

UNIVERSITI PUTRA MALAYSIA

PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EBI

CHEONG WENG CHUNG

FSMB 2002 12

PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EB1

By

CHEONG WENG CHUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2002

Specially dedicated to,

My beloved parents who brought me to this world, my brothers who gave me the encouragements and laughter, and friends for their invaluable advices and morale supports.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EB1

By

CHEONG WENG CHUNG

October 2002

This study reports on the production of L-lactic acid using a locally isolated bacteria. Bacteria were screened and isolated from POME sludge, kitchen refuse, leachate biomass, soil and fermented milk. Five bacteria shown positive result in the preliminary test and only one bacteria which was isolated from POME effluent shown the highest lactic acid production. Using shake flask culture, 18.0 g/L of L-lactic acid was produced from 20.0 g/L glucose. The selectivity of lactic acid produced by the bacteria was 99.8% compared to other organic acids. This indicated that the bacteria can be use for the production of L-lactic acid. Using the BIOLOG system, the bacteria was identified belonging to the family Enterococcus gallinarum and named as Enterococcus gallinarum EB1. Morphologically, the bacteria is cocci-shaped and in chains or grouped. The optimal growth condition for the bacteria was at pH 6 and temperature 37°C where at this condition, the bacteria able to produced highest lactic acid yield at 1.9 g/g using glucose as substrate. The organic acids composition was dependent on the pH and temperature. In an anaerobic batch fermentation to produce lactic acid using four types of

substrates (glucose, kitchen refuse, sago starch and cooked rice), the highest lactic acid production was 45.0 g/L. From the experiment, the bacteria was able to convert the kitchen refuse into lactic acid at 45.2 g/L and small amount of other organic acids. The comparison was also done with other substrates to show that the bacteria able to utilise kitchen refuse in lactic acid production. In the recovery process of lactic acid, the best method was to use H₂SO₄ prior to evaporation at 90°C with 3mmHg vacuum pressure. H₂SO₄ able to free lactic acid from lactate salts formed in the fermentation because the use of NaOH to control pH in the bioreactor throughout the fermentation process. The evaporation method able to achieved 86.76% lactic acid recovery yield from the fermentation broth. It was the highest recovery yield recorded in evaporation compared to other evaporation method with additional of solvents (propanol and butanol) with temperature at 90°C and pressure around 3mmHg.

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN ASID L-LAKTIK MENGGUNAKAN PELBAGAI JENIS SUMBER KARBON OLEH ENTEROCOCCUS GALLINARUM EB1

Oleh

CHEONG WENG CHUNG

Oktober 2002

Kajian ini melaporkan penggunaan bakteria tempatan dalam pneghasilan asid L-laktik. Penyaringan bakteria dibuat daripada pelbagai bahan dan tempat (sisa POME, sampah sarap, enapcemar luluhan sampah dan susu basi). Lima bakteria telah menunjukkan keputusan positif pada ujian awal dan hanya satu bakteria dipilih iaitu bakteria yang disaring dari sisa POME kerana menunjukkan prestasi yang menggalakkan dalam penghasilan asid L-laktik. Kepekatan 18.0 g/L asid L-laktik dihasilkan di dalam eksperimen kelalang kon menggunakan 20.0 g/L glukosa. Peratusan pemilihan asid laktik pula 99.8% oleh bakteria tersebut berbanding asid organik yang lain. Ini menunjukkan bahawa bakteria ini boleh digunakan dalam penghasilan asid L-laktik. Sistem BIOLOG digunakan untuk mengenalpasti jenis bakteria dan ia adalah daripada famili Enterococcus gallinarum, dan dinamakan Enterococcus gallinarum EB1. Morfologi bakteria ini adalah berbentuk cocci dan mempunyai ciri-ciri bersambungan antara satu sama lain atau berkelompok. Keadaan pertumbuhan optimum bagi bakteria ini adalah pada pH 6 dengan suhu 37°C dimana keadaan ini merangsangkan bakteria untuk

menunjukkan penghasilan nisbah asid laktik dengan berat kering sel sebanyak 1.919 g/g. Komposisi asid adalah bergantung kepada pH dan suhu. Di dalam fermentasi anaerobik sesekelompok untuk menghasilkan asid laktik dari empat jenis substrat (glukosa, sampah sarap, sago dan nasi), kepekatan asid laktik paling tinggi dicatatkan pada 45.0 g/L. Dari eksperimen ini, bakteria tersebut dapat menukarkan sampah sarap kepada asid organik dan asid laktik pada kepekatan 45.2 g/L dan terdapat sedikit asid organik yang lain dihasilkan. Perbandingan juga dibuat dengan menggunakan substrat berlainan untuk perbandingan prestasi bakteria tersebut untuk penghasilan asid laktik daripada sampah-sarap. Penggunaan H2SO4 dalam proses penyulingan pada suhu 90°C dan tekanan 3mmHg adalah cara terbaik. Ini disebabkan oleh asid sulfurik dapat membebaskan asid laktik dari bentuk garam laktat yang terhasil akibat penggunaan NaOH untuk mengawal pH di dalam bioreaktor semasa sepanjang proses fermentasi. Cara penyulingan ini dapat mencatatkan 86.76% hasil perolehan semula asid laktik. Catatan ini merupakan yang tertinggi berbanding dengan cara penyulingan yang mencampurkan propanol dan butanol dengan menggunakan suhu pada 90°C dan tekanan pada 3mmHg.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my main supervisor, Associate Prof. Dr. Mohd. Ali Hassan and members of the supervisory committee, Prof. Dr. Mohamed Ismail Abdul Karim and Dr. Suraini Abdul Aziz, for their invaluable advice and support, encouragement and willingness to share their views throughout the project. I am personally grateful to Associate Prof. Dr. Mohd Ali Hassan and my supervisory committee for spending time in guiding me with this thesis in order for me to complete the Master degree.

I sincerely thank Associate Prof. Dr. Mohd Ali Hassan for giving me the chance to further my study to postgraduate level two years ago and also for his immeasurable support, advice and ideas throughout my study. I extend my gratitude to Prof. Dr. Mohamed Ismail Abdul Karim for his advice and to Dr. Suraini Abdul Aziz for her help in the project.

In addition, I would like to express my appreciation to my labmates; Phang Lai Yee, Ong Ming Hooi, Nor' Aini Abdul Rahman, Jame'ah Hamed, Norrizan Abdul Wahab, Hafizah Kassim, Manisya Zauri, Abdul Rahman Abdul Razak, Zainal Baharum, Sim Kean Hong, Wong Kok Mun and Zaizuhana Shahrim and fermentation laboratory staffs; Mr. Rosli Aslim, Madam Renuga a/p Panjamurti, Madam Latifah Hussein and Madam Aluyah Marzuki, thank you for your moral support, cooperation and willingness to teach me during the study.

My heartiest thanks go to my beloved parents and brothers for their patience, support and encouragement. To my friends, Chee Kuan, Shang Der and Kiat Siong, deepest appreciation for their advice, motivation and friendship.

I certify that an Examination Committee met on 22nd. October 2002 to conduct the final examination of Cheong Weng Chung on his Master of Science thesis entitled "**Production Of L-Lactic Acid Using Various Carbon Sources By** *Enterococcus gallinarum* EB1" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the examination Committee are follows:

ZAITON HASSAN, Ph.D.

Department of Food Technology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Chairman)

MOHD ALI HASSAN, Ph.D.

Associate Professor Head of Department Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

MOHAMED ISMAIL ABDUL KARIM, Ph.D.

Professor Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

SURAINI ABDUL AZIZ, Ph.D.

Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D. Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 23 NOV 2002

The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement of the degree of Master of Science. The members of the Supervisory Committee are as follows:

MOHD ALI HASSAN, Ph.D.

Associate Professor Head of Department Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Chairman)

MOHAMED ISMAIL ABDUL KARIM, Ph.D.

Professor Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

SURAINI ABDUL AZIZ, Ph.D.

Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

·e

AINI DERIS, Ph.D. Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 JAN 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name : CHEONG WENG CHUNG Date : 22nd October 2002

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	ix
DECLARATION FORM	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi

CHAPTER

1	INT	RODUCTION	1
	1.0	Lactic acid Producing Microorganism	1
	1.1		2
	1.2	Objectives	3
2	LITE	RATURE REVIEW	4
-	2.1	Lactic Acid Bacteria	4
	 .1	2.1.1 Taxonomy and Physiology	6
		2.1.2 Isolation of Lactic Acid Bacteria	8
		2.1.3 Genus Streptococcus	8
		2.1.4 Genus Enterococcus	9
	2.2		
		Producing Bacteria	11
		2.2.1 Raw Materials	13
	2.3		14
	2.4		15
	2.5		19
	2.6	Lactic and Polylactic Acid	19
	2.7	Lactic Acid Pathway	21
		2.7.1 Glycolysis - Émbden-Meyerhoff pathway	23
		2.7.2 Activation of Glucose	24
		2.7.3 End Product Formation	24
		2.7.4 Bacteria Producing Lactic Acid :	
		Enterococcus Gallinarum	28
	2.8	Applications of Lactic Acid	32
		2.8.1 Application in Pharmaceuticals	32
		2.8.2 Application in Cosmetics	32
		2.8.3 Application in Food Industry	33

		2.8.3.1 Confectionery	33
		2.8.3.2 Beverages	33
		2.8.3.3 Olives, Pickles, Cabbage, Gherkins	34
		2.8.3.4 Dairy Products	34
		2.8.3.5 Meat and Meat products	35
	2.8.4	Industrial Applications	35
2.9	L-Lac	tic Acid Recovery Process Based On	
	Vapo	ur Pressure Temperature-Dependence	37
GEN	IERALI	MATERIALS AND METHODS	40
3.1	Kitch	en Refuse Samples	40
3.2	Micro	porganisms and Preparation	41
	3.2.1	Inoculum Preparation	41
	3.2.2	Chemical Reagents	42
	3.2.3	Biolog MicroLog Bacteria	
		Identification Systems	43
	3.2.4		46
3.3	Expe	rimental Design	46
	3.3.1	Screening of Lactic Acid Producing Bacteria	46
	3.3.2	Preliminary Fermentation Process using Isola	ted
		Bacteria	49
	3.3.3	0	
		Substrates for L-Lactic Acid Production	49
		3.3.3.1 Glucose as Substrate	49
		3.3.3.2 Sago Starch and Cooked Rice	
		as Substrates	50
		3.3.3.3 Kitchen Refuse as Substrate	52
3.4		ytical Methods	55
	3.4.1	0	55
	3.4.2	Sugar Determination	55
	3.4.3	COD Determination	57
		Total Solids	58
		Total Kjeldahl Nitrogen Analysis	59
		L-Lactic Acid Analysis	60
	3.4.7	Recovery Process of Lactic Acid from	
		Fermentation Broth	62
	3.4.8	1 0	
		and Gram Staining	63
	3.4.9	Catalase Test	64
		3.4.9.1 Total Cells Count	64

3

4	SCRI	EENIN	G OF LOCAL BACTERIAL STRAINS	67
	4.1	Introd	luction	67
	4.2	Mater	rials and Methods	68
		4.2.1	POME Sludge and Leachate Biomass	68
		4.2.2	Kitchen Refuse and Fermented Milk	68
		4.2.3	Soil	69
		4.2.4	Screening of Local Strains Bacteria	69
		4.2.5	Cell Morphological Characteristics and	
			Gram Staining	70
		4.2.6	Catalase Test	71
		4.2.7	Growth of the Screened Bacteria	72
		4.2.8	The Selection of Bacteria Strain for	
			Further Study	72
		4.2.9	Sample Analyses	73
	4.3	Resul	ts & Discussion	73
		4.3.1	Isolation of Bacteria from Various Sources	73
		4.3.2	Organic Acids Production of the	
			Isolated Bacteria	75
		4.3.3	Selectivity of Organic Acids	80
		4.3.4	Gram Staining of the Isolated Bacteria	83
		4.3.5	BIOLOG Identification of POME	
			Isolated Bacteria	84
	4.4	Conc	lusion	86

4 OPTIMUM CONDITION OF ENTEROCOCCUS

GALLIN	ARUN	1 EB1 FOR L-LACTIC ACID PRODUCTION	87
5.1	Introd	luction	87
	5.1.1	Kinetics of cell growth in batch culture	89
		5.1.1.1 The specific growth rate, μ	89
		5.1.1.2 Product formation rate	91
		5.1.1.3 Biomass and Product Yields	92
5.2	Mater	rials and Methods	93
	5.2.1	Glucose	93
	5.2.2	Microorganism	93
	5.2.3	Organic Acids and Sugar Determination	94
5.3	Resul	ts	96
	5.3.1	The Growth of the Enterococcus gallinarum EB1	
		in Controlled Conditions	96
	5.3.2	Lactic Acid Fermentation with Glucose	
		as a Single Carbon Source	96
5.4	Discu	ssion	105
5.5	Concl	lusion	108

b			RION L-LACTIC ACID PRODUCTION	
			RY OF LACTIC ACID	109
	6.1		duction	109
	6.2	Mate	rials and Methods	111
		6.2.1	Microorganism	111
		6.2.2	Preparation of Substrate for Fermentation	111
			6.2.2.1 Kitchen Refuse	111
			6.2.2.2 Sago Starch & Cooked Rice	112
			6.2.2.3 Glucose	113
		6.2.3	L-Lactic Acid Production using	
			Various Substrates	113
			6.2.3.1 Glucose	113
			6.2.3.2 Sago Starch and Cooked Rice	114
			6.2.3.3 Kitchen Refuse	116
			Batch Fermentation	118
		6.2.5	Recovery Process of the L-lactic Acid from	
			Fermentation Broth	118
			Recovery Process using Alcohols	121
	6.3	Resul		121
		6.3.1		
			Single Carbon Source	121
		6.3.2	Lactic Acid Production with Kitchen Garbag	
			Cooked Rice & Sago Starch	123
		6.3.3	5	
			Fermentation Broth	125
			6.3.3.1 First Approach : Normal Evaporation	
			Fermentation Broth	126
			6.3.3.2 Second Approach: Evaporation	
		-	Using Different Solvents	126
	6.4	Discu		129
	6.5	Conc	lusion	130
7	SUM	IMARY	, CONCLUSION AND SUGGESTIONS	
			REWORK	132
	7.1	Sum	narv	132
	7.2		lusion	134
	7.3	Sugge	estions for Future Work	136
KEF	ERENC	LES		137

. .

T A

.

 \sim

-

REFERENCES	137
APPENDICES	144
BIODATA OF AUTHOR	155

LIST OF TABLES

Table		Page
2.1	Examples of LABs species (Lactic Acid Bacteria)	7
3.1	Characteristics of Kitchen Refuse Used in This Study	40
3.2	Composition of kitchen refuse	41
4.1	Results of the screened bacteria on the BCP agar	74
4.2	Total organic acids production during the fermentation experiment of the lactic acid producing bacteria isolated various sources	81
4.3	Morphological and biochemical characteristics of isolated lactic acid producing bacteria	82
5.1	Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by <i>Enterococcus gallinarum</i> EB1 using constant pH 6 with different temperatures	98
5.2	Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by <i>Enterococcus gallinarum</i> EB1 using constant pH 5 with different temperatures	98
5.3	Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by <i>Enterococcus gallinarum</i> EB1 using constant pH 4 with different temperatures	99
5.4	Lactic acid and several organic acids production in batch fermentation of <i>Enterococcus gallinarum</i> EB1 at the end of the fermentation with temperature 30°C	99
5.5	Lactic acid and several organic acids production in batch fermentation of <i>Enterococcus gallinarum</i> EB1 at the end of fermentation with temperature 37°C	100

5.6	Lactic acid and several organic acids production in batch fermentation of <i>Enterococcus gallinarum</i> EB1 at the end of the fermentation with temperature 45°C	100
5.7	Comparison of performance in lactic acid fermentation at 30°C by <i>Enterococcus gallinarum</i> EB1 at different culture pHs using 1 L working volume fermenter	102
5.8	Comparison of performance in lactic acid fermentation at 37°C by <i>Enterococcus gallinarum</i> EB1 at different culture pHs using 1 L working volume fermenter	103
5.9	Comparison of performance in lactic acid fermentation at 45°C by <i>Enterococcus gallinarum</i> EB1 at different culture pHs using 1 L working volume fermenter	104
6.1	Composition of kitchen refuse	111
6.2	Nutrient supplements added to the fermentation	116
6.3	Lactic acid concentration with normal evaporation on sample from kitchen refuse fermentation	126
6.4	Evaporation with H ₂ SO ₄ for sample from kitchen refuse	128
6.5	Evaporation with butanol and H2SO4 for sample from kitchen refuse	129
6.6	Evaporation with propanol and H2SO4 for sample from kitchen refuse	129

LIST OF FIGURES

Figure		Page
2.1	Differences of lactic acid and alcohol fermentation	14
2.2	The homofermentative pathway of lactic acid bacteria	17
2.3	The heterofermentative pathway of lactic acid bacteria	18
2.4	Optical active configuration of lactic acid	22
2.5	Activation of glucose by phosphorylation with ATP	24
2.6	Oxidation of NADH	25
2.7	Formation of lactate by homofermentative bacteria	26
2.8	Fermentation of glucose by heterofermentative bacteria	27
2.9	ATP production from fermentation of carbohydrates imported via the PTS system	31
2.9.1	Vapor-pressure graph of the lactic acid against temperature	39
3.1	Experimental design of screening process for L-lactic acid producing bacteria.	48
3.2	Experimental design of glucose, sago starch & cooked rice fermentation for L-lactic acid production	51
3.3	Experimental design of kitchen refuse fermentation for L-lactic acid production.	53
3.4	The set-up using kitchen refuse as substrate for L-Lactic fermentation	54
3.5	High Performance Liquid Chromatography for sugar analysis	56
3.6	Grid patterns of improved Neubauer ruled Haemocytometer	65
4.1	The non-changes of color of the BCP agar	74

4.2	The changes of color of the BCP agar	75
4.3	Organic acids production with the POME sludge isolated bacteria at pH 6.0 with temperature 37°C	76
4.4	Organic acids production with the Kitchen refuse isolated bacteria at pH 6.0 with temperature 37°C	77
4.5	Organic acids production with the Fermented Milk isolated bacteria at pH 6.0 with temperature 37°C	77
4.6	Organic acids production with the Soil (river bank) isolated bacteria at pH 6.0 with temperature 37°C	78
4.7	Organic acids production with the Soil (dumpsite) isolated bacteria at pH 6.0 with temperature 37°C	79
4.8	The morphology of L-lactic acid producing bacteria under microscopy observation (<i>Enterococcus gallinarum</i> EB1)	84
4.9	<i>Enterococcus gallinarum</i> EB1 identified by Biolog MicroLog Bacteria Identification System	85
5.1	Experimental design for kinetics of <i>Enterococcus</i> gallinarum EB1 in L-lactic acid fermentation	9 5
5.2	The Ln Xt/Xo against time graph of <i>Enterococcus gallinarum</i> EB1 using glucose as substrate	101
6.1	Experimental Design of glucose, sago starch and cooked rice fermentation for L-lactic acid production	115
6.2	Experimental Design of kitchen refuse fermentation for L-lactic acid production	117
6.3	The schematic diagram of the recovery process with the EYELA evaporator	119
6.4	The EYELA Rotary Evaporator used in the recovery process	120
6.5	The L-lactic acid, lactic acid and sugar concentration on glucose fermentation	121

6.6	Lactic acid concentration and glucose utilization with different substrates fermentation with	
	Enterococcus gallinarum EB1	124
6.7	Cell counts of bacteria with different substrates	
	fermentation with Enterococcus gallinarum EB1	125
6.8	Brownish color of the fermentation broth with	
	high lactic acid	127
6.9	The dark color of recovered lactic acid using H ₂ SO ₄	128

LIST OF ABBREVIATIONS

LAB	-	Lactic acid bacteria
PHA	-	Polyhydroxyalkanoates
PLA	-	Poly-L-lactic acid
NADH	-	Nicotinamide adenine dinucleotide
ATP	-	Phosphoenolpyruvate
PGA	-	Polyglycolic acid
EMP	-	Glycolysis-Embden-Meyerhoff- Parnas pathway
BOD ₅	-	Biological Oxygen Demand 5 Days
COD	-	Chemical Oxygen Demand
TKN	-	Total Kjeldahl Nitrogen
POME	-	Palm Oil Mill Effluent
TS	-	Total Solids
PTS	-	Phosphotransferase system
L. lactis	-	Lactococcus lactis
BUG	-	BIOLOG Universal Growth
PTS	-	Phospho-Transferase System
En	-	Enzyme 2

CHAPTER 1

INTRODUCTION

1.0 Lactic Acid Producing Microorganism

Lactic acid bacteria (LABs) belong to a group of Gram-positive anaerobic bacteria that excrete lactic acid as their main fermentation product into the culture medium. LABs were among the first organisms to be used in food manufacturing. Today LABs play crucial roles in the manufacturing of fermented milk products, vegetables and meat, as well as in the processing of other products such as wine. In order to understand and especially to manipulate the roles of these LABs in these fermentation processes, LABs have been studied extensively and are now among the best-characterised microorganisms with respect to their genetics, physiology and applications. The relative simplicity of LABs makes them excellent candidates for complete analysis of the metabolic pathways in the near future. The extensive knowledge gained of LABs has opened new possibilities for their application. Tailor-made LABs with desired physiological traits can be constructed and can be applied to optimize the food manufacturing processes or to manipulate the organoleptic properties.

1.1 Lactic acid and Poly-L-lactic Acid from Kitchen Refuse

Kitchen garbage or refuse is another organic substance that can be subjected to biological treatment for organic acids production, particularly for lactic acid production under controlled conditions. Since kitchen refuse mainly contained cooked waste and remains of meals, it provides rich nutrients including carbohydrate, lipid, protein and other compounds and does not usually contain harmful compounds (Rintala and Birgitte, 1994). These compounds are essential for the growth of microorganisms to synthesize desired products. In developed countries such as Japan, segregation of wastes according to different criteria e.g. combustible and non-combustible material, recyclable materials (bottles, cans, newsprint and paper), has been adopted in the whole country. Kitchen waste is classified as combustible material which is usually subjected to incineration. However, owing to the environment pollution problem, an appropriate method of handling this organic waste has to be developed. Kitchen and restaurant wastes have been utilised as substrates for the production of organic acids. A variety of organic acids at different concentrations could be produced under different fermentation conditions. The organic acids were then converted to bacterial biopolymers or polyhydroxyalkanoates (PHA). Another strategy in the utilisation of such wastes is to produce L-lactic acid which can be used for the production of polylactate or PLA. This is another kind of bioplastic which is gaining popularity due to its superior physical strength and longer

durability compared to PHA.

Recently, lactic acid fermentation has received much attention because of increasing demands for new bioengineering materials such as biodegradable lactide polymers and the high cost of petroleum which is usually used as feed stock for production of lactic acid in the conventional chemical processes.

1.2 Objectives

The scope of this study focused on development of process for establishing high performance L-lactic acid fermentation using local isolate. Therefore, the objectives of this research are;

- To screen local bacteria strain for the production of pure L-lactic acid from various sources
- To investigate the effect of the culture pH and temperature on lactic acid production
- To perform kinetic studies for optimization of L-lactic acid fermentation

