View metadata, citation and similar papers at core.ac.uk brought to you by TfCORE

provided by Universiti Putra Malaysia Institutional Repository

UNIVERSITI PUTRA MALAYSIA

INCORPORATING SOFTWARE MEASUREMENT INTO

A COMPILER

RAFA ELAYYAN JAMIL AL QUTAISH

FSAS 1998 3

https://core.ac.uk/display/42997282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INCORPORATING SOFTWARE MEASUREMENT INTO
A COMPILER

By

RAFA ELAYYAN JAMIL AL QUTAISH

Thesis Submitted in Fulfilment of the Requirements for the
Degree of Master of Science in the
Faculty of Science and Environmental Studies
Universiti Putra Malaysia

June 1998

~ o B oo
PO | e laJ.Hro.....,’
— - .
- 2 - -

35 1@ 3l o ooV @ 3L 3l wal 153

.
-~

2

© phapd Lpnallile @ Wil ale wali @55

(In the name of Allah, Most Gracious, Most Merciful)

1. Proclaim! (or Read!) In the name of thy Lord and Cherisher, Who
created,
2. Created man, out of a (mere) clot of congealed blood,
3. Proclaim! And thy Lord is Most Bountiful,
4. He Who taught (the use of) the Pen,
5. Taught man that which he knew not.

Surat Al-Alaq (The Clot)

eeeneaearae Al By ol G QS8 (0 Ol
e N o—ada Mg Aliiladall g gy sl 0 9—ST iy 0 OmdM N
Ceeenssssssaes ceenasssens ceanes = JSg gV —ia yia ()

088 il y &gni laen 2K

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

I would like to take this opportunity to convey my sincere
thanks and deepest gratitude to my supervisor Dr. Abdul Azim Abd.
Ghani who introduce me to the field of Software Engineering. Not
forgetting my co-supervisors Dr. Ramlan Mahmod and Dr. Md.
Nasir Sulaiman. I am very grateful to all of them for all the help and
invaluable guidance, fruitful discussions, patience and continued
encouragement provided to me at every stage of this thesis. I am
really touched by Dr. Abdul Azim and indeed grateful to him for
having taken so much of his valuable time for studying, correcting

and restructuring the preliminary drafts.

I would like to convey my appreciation to the Department of
Computer Science, the University Library, the Graduate School

Office, and the Laboratories Technicians.

Not forgetting to convey my sincere thanks and deepest
gratitude to Prof. Mohammed Adnan Al-Bakhit, the president of Al

al-Bayt University, and to all of my friends in Al al-Bayt University,

11i

specially, Abdallah Al-Khaldi and Sa’ad Bani Moh’d for their
encouragement and support all the time. In addition, I am grateful
to the Arab Student Aid International (ASAI), New Jersey, U.S.A for

giving me the scholarship.

I am also very grateful and wish to thank my Jordanian
friends in UPM: Saleh Al-Khawaldeh, Faraj Ahmad Faraj Abu-llaiwi,
Hasan Al-Omoush, Isam Qudsieh, Khaleel Al-Hassan, Hamed Al-
Fawareh, Eid Al-Ziod, Jehad Al-Khaldi, Mohammad Saleh, Ahmad
Al-Khawaldeh, Malik Al-Kedah, and Ahmad Zahran for their

encouragement.

Finally, I would like to express my most sincere and warmest
gratitude to my father, mother, brothers; Khaled, Jamil,
Mohammad, Ali, Ahmad, and Abdullah, sisters, uncles, aunts, and
cousins for their prayers, love, generous moral and financial
support during my study. Also, I would like to thank my best friend

Nayef Ali Al-Joulan.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTScooiiiiiiiiniiniinn
LIST OF FIGURESccoiiiiiiiiii
ABSTRACT ...
ABSTRAK ...t

CHAPTER

I INTRODUCTIONcoiiiiiiiiiiiiinineieeeeneees
Software Measurement Background

Scope of the Researchcooevviviiiiiiininininnn.
Objectives of the Researchccocoveeeinnnne.
Organisation of the Thesisc..ccceevinininnne.

I ISSUES ON SOFTWARE PRODUCT METRICS .
Introductionccociviiiiiiii
DesigN MELIICS ..ivivveiiiiiiiiiiiieiniiieineeieeneneenenens

Information-Flow Metricscoevvvvn s
Call Graph MEtriCscccceeviiiiiiiiininnininenns
Source Code MEtriCScevvvveiiiiininininiieinennennenn.

Halstead’s MEtriCSocvvviviiiiiiiiiiiiiininnnns
Automated Data Collection ToolSccovvvvvennnnn.
Common Metrics Formatoooeviiiiiiiiiiiiiinnnnnns

II1

\"A

ATTRIBUTE GRAMMARS: FUNDAMENTALS
AND APPLICATIONS ..o,

INtrodUcCtION .oovvieiiiiiii e
Attribute Grammars fundamentals
Attribute Grammars Applications

Use of Attribute Grammars in Compiler

(070) 01] 5 b o1 0] o W

Use of Attribute Grammars in Source Code

Metrics Definitionscoovvviiiiiiiiiiniiinnnnnn.
CoNCIUSION ittt

DESIGN OF THE PROPOSED COMPILER
INtrodUCtION .viviieiiiiie e e et eeee e ens

Lexical Analysercccovcviiviiiiiiiiiiiiiniiiiniinennes
Syntax AnalySercc.cccciviiiiiiiiiiiiiiniiiinin.
Symbol Table Structure and Implementation
Memory Allocationcccceevviviiviiiineiiiniienennnns
Code Generationceeveveveenineneneneneenenenenenes

Design and Implementation of the Source

Code MELTICS .ivviviiiiiiiiiii e e e e
Halstead's Metricsccccoveviiiiniinenenenenn.
McCabe's MEtriCcccvvvivinvininiiiniiniienenen,
Call Graph's Metriccccoveviiviniiniinnnenenns

RESULTS AND DISCUSSIONccvvvivvvinnnnne.
INtrodUcCtiON ..o.vviniiiiie e

Case Study 1 ..coiviiiiiiiiiiiiirr
Case Study 2 ..ooiviiiiiiiiiiii
Case Study 3 ..oiiiiiiiii

CONCLUSION AND FURTHER RESEARCH
CONCIUSION ot e eenaens

Further Researchcooovviiiiiiiiiiiiiiiciiiieen

REFERENCES ..o

vi

38
38
38
48

49

51
56

APPENDIX

A

Context-Free Grammar of the Subset of

Pascal Languagecccocveviiiiiiiiininiiiininennn, 157
List of Operator Namesccocoeeveeniniinenennnnnn. 160
LEX Implementation of the Proposed
COomPILET ..o 161
YACC Implementation of the Proposed
COMPIIET v 168
Contents of y.tab.Cccccoviiiiiiiiiiiiii 185

... 186

Vil

LIST OF FIGURES

Figure Page
1 Example of Information-Flow Metrics 15
2 An Example About One of the Problems Defined by

Shepperdooveiiiii 16
3 ACall Graphooiiiiiiiiiii 18
4 A Call Graph and Its Metrics Calculation 19
5 Sample Pascal Codes and the Values of SLOC

MELTICS wuinitiiiii i 23
6 Sample Source Codes and Their Control Graphs ... 25
7 Sample Pascal Code with two Possible Control

Graphs oo 27
8 A Token Analysis of a Sample Pascal Code 30
9 An Automated Data Collection Scheme S8
10 Parse Tree for the String xxxxyyyzzzc.cceenen.n. 41
11 Parse Tree for the String xxxyyyzzz Using

Synthesised Attributecccooviiiiiiiiiiiiii, 43
12 Parse Tree for the String xxxyyyzzz Using Inherited

Attribute ... 46
13 A Diagram Illustrating the Steps in Implementing

the Proposed Compiler with Software Metrics

Evaluationcccociiiiiiiiiiiiiiiiiee 58
14 Interaction of Lexical Analyser with Parser 59
15 Creating a Lexical Analyser with Lex 60
16 The Definition of the Reserved Words Table 63

viil

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

The screen() Routine

The s_lookup() Routine

Creating an Input / Output Translation with yacc .

The yyerror() Routine

The yywhere() Routine

The Contents of the Symbol Table Definitions

The Dynamic Structure of the Symbol Table

The s_create() Routine
The s_find() Routine
The link_parm() Routine
The make_parm() Routine

The make_var() Routine

........................

The blk_push() and blk_pop() Routines

The make_proc() Routine

The chk_parm() Routine

The chk_var() Routine

The chk_proc() Routine

The all_parm() Routine

The all_var() Routine

........................

Header File for the Code Generation (codegene.h) ..

The gen_alu() and gen_li() Routines

The gen_mod() and gen() Routines

64

64

68

70

71

75

77

77

79

80

81

83

84

85

86

87

88

90

91

93

96

97

39

40

41

42

43

44

45

46

47

48

49

S0

51

52

53

54

55

56

The gen_jump(), new_label(), and format_label()

ROULINES ...oiviiiiiiiiiii e
The gen_label() Routineccceveviiiiiiniiiiinennn..

The push_break(), push_continue(), pop_break(), and

pop_continue() Routinesccoceviiiiininiiinnannes

The push() and pop() Routines and the Definition of
bc_stack Data StrucCturecooevvvviviiiiiiiniiiinennn.

The gen_call() Routinecccoeveiiiiiiiiiniiiininan.n.

The gen_entry() Routinecccoovviiiiiiiiinininn..

Concatenation of Lists of Identifiersccveeu...

The concate_id() Routinecccocveviiiiiiininininnnn.

Example of the Appending of ids and newlocs
The number_of_operators() Routine

The number_of_identifiers() and
number_of numbers() Routines

The total operators() Routinecccoevvenenenn.

The total_identifiers() and total_numbers() Routines .

The Implementation of a Part of McCabe’s Metric ..
The print_result() Routine for McCabe’s Metric

A Sample of the Linked List Used to Store the
Module’s Names and the Names of the Called

MOAUIES .ot

The insert_calling_module() Routine for the Call
Graph’s MEetriCoevviiiiiiiniiiiiiiiee e,

The insert_called_module() Routine for the Call
Graph’s MetriCccoeviiiiiiiiiiiiiiiniiii e

103

104

105

106

112

113

115

117

118

118

119

123

124

57

58

59

60

61

62

63

64

65

66

67

68

69

70

The compute_and_print_results() Routine for the

Call Graph’s MEetriCoeceiiiiviiiiniiiiiiiiiie e,

A Diagram Illustrating the Input / Output

Structure for the Proposed Compiler

Case Study 1, Subset of Pascal Language

Program ...

The Code Generation Produced for the Case

StUAY 1 o

The Halstead’s Metrics Produced for the Case

StUudy 1 oo

The McCabe’s Metric Produced for the Case

StUuAy 1 o

The Call Graph’s Metric Produced for the Case

Study 1 .o

Case Study 2, Subset of Pascal Language

Program ...

The Code Generation Produced for the Case

StUAY 2 oo

The Halstead’s Metrics Produced for the Case

StUAY 2 o

The McCabe’s Metric Produced for the Case

StUAY 2 i

The Call Graph’s Metric Produced for the Case

StUAY 2 o

Case Study 3, Subset of Pascal Language

Program ...

The Code Generation Produced for the Case

Study 3 e

X1

129

131

132

132

133

133

134

136

139

140

141

141

142

144

71

72

73

The Halstead’s Metrics Produced for the Case
Study 3 o 146

The McCabe’s Metric Produced for the Case
STUAY 3 cvveeeinieeeitiee e, 147

The Call Graph’s Metric Produced for the Case
Study 3 o 147

Xii

Abstract of thesis presented to the Senate of Universiti Putra
Malaysia in fulfilment of the requirements for
the degree of Master of Science.

INCORPORATING SOFTWARE MEASUREMENT INTO
A COMPILER

By
RAFA ELAYYAN JAMIL AL QUTAISH

June 1998

Chairman : Abdul Azim Abd. Ghani, Ph.D.

Faculty : Science and Environmental Studies.

In the area of software engineering, software measurement is
not new, it was around 26 years since Halstead originally proposed
a family of software measures, collectively known as software
science. The magnitude of costs involved in software development
and maintenance magnifies the need of a scientific foundation to
support programming standards and management decisions by

measurement.

This research aims at developing a compiler for a subset of
Pascal language in which an evaluation for a number of software

metrics has been incorporated. Lex and Yacc have been used to

xiii

generate the lexical analyser and syntax analyser for the proposed
compiler. While the other components of the compiler and the
metrics evaluation routines have been written in C language. The
proposed compiler was implemented under Linux operating system.
Three metrics have been incorporated to the proposed compiler,
which are: Halstead’s metrics, McCabe’s metric, and Call-Graph
metric. The software metrics will be produced in the common

metrics format, which is used in SCOPE project.

Attribute grammars have been used to build the proposed
compiler to evaluate the software metrics in the parsing time of the
compilation process and to use a well-defined approach to the

software metrics evaluation process.

xXiv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra
Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

MENGAPLIKASIKAN PENGUKURAN PERISIAN KE DALAM
SATU PENGOMPIL

Oleh
RAFA ELAYYAN JAMIL AL QUTAISH

Jun 1998

Pengerusi : Abdul Azim Abd. Ghani, Ph.D.

Fakulti : Sains Dan Pengajian Alam Sekitar.

Dalam bidang kejuruteraan perisian, pengukuran perisian
bukannya sesuatu yang baru, ianya telah wujud 26 tahun yang
lepas, semenjak Halstead mencadangkan satu kumpulan ukuran
perisian, dikenali sebagai ‘software science’. Jumlah kos yang
terlibat dalam pembangunan dan penyelenggaraan perisian
mewujudkan keperluan untuk mengadakan satu asas saintifik
demi menyokong piawaian dan keputusan pengurusan melalu

pengukuran.

Kajian ini bertujuan untuk membangunkan satu pengompil
bagi satu subset bahasa Pascal dimana penilaian untuk sejumlah

perisian metrik telah dikaitkan. Lex dan yacc telah digunakan

untuk menjana penganalisa leksikal dan sintak bagi pengompil
yang dicadangkan. Sementara itu, komponen- komponen lain
pengompil dan rutin penilaian metrik ditulis dalam bahasa C.
Pengompil yang dicadangkan telah diimplementasikan di bawah
sistem operasi Linux. Tiga metrik telah dikaitkan bagi pengompil
yang di cadangkan, iaitu metrik Halstead, metrik McCabe dan
metrik Call Graph. Metrik-metrik tersebut software akan dihasilkan
dalam format metrik yang umum di mana ia digunakan dalam

projek SCOPE.

Nahu atribut telah digunakan untuk membina pengompil
yang dicadangkan supaya metrik perisian dapat dinilai dalam masa
pengenal bagi proses pengkompilan dan mengunakan pendekatam

terperinci dengan sewajarnya bagi proses penilaian metrik perisian.

XVi

CHAPTERI1

INTRODUCTION

Software Measurement Background

Measurements have a long tradition in natural sciences. At
the end of the last century the physicist, Lord Kelvin, formulated

the following about measurement (Pressman, 1987):

“When you can measure what you are speaking
about, and express it into numbers, you know some
thing about it. But when you can not measure it,
when you can not express it in numbers, your
knowledge is of a meager and unsatisfactory kind:
It may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to stage of
science.”

Scientists who treat with measurement theory also support this
view of the application measurement in sciences. Roberts (1979),
points out in his book about measurement theory:
“A major difference between a ‘well-developed’
sciences such as physics and some of the less
‘well-developed’ sciences such as psychology or

sociology is the degree to which things are
measured.”

2

In the area of software engineering, the concept of software
measurement or what is called software metrics is not new. It was
around 26 years since Halstead originally proposed a family of
software measures, collectively known as software science
(Halstead, 1972). The magnitude of costs involved in software
development and maintenance magnifies the need of a scientific
foundation to support programming standards and management
decisions by measurement. Already in 1980, Curtis (1980) pointed
out:

“Rigorous scientific procedure must be applied to
studying the development of software systems if we
are to transform programming into an engineering
discipline. At the core of these procedures is the
development of measurement techniques and the
determination of cause effect relationships.”

The definition of a measure is an empirical objective
assignment of a number or symbol to an entity to characterize a
specific attribute (Fenton, 1991). Moreover, Ince et al.
defined the software metrics as a numerical values of quality which

can be used to characterize how good or bad that the product is in

terms of properties such as its proneness to error.

3

Fenton (1991) has classified the software metrics to product
metrics, process metrics, and resource metrics. In fact, he has
defined the three classes as:
e Products: are any artifacts, deliverables, or documents that are

got out of the processes.

e Processes: are any software-related activities.
e Resources:
Any thing that we are ever likely to want to measure or predict in
software is an attribute of some entity of the three classes (product,
process, or resource metrics). Fenton (1991) has made a distinction
between attributes, which are internal or external. Internal
attributes of a product, process, or resource are those that can be
measured totally in terms of the product, process, or resource itself.
Whereas, the external attributes of a product, process, or resource
are those which can only be measured with respect to how the

product, process, or resource relates to its environment.

Software metrics help in two ways. First, they help individual
developers understand what they are doing and provide insight into
areas that they might improve. For example, measurements of code
complexity give information about which code is over-complex and

might be improved by additional modularization. Measurements of

4
numbers and types of bugs give information on what errors a
developer is prone to make, and thus what he should be watching
out for. Second, software metrics gives an organization information
about where it is, and about the effect of things it is trying to use

(Shorp, 1993).

Grady and Caswell (1989) have summarized the advantages
of software metrics. They determined that software metrics help the
developer to:

e Understand software development process better.

e Measure progress.

e Provide common terminology for key controlling elements of the
process.

e Identify complex software elements.

e Make software management more objective and less subjective.

e Enable the engineers and manager to estimate and schedule
better.

e Better evaluate the competitive position.

e Understand where automation is needed.

e Identify engineering practices, which lead to highest quality and
productivity.

e Make critical decisions earlier in the development process.

¢ Eliminate fundamental causes of de.cco.

e Encourage the use of software engineering techniques by the
engineers and managers.

e Encourage the definition of long-term software development
strategy based upon a measured understanding of current
practices and needs.

e Be more competitive.

Scope of the Research

The research in this thesis aims at developing a compiler for
a subset of Pascal language in which an evaluation for a number of
software metrics has been incorporated. Lex and Yacc tools (Mason
and Brown, 1990) have been used to generate the lexical analyser
(scanner) and the syntax analyser (parser) for this system. While
the other components of the system and the metrics evaluation
routines have been written in C language. All of the system was

implemented under Linux operating system.

The proposed compiler evaluates three metrics, which are:
Halstead’s metrics, McCabe’s metric and Call Graph’s metric. The

system produces four files, three of them contain the metrics

6
evaluation for the three metrics (Halstead, McCabe, and Call
Graph), and these files will be in common metrics format, which is
used in SCOPE (SCOPE, 1991) project. And the other file will

contain the intermediate code, which is generated by the system.

Attribute grammar approach has been used in this research
to evaluate the software metrics in the parsing time of the
compilation process and to use a well-defined approach to software

metrics evaluation process.

The evaluation of the software metrics in this system is
optional. However, a user can determine which metrics he wants to
evaluate. Actually, he can evaluate Halstead’s metrics, McCabe’s

metric, Call Graph’s metric, all of these metrics, or none of them.

Objectives of the Research

Most approaches to software metrics have normally been
used on the models of the software. Examples of the models are
control flow graph and call graph, which are obtained by mapping
the source code to the respective models. The models capture the
relevant aspects of the source code, and from the models, software

metrics are evaluated. A problem with model-based approaches is

7
that although the metrics are correctly evaluated from the models,
the mapping from source code to the models are not precisely
stated. Hence, might produce different values for the same metrics
when applied to a piece of source code. Different persons may

produce different models for the same piece of source code.

As an alternative for the above approaches, this research
advocates an approach to software metrics based on the
measurement on the source code itself. Although many software
documents written in languages with well-defined syntax and
semantics, the well-developed theory of programming languages is
not often used as a basis for software metrics evaluation.
Especially, attribute grammar formalism has been used in this

research (Abd Ghani, 1996).

Building metrics evaluation into a compiler can be a good
idea because of the following reasons:

e Some compilers often extend the language syntax beyond the
standard thus causing external compiler-independent collection
tools have difficulties coping with this.

e Some problems may be encountered in analysing source code

due to missing or different include files or compilation options.

8

e Analysing source code duplicates the parsing of syntax, which
has already done by a compiler.

e It is easier to promote the use of metrics to software developers if

existing compiler can perform metrics evaluation. It reduces the

cost of the software project. The software developers have not to

purchase another tool to perform metrics evaluation.

Organisation of the Thesis

Chapter two gives some background on software product
metrics; its fundamentals and classifications such as design
metrics and source code metrics. In addition, this chapter
discusses software metrics evaluation tools, utilized by previous
researchers in this area. The definition and advantages of common

metrics format can be found at the end of this chapter.

Chapter three shows the attribute grammars; its
fundamentals and applications, mainly the use of attribute
grammars in compiler construction and software metrics
definitions. At the end of this chapter our conclusion will be
discussed. Chapter two and chapter three are the keys of this

thesis.

