), they are considered to be the most important attributes for language users.

1.4 Scope of the Research

This research is scoped according to the following delimitations:

4

