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While Java is a popular general-purpose programming language, there are certain 

areas where the syntax of Java is lacking for the task at hand. One of them is in the 

area of layout handling, i.e., the task of placing controls in a Graphical User Interface 

(GUI) with regard to their relative position and size. This is because the syntax of 

Java is targeted towards imperative programming, where code is written in the form 

of a list of instructions. A list of instructions does not adequately mirror the 

hierarchical structure of a layout. 

To overcome that weakness, this thesis describes and evaluates a new domain-

specific programming language designed specifically for layout handling, named 

Swing GUI Layout Language (SGLL). One of the primary features of SGLL is the 

use of combinators, a concept used in functional languages. We propose that 

combinators are a more intuitive concept compared to the approach taken by Java, 

which involves adding controls  to a layout m anager. Furthermore, we suggest that 

e limination of clutter and better s upport for the abstractions in layout handling can 

provide an increase in programmer productivity and understandability of the source 
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code. In this thesis, we focus on the GridLayout manager class, since it is rather easy 

to understand and provides a good starting point. 

To validate our approach, we evaluated Java and SGLL in both productivity and 

understandability. We found out that SGLL does provide a significant improvement 

in productivity and understandabil ity for the task of layout handling. 
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WaJaupun Java merupakan bahasa pengaturcaraan serbaguna yang popular, masih 

ada beberapa bidang di mana sintaks Java kurang sesu ai untuk tugas yang diberi. 

Salah satu daripadanya adalah dalam bidang pengendalian susun atur, iaitu tugas 

meletakkan alat kawalan dalam satu antara muka pengguna grafik (Graphical User 

Interface) dengan merujuk kepada kedudukan sesama m ereka dan saiz mereka. Ini 

adalah kerana sintaks Java lebih tertumpu kepada pengaturcaraan imperatif, di mana 

kod ditulis dalam bentuk satu senarai arahan. Satu senarai arahan kurang 

mencerminkan struktur hierarki sesebuah s usun atur. 

Untuk membetulkan kelemahan tersebut, tesis ini menerang dan menilai satu bahasa 

pengaturcaraan domain-khusus baharu yang direka bentuk khas untuk pengendalian 

susun atur, dinamakan SGLL. Salah satu ciri utama SGLL adalah penggunaan 

penghubung, yang merupakan satu konsep yang digunakan dalam bahasa 

pengaturcaraan fungsian. Kami merasakan bahawa penghubung merupakan satu 

konsep yang lebih senang difahami berbanding pendekatan yang digunakan oleh 

Java, yang melibatkan penambahan alat kawalan kepada sebuah pengurus susun atur. 

Tambahan pula, kami percaya bahawa penyingkiran penyelerakan dan sokongan 
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yang lebih baik untuk pengabstrakan dalam pengendalian susun atur dapat 

meningkatkan produktiviti pengaturcara dan pemahaman kod sumber. Dalam tesis 

ini, kami memberikan tumpuan kepada kelas pengurus GridLayout, memandangkan 

kelas tersebut senang untuk difahami dan merupakan satu titik pennulaan yang baik. 

Untuk mengesahsahihkan pendekatan kami, kami telah menilai Java dan SGLL 

dalam kedua-dua produktiviti dan pemahaman. Kami mendapati bahawa hasi l  kami 

menunjukkan bahawa SGLL dapat meningkatkan produktiviti dan pemahaman untuk 

tugas pengendalian susun atur. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In 1995, Sun Microsystems presented the Java (Sun Microsystems, 2005) language 

to the world. Nowadays, it is one of the most popular programming languages, as 

evidenced informally by the TIOBE Programming Community Index 

(Tiobe Software, 2005). 

Java is an object-oriented imperative language, i.e., it has support for objects as an 

abstraction method, as well as being based on the von Neumann architecture, with its 

emphasis towards variables, assignment statements and the iterative form of 

repetition. Imperative programming has a long history, starting with FORTRAN in 

the 1950s and continuing on with languages such as C (in the 1970s) and Java 

(Sebesta, 1999). 

Since Java is a general-purpose programming language, its syntax will not be heavily 

tailored towards any specific programming task. Therefore, there are cases where a 

domain-specific language (or special-purpose language), tailored for a certain task, is 

more appropriate for the job. S uch languages can provide s ignificant boosts in 

productivity, usually by allowing the programmer to write less code for the same 

results (Spinellis and Guruprasad, 1 997). 



One area, in which we consider Java syntax to be deficient to the task at hand, is for 

the task of layout handling. A layout specifies the relative position and size of 

controls in an application's Graphical User Interface (GUI). While it is certainly 

possible to write layout handling code in Java itself, we suggest that it would be 

better for the programmer if a domain-specific language is used instead, since a 

domain-specific language can provide greater expressive power (van Deursen, et al., 

2000). 

Thereby, we present a new domain-specific language based on Java that is designed 

for layout handling, named Swing GUI Layout Language or SGLL (Swing is the 

official GUI toolkit for Java). We present evidence in this thesis that our language 

provides significant boosts in programmer productivity and source code 

understandability compared to Java. 

In this thesis, we define productivity as the time taken to perfonn a specific layout­

handling task. We also defme understandability generally as the ease in which 

programs can be read and understood, and empirically as the percentage of the 

answer containing errors when converting a layout in source code form to a layout in 

graphical form, given a fixed amount of time. 

The compiler for SGLL is a source code generator. The generator produces Java 

code from a specification written in SGLL. The Java code produced can be compiled 

and executed like a normal Java program. The SGLL language itself is declarative. 

We represent a layout using a data structure, rather than as computer instructions. 
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There has been work done in the literature using a source code generator with initial 

results that show development of a complete user interface using that generator to be 

faster than using raw Java (da Silva, et al., 2000). In this study, instead of developing 

a source code generator that can produce a complete user interface in Java, we 

concentrate only on the layout manager approach used by Java, since comparison of 

individual language features provide the most scientific results (Furuta and Kemp, 

1979). 

1.2 Problem Statement 

Currently, Java uses the layout manager approach for layout handling. In the layout 

manager approach, each container (or parent for a group of controls) has a layout 

manager associated with it. The task of this layout manager is to arrange the controls 

under its supervision using a certain set of rules, specific to each layout manager. 

Figure 1.1 shows the general structure of layout handling pseudocode for Java. 

container.setLayout(new LayoutManager(initial parameters)); 
container. add (controll, layout parameters); 
container. add (contro12, layout parameters); 
container. add (contro13, layout parameters); 

Figure 1.1: Layout handling pseudocode for Java 

Therefore, we have identified the following problems with the current approach: 

• The layout resulting from that code is not apparent from the code itself. More 

specifically, the linear adding of controls does not correspond well to the tree 

structure of a layout hierarchy, thus reducing understandability. 
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• There is redundancy in the Java approach. More specifically, the programmer 

needs to type "container. add" every time he or she adds a new control 

to a container. Not only does such redundancy reduce productivity by adding 

the programmer's workload unnecessarily, but such redundancy also reduces 

understandability by cluttering up the source code. 

1.3 Objective of the Research 

The objective of this research is to design and implement a GUI layout language for 

Swing. During language design, emphasis will be given on the language attributes of 

productivity and understandability. For productivity, the measurement to be used is 

the time taken to produce a layout, using either the Java or SGLL programming 

language as appropriate. For understandability, the measurement to be used is the 

percentage of the answer containing errors. The answer here refers to a hand-drawn 

layout that is directly derived from Java or SGLL source code as appropriate. 

Our definitions of productivity and understandability are equivalent to Sebesta's 

definitions of writability and readability respectively (Sebesta, 1999). We have 

chosen the two attributes for evaluation in this study because, according to Sebesta 

(1999), they are considered to be the most important attributes for language users. 

1.4 Scope of the Research 

This research is scoped according to the following delimitations: 
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