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The development of high-throughput high-content technologies and the increased

ease in their application in clinical settings has raised the expectation of an important

impact of these technologies on diagnosis and personalized therapy. Patient genomic

and expression profiles yield lists of genes that are mutated or whose expression is

modulated in specific disease conditions. The challenge remains of extracting from

these lists functional information that may help to shed light on the mechanisms

that are perturbed in the disease, thus setting a rational framework that may help

clinical decisions. Network approaches are playing an increasing role in the organization

and interpretation of patients’ data. Biological networks are generated by connecting

genes or gene products according to experimental evidence that demonstrates their

interactions. Till recently most approaches have relied on networks based on physical

interactions between proteins. Such networks miss an important piece of information

as they lack details on the functional consequences of the interactions. Over the past

few years, a number of resources have started collecting causal information of the

type protein A activates/inactivates protein B, in a structured format. This information

may be represented as signed directed graphs where physiological and pathological

signaling can be conveniently inspected. In this review we will (i) present and compare

these resources and discuss the different scope in comparison with pathway resources;

(ii) compare resources that explicitly capture causality in terms of data content and

proteome coverage (iii) review how causal-graphs can be used to extract disease-specific

Boolean networks.

Keywords: network medicine, logic modeling, causality resources, prior knowledge network, causal interactions

INTRODUCTION

The term precision or personalized medicine reflects the motivation of using high content
molecular information for disease diagnosis and for the design of effective personalized therapies
(Ginsburg and Phillips, 2018). Advances in experimental methods, such as deep sequencing and
high content proteomics (Nilsson et al., 2010; Goldman and Domschke, 2014), have enabled the
comprehensive assessment of a patient’s molecular profile in a time- and cost-effective manner.
Patients’ genomic and expression profiles are becoming increasingly more important diagnostic
readouts and are likely to become soon compatible with clinical practice in most public hospitals.
Whether patients can benefit from this promising treatment strategy on a large scale still remains
uncertain (Zhang et al., 2020).
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One main limitation of this genomic-approach is the lack
of an effective strategy to extract clinically relevant information
from these dense and noisy datasets. Network representation
of biological complexity and graph theory are playing an
increasingly important role in dealing with the intricacy of
human physiology and pathology. Network-based approaches
are used, in the context of a relatively new discipline dubbed
“network medicine,” to address the interplay of the molecular
mechanisms underlying complex diseases (Barabási et al., 2011).
The main idea behind is that a network, where interactions
between its components are represented in the form of a graph,
provides a powerful mathematical framework for analysis and
visualization of experimental results.

According to this vision, gene products govern cell physiology
by interacting in a large interconnected network whose
equilibrium is responsible for the dynamic homeostasis of
“healthy” cells. The network properties are believed to be
rather robust and resilient to perturbations of many of the
nodes and some of their connecting edges. A few nodes of
the network, however, are quite sensitive and their knock
out or hyperactivation may cause large changes of the
network properties leading to disease (Brinkman et al., 2006).
Alternatively, and more frequently, a combination of alterations
of the activities of nodes that, on their own, have little effect
may synergize to alter the properties of sensitive regions of the
network thereby leading to a pathological condition (Barabási
et al., 2011). It is anticipated that the overlay of a patient genomic
profile onto such a comprehensive cell network, or part of
it, will provide a framework to help in patient diagnosis and
therapy choice.

Cell networks are assembled from experimental evidence
of physical or functional links between biological entities.
This information is often difficult to retrieve and organize as
it is dispersed in millions of scientific reports. In addition,
experimental results are mainly reported in natural language
that is not easily processed by computers. Thus, network
approaches mostly rely on the work of database curators that,
assisted by natural language processing tools, identify relevant
reports in literature repositories and annotate the interaction
evidence in a structured machine-readable format. Over the
past few decades different players have engaged in the task of
capturing evidence of protein interactions. Protein interaction
is a generic term including different types of physical and
functional relationships between proteins as identified by diverse
experimental approaches (Zhou et al., 2016). Databases that
aim at capturing this information have distinct focus and
adopt models that best adapt to their scope. As a consequence,
comparing and merging the data from the diverse databases is
made difficult by the heterogeneity of the interaction types and
the models to represent them.

A recent review by Touré et al. (2020) has discussed the
different types of protein interaction resources focusing on a
comparison of the adopted data structures and the data exchange
and conversion procedures. Here we go over the models that
have been adopted to represent experimental evidence of protein
relationships mediating physiological and pathological processes.
More specifically, we confront physical and causal interactions by

briefly describing their characteristics and the resources that aim
at capturing and organizing the two different interaction types.

We focus on resources that annotate causal interactions
modeled as “activity-flow” (AF) networks (Figure 1) by
considering and comparing their coverage and merits in
different use cases. We will also present tools and strategies that
make use of networks assembled from prior knowledge (PKNs)
to produce executable logic models replicating phenotypes of
clinical relevance. Finally, we discuss whether the evidence on
causal relationships that is presently reported in the scientific
literature is adequate to assemble a cell network of sufficiently
high coverage and accuracy to be of clinical relevance.

RESOURCES CAPTURING SIGNALING
INTERACTIONS

Physical and Causal Interactions
Proteins interact in the cell forming a complex ordered functional
mesh. Some of these interactions are necessary for maintaining
cell organization whereas others support the cell response to
internal and external stimuli, and are often transient (Acuner
Ozbabacan et al., 2011). A variety of approaches suitable for
high throughput analysis have been used to reveal the physical
contacts between proteins without informing on the dynamic of
signal propagation (Xing et al., 2016). More than 400K “physical
interactions” between human proteins have been reported in
the literature by using these methods and for 85% of the
proteins in the human proteome we know at least one physical
partner in public databases (Orchard et al., 2014; Oughtred
et al., 2021). Physical interactions are symmetrical by nature and,
having no directionality, are represented as “undirected” graphs
(Figure 1A). Transient signaling interactions, on the other hand,
are often short lived and as such may not be revealed by the
methods developed for physical interactions. They are often
causal as one of the partners, the regulator, causes a functionally
relevant modification of the target protein. These latter types
of interactions may be modeled in two ways that are often
referred to as “process descriptions” (PD) and “activity-flow”
(AF) (Figure 1) (Le Novère, 2015; Türei et al., 2016; Touré et al.,
2020).

Let us consider, as an example, the experimental observation
that the phosphatase PTPRJ (DEP1) binds to MAPK1 (ERK2)
and inactivates it by removing a phosphate (Sacco et al., 2009).
As shown in Figure 1B, an “undirected PPI” model represents
this statement as a link between PTPRJ and MAPK1 that has
no direction. The “activity-flow” (AF) model, on the other hand,
renders this information as a binary interaction where the two
proteins are connected by an edge that has direction from PTPRJ
to MAPK1 and a sign which is graphically symbolized with a
specific edge-form or color. This representation captures the
evidence that PTPRJ is the regulator and MAPK1 the target and
that this interaction has the consequence of inactivatingMAPK1.
AF models offer the advantage of being represented as a set of
binary interactions in a signed directed graph which is more
informative than an undirected graph. Finally, the PD model
captures additional mechanistic details. In this representation the
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FIGURE 1 | Different representations of protein interactions. (A) Experimental methods can either provide evidence that support a physical contact between two

proteins to form a complex (physical interaction) or a modulation of the activity of a target protein caused by the activity of a parent protein (causal interaction). (B)

Different graphical representation of the same biological statement: PTPRJ dephosphorylates and inhibits MAPK1 (Sacco et al., 2009). Three distinct models to

represent protein relationships supported by different experimental evidence: undirected PPI, activity-flow and process description. (C) The EGFR signaling pathway

represented as an undirected protein-protein interaction network (PPI), as activity-flow network (AF) and a process-description network (PD). *indicates the modified

form of a given protein node.

target entity, MAPK1 in our example, is split into two nodes
representing the phosphorylated and unphosphorylated forms
of the protein. The two forms are connected by a directed edge
symbolizing the transition from one form to the other. The
activity of the regulatory protein PTPRJ is represented as an
edge promoting the removal of the phosphate from MAPK1.
A limitation of this latter model is that the impact of the
phosphorylation on the activation status of MAPK1 cannot be
directly derived; it is only implicit as it can only be inferred from
the reconstruction of the downstream chains of reactions.

The different representations serve different purposes and
answer different questions. For instance, analysis of highly
connected regions of an undirected protein interaction network
may reveal the formation of macromolecular complexes (Wang
et al., 2009; Havugimana et al., 2012). Similarly, the function
of a protein that is trapped in a subnetwork formed by
proteins that are annotated to a specific biological process
may provide hints on its function (Oliver, 2000). On the
other hand, process description and activity-flow networks are
appropriate to sketch the information flow from a receptor
sensing a stimulus to activation of a transcription factor driving
phenotype modulation.

Another major difference between physical and causal
interaction datasets is proteome coverage as the latter have

significantly lower coverage. This is partly due to incomplete
curation of reported experimental evidence and partly to the
lack of appropriate high throughput experimental approaches
to reveal causal interactions on a large scale. In addition,
many resources annotating PPI have, in recent years, joined
their efforts forming a consortium (Orchard et al., 2014;
Porras et al., 2020) for distributing curation investment and
using common standards and curation rules, whereas causal
resources have not reached such an agreement yet. For
these reasons, many of the network approaches presently rely
on networks based on physical protein interactions (PPI)
(Zhang and Itan, 2019).

Approaches based on networks assembled by using
information on causal relationships, however, are gaining
momentum as they provide information that can be relatively
easily converted into Boolean or ordinary differential equation
models thus enabling users to compute the behavior of a system
in different conditions (Le Novère, 2015).

Although there is no strict separation between the
experimental evidence that can be captured by the different
models, it is crucial to understand the data structure adopted by
each resource as analyses built on information extracted from
distinct databases may lead to different biological conclusions
(Mubeen et al., 2019).
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FIGURE 2 | Classification of causality resources. Resources can be grouped according to the model adopted to represent causality in AF or PD (see Figure 1) and

according to the organization of the information in “interaction databases” or “pathway databases.” In interaction databases relationships are annotated separately

and not necessarily in the context of higher-level organizational structures, such as pathways. In “pathway databases” interactions are exclusively shown in the

context of the pathway they participate in.

Pathway Databases and Interaction
Databases
Cell physiology is governed by a large connected network
of physical and causal interactions. Nevertheless, biologists
sometimes prefer to consider the cell model as an ensemble of
unconnected pathways that, in a first approximation, function
in isolation and do not crosstalk. However, this approximation
neglects the effects of the cell network as a whole that may
significantly affect the behavior of the pathway subnetworks.
Although networks are useful abstractions, their functional
integration into a cell model remains an important challenge.
Capturing the experimental information for the assembly of
protein interaction networks from primary literature data is an
intimidating task. To assist scientists, over the past 20 years, a
number of resources have set out to annotate an excerpt of the
experimental facts related to protein interactions in structured
formats in public repositories. However, different databases have
been developed to serve different purposes, they adopt different
curation policies and describe the same biological fact at different
levels of abstraction and granularity.

We here focus on resources that capture causality, hereafter
referred to as “causality resources” (Figure 2). Considering the
chosen representation model, databases can be grouped into two
broad classes (Figure 2, Supplementary Table 1): “interaction
databases,” where relationships are integrated in a global network
and “pathway databases,” where interactions are curated and
displayed in the context of the pathway they participate in.

The three most popular pathway resources are KEGG,
Reactome and WikiPathways (Kanehisa and Goto, 2000;
Slenter et al., 2018; Jassal et al., 2020). Among the pathway
databases those adopting AF as interaction model are KEGG,
SPIKE (Paz et al., 2011) and CBN (Boué et al., 2015)
(Supplementary Table 1). The signaling information annotated
in these databases is reviewed by domain experts and covers
more than 50% of the human proteome. Aside from their
descriptive value in the representation of cell physiology, they
have proven useful in the analysis and interpretation of -omics
data when coupled with algorithmic approaches such as gene
set enrichment analysis GSEA and signaling pathway impact
analysis (SPIA) (Subramanian et al., 2005; Tarca et al., 2009;
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Sprent, 2011). However, they do not provide an integrated picture
of cell functioning as interactions are accessible only in the
context of pathways and miss to offer a holistic view. Another
class of resources, including Cell Collective (Helikar et al., 2012),
Biomodels (Malik-Sheriff et al., 2020), the GINsim repository
(Naldi et al., 2009) and the PyBoolNet repository (Klarner et al.,
2017) collect assembled logical models. Briefly, these resources
store models curated and tested by different groups for specific
projects. Users can download the models and adapt them to
different purposes. However, the models do not necessarily
follow a common annotation standard. As a consequence, the
integration into larger models is often not straightforward.

A third class of resources, such as SIGNOR (Licata et al.,
2020), SignaLink (Csabai et al., 2018), OmniPath (Türei et al.,
2016; Ceccarelli et al., 2020) or PhosphoSitePlus (Hornbeck et al.,
2019) annotate interactions without necessarily listing them as
members of a pathway. We will refer to these with the generic
term “causal interaction databases” (Figure 2). This organization
of the interaction data, which is not pathway centric, allows users
to assemble an integrated cell network where all pathways are
connected, thereby allowing to monitor pathway crosstalk.

ACTIVITY-FLOW RESOURCES
COMPARISON

With our contribution we intend to show how AF interactions
from the different resources can be used to build logic networks
to support modeling studies. To this end, we compare four major
AF resources, KEGG, PhosphoSitePlus, SignaLink and SIGNOR.

These resources were selected as they are open-source,
established, and popular as evinced from citation counts.
In addition, they exclusively adopt “activity-flow” as a
representation model (Supplementary Table 1). These databases
are, however, highly heterogeneous in scope, and do not follow
a common standard for the annotation and the export of the
data (Dräger and Palsson, 2014). To address this issue the
proteomic standard initiative for molecular interaction (PSI-MI)
(Orchard, 2014) and the Gene Regulation Ensemble Effort for
the Knowledge Commons (GREEKC) (https://www.greekc.org/)
communities have recently developed CausalTAB, a common
standard for exchange of causal information (Perfetto et al.,
2019). However, of the four databases considered here, only
SIGNOR presently offers to download its curated dataset in this
format. As a consequence, the organization of the datasets for the
comparison reported here turned out to be a substantial effort
(Supplementary File 1 in Supplementary Material). To facilitate
the task of integrating the information that can be downloaded
from the different resources, OmniPath has embarked on a
project aimed at merging the causal information from a large
number of primary resources. This resource was also included in
our analysis.

We designed this comparison to help non-computational
scientists to incorporate computational modeling into their
experimental practice. We point out that the comparison is
limited to the portion of AF interactions that satisfy specific
criteria and that some datasets (e.g., KEGG) might represent a

subset of the total number of interactions that are annotated in
the database.

The four primary resources considered here have a different
focus and include different entity types as nodes in the network.
For instance, KEGG and SIGNOR also annotate complexes.
In addition, SIGNOR considers a wider range of entities
including “phenotypes,” “stimuli” and “chemicals.” SignaLink
and SIGNOR also curate indirect interactions. To harmonize
the data in order to attain a fair comparison, we filtered the
datasets to retain only direct causal interactions between human
protein pairs (Supplementary File 1 in Supplementary Material).
In addition, we only considered those relationships that are
annotated with a literature reference. In this first comparison
two entries are considered coincident if they involve the same
protein pair with matching directionality, irrespective of the
effect (activation/inhibition) of the interaction.

In Figure 3A we show in an UpSet plot (Lex et al., 2014) the
number of causal relationships that are annotated only in each
of the databases or are common to all dataset combinations.
We first notice that the four primary databases are largely
complementary as more than 70% of the information is captured
by only one database while fewer than 4% of the interactions
(510) are annotated in three or four resources. SIGNOR with its
9,845 entries is the primary database with the highest number
of entries. Still 5,003 entries of the remaining three primary
resources are not in SIGNOR (Figure 3A). This complementarity
of the datasets has motivated the OmniPath team to integrate all
the causal information in a single dataset.

In Figure 3B we have reported the results of the comparison
as Venn diagrams. Each resource is represented as a circle of
different color whose size is proportional to data content. The
circles overlap for an area that is proportional to the number
of interactions that are present in both databases. The largest
overlap between primary databases is observed in the comparison
between SIGNOR and PhosphoSitePlus as both resources have
put investment in the coverage of phosphorylation reactions.
As PhosphoSitePlus does not curate other types of causal
relationships its overlap with the other resources is negligible.

OmniPath, which integrates information from more than
100 different primary databases, is by far the most inclusive
resource. However, although OmniPath claims full integration
of interaction data, only 39% of the KEGG dataset is
included in OmniPath (Figure 3B). This is because the standard
OmniPath dataset only takes into consideration referenced
protein relationships, whereas a large fraction of KEGG
interactions is not linked to the manuscripts providing the
supporting experimental evidence. Other inconsistencies are the
consequence of an infrequent synchronization of the OmniPath
dataset with the release of the primary resources. Of note
over 20% of the interactions in SIGNOR are not present in
OmniPath (Figure 3B).

By adding to the OmniPath dataset the missing data from
the four primary resources it is possible to assemble a network
of causal interactions linking nearly 5,800 proteins (28% of the
proteome) connected by 27,040 edges (Supplementary Table 2).
Eighty four percent of these are only curated in one or two
resources, while the remaining 16% in three or more.
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FIGURE 3 | Comparison of AF Databases. (A) UpSet Plot showing the overlaps between four primary AF resources: SIGNOR (in yellow), KEGG (in red),

PhosphoSitePlus (in purple) and SignaLink (in green). The vertical bars show the number of intersecting protein pairs (regulator-target) between resources, identified as

connected colored circles below the histogram. The length of the horizontal bars is proportional to the dataset size of each resource. As an example,

PhosphoSitePlus, SIGNOR and KEGG share 210 interactions. (B) Proportional Venn diagrams showing the overlap between the datasets of the four primary AF

resources and OmniPath: SIGNOR (in yellow), KEGG (in red), PhosphoSitePlus (in purple), SignaLink (in green) and OmniPath (dark purple). Individual set sizes are in

parenthesis. (C) Matrix of bar plots showing the number of interactions between pairs of proteins whose effect, up- down-regulation is annotated in an opposite way

in each pair of primary resources. Agreement and disagreement are shown in red and blue, respectively.

Consistency of Data Curation in the
Different Resources
The conclusion of the analysis in the previous section is that,
in order to increase coverage, users should consider collating

datasets from different resources. However, in large curation
efforts, in some instances, the same experimental evidence
can lead different curators to different interpretations. In
addition, experimental reports addressing the same biological
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question reach sometimes contrasting conclusions. Thus, it is not
surprising to observe that a causal relation between protein A
and protein B is annotated as activating by one database and
inactivating by another. However, this represents a problem in
the assembly of AF networks from an integrated dataset. To
investigate how serious this issue was, we next assessed the
fraction of causal relationships that are inconsistently annotated.

Ninety five percent of the edges that are curated by more
than one database are consistently associated with either up-
or down- regulation (Supplementary Table 2). About 3,200
interactions are annotated with the same consensus effect in at
least three resources, thereby accounting for a high-confidence
subset of causal interactions. Conversely, 5% of the pairs are
associated with both up- and down- regulation in different
databases. Besides trivial curation errors, some discrepancies
might reflect differences in the annotation policies of the different
primary resources. Alternatively, it could be the consequence of
conflicting literature reports or complex effects of an interaction
leading to clashing consequences on the target protein function.
For instance, GSK3-mediated MAF phosphorylation leads both
to transcriptional activation and to degradation of the target
(Rocques et al., 2007).

To quantify this lack of consistency, we compared the
datasets from the four primary repositories. For this analysis,
we first filtered out from each dataset those pairs that
in each database are annotated with both a positive and
a negative effect as in the GSK3-MAF example mentioned
earlier (internal “inconsistencies”). As shown in Figure 3C, the
percentage of incongruent pairs between DBs is relatively small,
SignaLink and SIGNOR are the two repositories showing the
highest number (and percentage) of contradicting interaction
annotation. This subset of conflicting pairs has already been
discussed (Perfetto et al., 2016) and can be explained by
the differences in annotation granularity adopted by the two
resources. For instance, SIGNOR annotates the mechanisms
(such as ubiquitination, phosphorylation, etc.) involved in the
interaction and, when provided, also the modified residues, while
SignaLink only provides information about the causal effect.

DISEASE NETWORKS

Assembly of Large Disease Networks
We next asked whether the combined causal information
captured by the different primary resources is sufficiently
complete to be used to assemble informative disease networks
linking most of the genes that are found mutated in patients. We
used the expert curated information of the Cancer Gene Census
(Sondka et al., 2018) that annotates 389 cancer types with lists of
genes observed to be significantly mutated in cancers. Similarly,
we used the information collected by the DisGeNET resource
(Piñero et al., 2020) to download lists of gene-disease associations
(GDAs) for 4,713 polygenic diseases (DisGeNET score > 0.5).
These lists have different sizes ranging from one up to 83 genes in
the case of “Malignant neoplasm of breast.” We filtered the lists
by selecting diseases with at least two genes annotated, 163 and
823 diseases in Cancer Gene Census and DisGeNET, respectively
(Figure 4). These disease-gene lists were used to query the AF

resources for interactions linking the disease genes. We also
included in the network the proteins that by forming a bridge
between the query proteins, allow to connect them. The rationale
for inclusion of “bridge proteins” is further discussed in the
next paragraph.

The results of the approach are shown in Figure 4 as violin
plots illustrating the distribution in the number of edges in the
networks assembled by this automatic procedure. As proteome
coverage is far from being complete, not all disease gene lists
could be connected to form a network in the different resources.
Above each violin we have indicated the number of diseases for
which it was possible to assemble a network by interrogating
each of the resources together with the average network size
(average number of edges). As a larger coverage corresponds to
a higher number of connections, retrieving interactions from
SIGNOR allowed the assembly of a higher number of disease
networks (446 and 107 from the DisGeNET and Cancer Gene
Census lists, respectively) in comparison with the other primary
resources. Similarly, SIGNOR-derived networks tend to be larger,
in terms of number of connections. OmniPath that integrates
all the primary databases allows an even higher coverage (both
in terms of number of diseases and in average network size).
However, as already noted, by integrating the data of the four
primary resources and OmniPath an even higher number of
disease genes could be assembled into connected networks.

It is finally to note that among the resources compared here,
only SIGNOR and OmniPath have implemented a web tool
to extract connections between a list of input proteins and to
return the results either in graph or table format. To apply a
similar procedure to the dataset offered by the other databases
dataset-manipulation and/or parsing is necessary.

The Gray Platelet Syndrome
As an example of the results that one obtains by the procedure
detailed in the previous section we will describe in more
detail the networks retrieved in the case of the Gray Platelet
syndrome (GPS). GPS is a rare recessive autoimmune disorder
characterized by a variety of symptoms including the absence
of platelet alpha-granules, bleeding disorders and bone marrow
fibrosis (Gunay-Aygun et al., 2010). NBEAL2 is the most
frequently mutated gene in patients affected by this condition.
However, due to the rarity of GPS, the molecular mechanisms
underlying the disease are still poorly understood (Gunay-Aygun
et al., 2011). We first assembled a list of 36 GPS associated genes
and used this list to interrogate the different primary datasets
and OmniPath (Figure 5A). As shown in Figure 5, in network
assembly we also included “bridge proteins,” nodes that link two
“disease proteins.” One advantage of using “bridge proteins” is
that they allow for the expansion of the search space and for the
retrieval of a graph connecting most of the disease proteins. By
applying the aforementioned method, we succeeded in retrieving
networks with a relevant (>2) number of interactions only by
interrogating SIGNOR and OmniPath (Figures 5B,C).

By combining all the interactions, we obtain the most detailed
graph incorporating 41 nodes and 91 edges and connecting 19
of the 36 input proteins (Figure 5D). As phenotypes are entities
in the SIGNOR dataset, the integrated network also includes
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FIGURE 4 | Violin plots illustrating the size distribution of the disease-networks that can be assembled by linking disease genes via causal interactions annotated in

AF Databases. Disease-networks were assembled by using gene-disease associations (GDAs) downloaded from the Cancer Gene Census (left panel) (Sondka et al.,

2018) and from DisGeNET selecting GDAs with score > 0.5 (right panel) (Piñero et al., 2020). The disease-networks also include proteins that directly connect disease

gene products (bridge proteins) (Lo Surdo et al., 2018). Only diseases with at least two GDAs were considered in this analysis. Each dot represents a disease network

and its size (y-axis) is defined as the number of edges that can be extracted from the five AF resources: SIGNOR (in yellow), KEGG (in red), PhosphoSitePlus (in

purple), SignaLink (in green) and OmniPath (dark purple); and from a network derived by taking into considerations all the relationships annotated in at least one

resource, combined (black). On top of each violin the total number of disease-networks that can be assembled by using the annotated causal relationships from each

corresponding resource is displayed. In brackets we show the average size of the network, also indicated by a horizontal black bar.

the “Platelet alpha granule formation” phenotype. Including
phenotype entities improves the readability of the graph and
strengthens the biological significance of the derived network.

GPS is a rare and poorly characterized disease. The advantage
of this approach is that it compensates the lack of information
annotated in the literature about pathways and perturbed
molecular events.

To compare the results obtained in the case of GPS to that
of a highly characterized disease, we applied a similar strategy
to “Malignant neoplasm of breast.” This tumor type has the
highest number of GDAs (83) in the DisGeNET resource. Not
surprisingly, the retrieved networks are larger than the ones
obtained for GPS, including 2,562, 533, 115, and 563 edges for
SIGNOR, KEGG, SignaLink and PhosphoSitePlus respectively;
8,430 for OmniPath; and 11,513 for the five resources combined
together. Such networks are extremely complex and difficult
to interpret and might require stricter search parameters or
filtering options that provide contextualization of the network
(see next paragraphs).

These observations support the notion that there is no unique
strategy to extract a diseases-PKN from AF repositories and
the choice of a search method should be guided by quality and
amount of information available for that specific pathology.

LOGIC MODELS FROM PRIOR
KNOWLEDGE NETWORKS

AF networks provide mechanistic details on the information
flow in a biological system in physiological and pathological
conditions thereby allowing one to explore the functional
consequences of modulating the activity of any specific node.
However, they are of little practical value if one wants
to identify the equilibrium states of a system in varying
contextual conditions. Different approaches have been developed
to obtain predictive models, including differential equation-
based models, rule-based, Bayesian network inference and logic-
based models. Despite their simplicity, logic-based models
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FIGURE 5 | A prior knowledge network (PKN) associated with the “Gray Platelet syndrome.” (A) Strategy to derive the networks from the causal data in each

resource. Thirty six gene-disease associations for the Gray Platelet syndrome were downloaded from MalaCards (Rappaport et al., 2017). Disease genes are used as

(Continued)
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FIGURE 5 | seeds (orange nodes) to assemble the networks by searching causal resources for connecting relationships. To implement this strategy, we searched

data from primary resources, from OmniPath; and from a virtual resource integrating all the datasets. Up - or down-regulations are illustrated in the graphs as green

arrows and red t-shaped edges, respectively. We also included bridge proteins (gray nodes). Bridge proteins are proteins that connect at least two seed proteins (Lo

Surdo et al., 2018). We were not able to obtain a significant network (>2 interactions) from KEGG, PhosphoSitePlus and SignaLink. (B) Network extracted from

OmniPath: 18 nodes and 27 edges. (C) Network extracted from SIGNOR: 29 nodes and 53 edges. The purple node corresponds to the phenotype “platelet alpha

granule formation,” annotated in SIGNOR (Licata et al., 2020). (D) Network that can be derived by combining the datasets annotated by the five combined resources:

41 nodes and 96 edges.

(Boolean) have gained attention as, differently from modeling
approaches based on ordinary differential equations, they can
be applied to relatively large biological networks (Morris et al.,
2010; Wang et al., 2012). Boolean models provide a simple
yet powerful qualitative approach to describe how a system
responds to contextual changes. The problem of assembling and
contextualizing predictive Boolean models from prior knowledge
and/or experimental data has been discussed and is further
reviewed in section Conclusions and Perspectives (Vinayagam
et al., 2011; Wang et al., 2012; Lages et al., 2018; Aghamiri et al.,
2020; Dugourd et al., 2021).

The information embodied in activity-flow networks can be
relatively easily converted into Boolean rules, where biological
entities are modeled as Boolean variables whose activities are
characterized by a simple On/Off behavior and where multiple
incoming regulatory signals are integrated by logic gates. This
qualitative approach approximates the response of a system and
permits to address simple–albeit relevant- questions related to the
phenotype that are favored in specific initial conditions or to the
impact of a loss or gain of function mutations on any clinically
pertinent phenotype.

Selvaggio and colleagues defined a logic model of
the epithelial-to-mesenchymal transition that enabled
the identification of new potential paths connecting
microenvironmental signals to cancer cell plasticity (Selvaggio
et al., 2020). Logic-based models have also been used to
understand the molecular mechanisms underlying complex
diseases. As an example, the group of Saez-Rodriguez has
recently developed an approach combining ex-vivo high-
throughput screenings of colon cancer biopsies with logic-based
models. Their approach enabled them to generate patient-specific
predictive models of apoptosis that can be used to rationally
design personalized therapies (Eduati et al., 2020). Logic-based
models have also been applied to explore whether and how
the genomic context affects the behavior of a patient specific
system. Béal et al. integrated mutation data, copy number
alterations, and expression data into a breast-cancer logical
model for clinical stratification of patients (Béal et al., 2018).
Palma et al. built a Boolean model of acute myeloid leukemia
whose predictions, once combined with patients’ genomic
profiles, correlate with clinical parameters, including patient
life expectancy (Palma et al., 2021). Complex physiological
processes such as hematopoiesis or macrophage differentiation
can also be described by logic-based models of the different cell
populations along the differentiation process (Collombet et al.,
2017; Palma et al., 2018). Interestingly, logic-based models have
also been used to discover novel anti-cancer drug combinations
that efficiently kill cancer cell lines (Flobak et al., 2015).

CONCLUSIONS AND PERSPECTIVES

Resources that organize in a structured computer-readable
format causal information between gene/proteins assist in
the assembly of networks linking disease genes by logical
connections. These in turn can be converted into logic models
to predict phenotype modulation in different genomic contexts
and under drug treatment.

Here we have focused on network strategies that make use
of prior knowledge derived from low throughput experiments
as annotated in public databases. These methods are somewhat
biased as they depend on curators’ decisions. It should
be mentioned that alternative approaches based on reverse
engineering allow researchers to draw networks in an unbiased
manner by using genome wide gene expression data to
infer relationships between genes (Pe’er and Hacohen, 2011).
By these strategies, if two genes are co-expressed they are
inferred to be functionally correlated and are linked in a gene
regulatory network. Reverse engineering approaches, however,
relying mostly on genome-wide expression studies, provide
information on gene regulatory networks but say little about
signaling networks where protein modification and modulation
of stability play an important role that cannot be inferred
from transcriptomics.

Although strategies based on prior knowledge have already
shown some success, as reviewed here, we would like to conclude
this contribution by discussing the current limits of these
approaches and by identifying the areas where investment should
be directed in the near future.

Incomplete Coverage
At the time of our survey only ∼28% of the proteome is
integrated into a global cell network by the information captured
in AF repositories. This represents a severe limitation as for
many disease-genes we do not have any clue about the functional
consequences of modulating their activities. This can, to some
extent, be addressed by increasing the curation effort and perhaps
by establishing a collaborative consortium of resources similar
to the IMEx consortium in the PPI domain (Porras et al., 2020).
However, we also have to accept that for many proteins we have
hardly any experimental evidence about their functions, let alone
their causal connections with the activity of other proteins in the
cell network.

Editing Automatically Generated Models
The networks that are derived by the strategy that we have
delineated here are highly connected and complex and as such
sometimes difficult to understand and model. Some interactions
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that are not supported by thorough evidence and repeatability
or are implausible can be removed after a detailed review
of the model connections by a domain expert. However, the
development of automatic pruning methods is also desirable.
For instance, not all the causal edges are equally supported
by experimental evidence. The SIGNOR resource assigns to
each causal relationship a score that reflects its experimental
support. This can be used to filter the models and delete the
connections with little experimental support. However, causal
relationships are likely to depend on biological context. Thus,
the scoring system should be made context/tissue specific. The
increasing availability of tissue specific proteomic and (single
cell) transcriptomic data (Fagerberg et al., 2014; Uhlén et al.,
2015; Fernandez et al., 2019) should make this possible in a
reasonably near future. Computational optimization methods
such as CellNetOpt (Terfve et al., 2012), PRUNET (Rodriguez
et al., 2015) or MetaReg (Ulitsky et al., 2008) can be used
to identify the causal connections that are important to adapt
models to context by monitoring their ability to reproduce the
response of different cell systems to perturbations.

Logic Gates
As briefly discussed in this review, an AF network can be easily
converted into simple Booleanmodels. This conversion process is
set back by the observation that proteins in an AF network often
receive multiple inputs from upstream proteins and these inputs
govern the activity of a node as a function of the activity of the
upstream nodes at each cycle of a simulation. To establish the
logic functions determining node activity one needs information
on how to combine these inputs. For instance, if both the kinase
and the phosphatase modulating the phosphorylation state of a
substrate site are active, will the substrate be phosphorylated or
not? This information cannot be extracted easily from the limited
available experimental evidence and approximate approaches
are often used. For instance, an inhibitor win approach was
often used with some success (Dorier et al., 2016; Palma et al.,
2021). Alternatively, once a PKN model has been assembled

the connections and the logic gates can be optimized from the
ability of different models to reproduce results of perturbation
experiments (Terfve et al., 2012). Developments of reasonably
high-throughput experimental methods to address this limitation
are highly needed.

These considerations underscore the present limits of the
approach that we have discussed. Nevertheless, some initial
successes in modeling clinically relevant phenotypes, as we have
detailed in this review, and the delineation of a strategy to address
the current limits provide confidence that cell/disease specific
logic models should soon contribute to diagnosis and therapeutic
decisions in clinical practice.
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