

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND PURIFICATION OF RAW STARCH DEGRADING ENZYME FROM ENDOPHYTIC FUNGI AND ITS APPLICATION FOR GLUCOSE PRODUCTION

YETTI MARLIDA

FSMB 2001 23

ISOLATION AND PURIFICATION OF RAW STARCH DEGRADING ENZYME FROM ENDOPHYTIC FUNGI AND ITS APPLICATION FOR GLUCOSE PRODUCTION

YETTI MARLIDA

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2001

ISOLATION AND PURIFICATION OF RAW STARCH DEGRADING ENZYME FROM ENDOPHYTIC FUNGI AND ITS APPLICATION FOR GLUCOSE PRODUCTION

By

YETTI MARLIDA

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Food Science and Biotechnology Universiti Putra Malaysia

May 2001

Dedicated to my husband,

Mr. Syahril Amiruddin

And my love children,

Pramana Yuda Sayeti & Ameliora Reski Sayeti

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION AND PURIFICATION OF RAW STARCH DEGRADING ENZYME FROM ENDOPHYTIC FUNGI AND ITS APPLICATION FOR GLUCOSE PRODUCTION

By

YETTI MARLIDA May 2001

Chairman : Dr. Nazamid bin Saari

Faculty : Food Science and Biotechnology

Raw starch degrading enzymes are enzymes that degrade polymers of raw starches to smaller molecules of oligosaccharides. Fifty-two strains of endophytic fungi were isolated from tropical plant trees in Malaysia and screened for raw starch degrading enzyme activity. Twelve endophytic strains with the ability to degrade raw starches as indicated by size of clear zone formed on Czapek-Dox medium were obtained. Three strains were found to be good raw starch degrading enzyme producers based on the ability to degrade raw starches. Raw sago, potato and rice starches were found to be appropriate substrate for enzyme production. The three strains of endophytic fungi were identified as Gibberella pulicaris using 18S rRNA sequences and, Acremonium sp. and Synnematous sp. taxonomically, respectively. Comparison of their degradative activity on raw and gelatinized starches, substrate specificity, optimum pH and product of hydrolysis showed that Acremonium sp. had a broad activity towards both small and large sized granules of raw starches while G. pulicaris and Synnematous sp. were dependent on the granule size and

structures of starches. The enzyme from Acremonium sp. is unique since it does not depend on the granule size and structures of starches. The results showed that the enzyme from G. pulicaris and Acremonium sp were raw starch degrading glucoamylase, an exo-acting enzyme which solely yielded glucose while enzyme from Synnematous sp. was raw starch degrading α -amylase, an endo-acting enzyme which yielded a mixture of glucose and maltose. Consequently, raw starch degrading glucoamylase was more efficient than raw starch degrading α -amylase. Both glucoamylase and α -amylase showed the highest degradation rate on raw rice starch. Based on the substrate specificity, degradative pattern and product produced, the Acremonium sp. was selected and pursued to produce raw starch degrading enzyme. The optimum conditions for enzyme production based on carbon and nitrogen sources were studied. Results showed that the highest raw starch degrading enzyme activity was observed when the Acremonium sp. were grown in shake flask culture of broth medium at 120 rpm, 30°C for 5 days and yielded glucoamylase activity of 67 U/ml. The enzyme was induced in broth medium by the addition of raw sago starch as its carbon source and peptone and sodium nitrate as nitrogen sources. Acremonium sp. showed maximum enzyme activity when grown at pH 5.0, 30°C for 5 days. The raw starch degrading enzyme was found to be inducible enzymes depending on the amount of raw sago starch added to the culture medium. The raw starch degrading enzyme from Acremonium sp. was purified to homogeneity by a combination of ultrafiltration, DEAE-Toyopearl 650 S ion exchange and Sephadex G-150 gel filtration. Pure raw starch degrading enzyme was shown to consist of two sub-units of 22 and 39 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and a single band on native-polyacrylamide gel electrophoresis. The optimum pH and temperature for hydrolysis of raw starches were 5.5 and 55°C,

respectively. The enzyme was stable at pH range of 3.0 to 7.0 and at temperature up to 60°C. The purified enzyme had K_m values of 10.0 and 3.8 mg/ml and V_{max} of 195 µmoles/ml/min and 391 µmoles/ml/min for amylose and amylopectin, respectively. Pretreatment of sago starch at low pH and heating below gelatinization temperature was found to increase the enzymatic hydrolysis.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PEMENCILAN DAN PENULINAN ENZIM PENGURAI KANJI MENTAH DARIPADA FUNGI ENDOFITIK DAN KEGUNAANYA BAGI PENGHASILAN GLUKOSA

Oleh

YETTI MARLIDA

Mei 2001

Pengerusi : Nazamid Saari, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Enzim pengurai kanji mentah adalah enzim yang dapat menguraikan polimer kanji mentah menjadi molekul oligosakarida yang lebih kecil. Lima puluh dua strain fungi endofitik telah dipencilkan dari tumbuhan hutan tropika di Malaysia dan telah disaring bagi mendapatkan aktiviti pengurai kanji mentah. Dua belas strain fungi endofitik dengan keupayaan menguraikan kanji mentah ditentukan berdasarkan saiz zon terang (*clear zone*) di atas media Czapek-Dox yang dibentuk telah diperolehi. Tiga strain telah dikenalpasti sebagai penghasil enzim pengurai kanji mentah berdasarkan keupayaan enzim-enzim tersebut menguraikan kanji mentah. Kanji sagu, kentang dan beras telah dikenalpasti sebagai substrat yang sangat baik untuk menghasilkan enzim. Tiga kulat yang telah dikenalpasti adalah *Gibberella pulicaris* menggunakan jujukan 18S rRNA, *Acremonium* sp. dan *Synnematous* sp. secara taksonomi. Perbandingan aktiviti pengurai menggunakan kanji mentah dan kanji

menunjukkan Acremonium sp. mempunyai aktiviti yang luas bagi kanji yang berukuran kecil dan besar sementara enzim yang dihasilkan oleh G. pulicaris dan Synnematous sp. bergantung kepada ukuran dan struktur butiran, manakala enzim yang dihasilkan oleh Acremonium sp. adalah unik dan tidak bergantung pada ukuran dan struktur butiran. Keputusan yang diperoleh. menunjukkan enzim yang dihasilkan dari kulat G. pulicaris dan Acremonium sp. adalah glukoamilase dan hanya menghasilkan glukosa manakala enzim pemecah kanji mentah dari Synnematous sp. adalah α -amilase yang menghasilkan campuran glukosa dan maltosa. Enzim pengurai kanji glukoamilase didapati lebih efisien berbanding enzim Glukoamilase dan α -amilase menunjukkan kadar pengurai kanji α -amilase. pemecahan yang tinggi ke atas kanji mentah beras. Berdasarkan kespesifikan substrat, corak pemecahan dan produk yang dihasilkan, Acremonium sp. telah dipilih dan dikaji dengan lebih lanjut untuk penghasilan enzim pengurai kanji mentah. Keadaan optimum untuk penghasilan enzim dengan baik telah diteliti dengan menggunakan sumber nitrogen dan karbon. Keputusan menunjukkan aktiviti pengurai kanji mentah paling tinggi apabila Acremonium sp. ditumbuhkan dalam kelalang berpengaduk pada 120 rpm, 30°C selama 5 hari dan menghasilkan aktiviti glukoamilase 67 U/ml. Enzim ini diaruh dalam media cecair dengan penambahan kanji sagu mentah sebagai sumber karbon, pepton dan sodium nitrat sebagai sumber nitrogen. Acremonium sp. menunjukkan aktiviti maksimum apabila dihidupkan pada pH 5.0, suhu 30°C selepas pengeraman selama 5 hari. Jumlah kandungan kanji sagu mentah yang ditambahkan ke dalam medium kultur didapati mampu bertindak sebagai agen penggeluaran enzim pengurai kanji mentah. Enzim pengurai kanji mentah daripada Acremonium sp. ditulinkan sehingga homogen dengan kombinasi penurasan ultra, DEAE-Toyopearl-650 S penukar ion dan Sephadex G-150 gel

penurasan berturus. Enzim tulin pengurai kanji mentah telah dianggarkan mengandungi dua sub-unit iaitu 22 dan 39 kDa dengan menggunakan gel elektroforesis sodium dodesil sulfat poliakrilamid dan satu jalur tunggal yang diperolehi dengan menggunakan gel elektroforesis poliakrilamid-natif. Hidrolisis kanji mentah adalah optimum pada pH 5.5 dan suhu 55°C. Enzim didapati stabil pada julat pH 3.0 hingga 7.0 dan suhu sehingga 60°C. Enzim pengurai kanji mentah tulin mempunyai nilai K_m 10.0 and 3.8 mg/ml dan nilai V_{max} 195 µmoles/ml/min dan 391 µmoles/ml/min untuk amilose dan amilopektin, berturut-turut. Perlakuan awal kanji sagu mentah pada pH rendah dan pemanasan di bawah suhu penggelatinan boleh meningkatkan hidrolisis secara enzimatik.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and thanks to my supervisor, Dr. Nazamid Saari and members of the supervisory committee, Dr. Zaiton Hassan and Associate Professor Dr. Son Radu for their guidance and encouragement during the course of this study and the preparation of this thesis.

I gratefully acknowledge the financial support by Emeritus Prof. Ryoichi Ohgushi of Ohgushi Yoshika Foundation, Kanazawa Japan, and the Chancellor of Andalas University Prof. Dr. Marlis Rahman for an opportunity given and to Universiti Putra Malaysia for granting the research facilities.

I would like to acknowledge Prof. Fusao Tomita from Faculty of Agriculture, Hokkaido University, Japan and Dr. Katsuhiko Ando from Tokyo Research Laboratories, Kyowa Hakko, Japan for their assistance in the identification of the endophytic fungi.

My deepest appreciation to my parents, Haji Dalmi and Maini and my son Pramana Yuda Sayeti, my daughter Ameliora Resla Sayeti (Aisyah), brother Salmi for the enormous amount of love, support and sacrifice they had given.

Most of all I am grateful to my husband Syahril Amiruddin for being supportive, understanding and loving all the way and for spending his time helping me type and print this thesis.

Finally, I wish to say thanks, to all my friends and mates in Dr. Nazamid Saari's, Dr. Azizah Hamid's and Dr. Suraini's laboratories for their help throughout the course of this investigation.

I certify that an Examination Committee met on 22th May 2001 to conduct the final examination of Yetti Marlida on her Doctor of Philosophy thesis entitled "Isolation and Purification of Raw Starch Degrading Enzyme from Endophytic Fungi and Its Application for Glucose Production" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Suraini Abd Aziz, Ph.D. Faculty of Food Science and Biotechnology, Universiti Putra Malaysia (Chairperson)

Nazamid Saari, Ph.D. Faculty of Food Science and Biotechnology, Universiti Putra Malaysia (Member)

Zaiton Hasan, Ph.D. Faculty of Food Science and Biotechnology, Universiti Putra Malaysia (Member)

Son Radu, Ph.D. Associate Professor Faculty of Food Science and Biotechnology, Universiti Putra Malaysia (Member)

Othman Omar, Ph.D. Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (Independent Examiner)

MOHD GHAZALI MOHAYIDIN, Ph.D. Professor/Deputy Dean of Graduate School, Universiti Putra Malaysia Date: 2 Jun 2001

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the Degree of Doctor of Philosophy.

AINI IDERIS, Ph.D. Professor Dean of Graduate School, University Putra Malaysia Date: **1** 2 JIJL 2001

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

YETTI MARLIDA 22 June 2001

TABLE OF CONTENTS

Page

DEDICATION	3
ABSTRACT	4
ABSTRAK	7
ACKNOWLEDGEMENTS	10
APPROVAL SHEETS	12
DECLARATION FORM	13
LIST OF TABLES	19
LIST OF FIGURES	21
LIST OF ABBREVIATIONS	24

CHAPTER

Ι	INTRODUCTION	25
II	LITERATURE REVIEW	29
	Definition of Raw Starch Degrading Enzyme	29
	Classification of Raw Starch Degrading Enzyme	29
	Distribution of Raw Starch Degrading Enzyme	30
	Reaction Mechanism of Raw Starch Degrading Enzyme	30
	Screening of Raw Starch Degrading Enzyme	34
	Microbiology of Endophytic Fungi	36
	Production of Raw Starch Degrading Enzyme	40
	Regulation of Raw Starch Degrading Enzyme	40
	Cultural Conditions	42
	Catabolite Repression	44
	Factors Affecting Production of Raw Starch Degrading Enzyme	45
	Effect of pH	47
	Effect of Temperature	49
	Effect of Media Composition	50
	Purification of Raw Starch Degrading Enzyme	58
	Properties of Raw Starch Degrading Enzyme (RSDE)	60
	Effect of Metals on RSDE Activity	63
	Specificity	64
	Optimum pH and Stability	65
	Product of Hydrolysis	66
	Application of Starch Degrading Enzyme in Food Industry	68
IП	ISOLATION, SCREENING AND IDENTIFICATION OF RAW	73
	STARCH DEGRADING ENZYME FROM ENDOPHYTIC FUNGI	
	Introduction	73
	Materials and Methods	74
	Materials	74
	Isolation of Endophytic Fungi	74

	Qualitative Measurement of RSDE	75
	Quantitative Measurement of RSDE	75
	Measurement of RSDE Activity	76
	Identification of Isolates	76
	Results and Discussion	77
	Qualitative Analysis	77
	Quantitative Analysis	80
	Identification of Endophytic Fungi	85
	rRNA Gene Analysis	85
	Taxonomic Analysis	85
	Conclusions	86
IV	RAW STARCH DEGRADING ACTIVITIES OF SELECTED ENDOPHYTIC FUNGI IN LIQUID CULTURE MEDIUM	98
	Introduction	98
	Materials and Methods	
	Materials	99
	Organisms	99
	Medium Cultivation	99
	Effect of pH on Enzymatic Hydrolysis	100
	Effect of Different Raw Starches as Substrate	100
	Estimation of Raw Starch Degrading Ability (RSDA)	101
	Measurement of Activity	101
	Optimum pH and Temperature	101
	Determination of End Product	102
	Results and Discussion	103
	Enzyme Production Profiles	103
	Effect of pH of Reaction Medium on Hydrolysis	105
	Substrate Specificity	105
	Ratio of Degradability of Raw to Gelatinized Starch	109
	Identification of End product by TLC	111
	Selected Strains	111
	Optimum of Reaction Conditions	113
	Conclusions	113
v	COMPARISON OF DEGRADATIVE PATTERNS OF RAW STARCH DEGRADING ENZYMES FROM NEWLY ISOLATED ENDOPHYTIC FUNGI	117
	Introduction	117
	Materials and Methods	118
	Materials	118
	Cultivation of Microorganisms	118
	Enzyme Preparation	119
	Enzymatic Hydrolysis of Raw Starches	119
	Identification of Hydrolysis Product	120
	Results and Discussion	120
	Hydrolysis Patterns of RSDE from Gibberella pulicaris	120
	Hydrolysis Patterns of RSDE from Acremonium sp.	123
	Hydrolysis Patterns of RSDE from Synnematous sp.	125
	Conclusions	128

VI	IMPROVEMENT OF RAW STARCH DEGRADING ENZYME PRODUCTION BY ACREMONIUM SP. ENDOPHYTIC FUNGUS	129
	Introduction	129
		129
	Materials and Methods	
	Endophytic Fungus/Culture Microorganism	130
	Cultivation	130
	Raw Starch Degrading Activity and Protein Assay	131
	Measurement of Growth	131
	Effect of Initial pH, Temperature and Culture	131
	Statistical Analyses	132
	Results and Discussion	132
	Effect of Initial pH	134
	Effect of Temperature	136
	Effect of Carbon Sources	136
	Effect of Nitrogen Sources	139
	Conclusions	145
VI	PURIFICATION AND CHARACTERIZATION OF RAW STARCH DEGRADING ENZYME BY ACREMONIUM SP. ENDOPHYTIC FUNGUS	146
	Introduction	146
	Materials and Methods	147
	Materials	147
	Organism and Culture Conditions	1 ()
	Preparation of Crude Extract	148
	Purification Procedure	148
	DEAE-Toyopearl 650 S	148
	Sephadex G-150	148
	Enzyme Activity and Protein Assay	149
	Characterization of Enzyme	149
	Optimum pH and Stability	149
	Optimum Temperature and Heat Stability	150
	Effect of Metal Ion	150
	Polyacrylamide Gel Electrophoresis	150
	Substrate Specificity	150
	Determination of Kinetic Parameters	151
	Determination of End Product	151
	Results and Discussion	151
	Purification of RSDE	152
	Properties of RSDE	152
	Inhibitor and Activator	152
	Substrate Specificity	158
	Kinetic Constant	162
	End product	162
	Conclusions	164
VIII	IMPROVEMENT OF GLUCOSE PRODUCTION IN ENZYME REACTION SYSTEM UTILIZING ACID-TREATED SAGO	166
	STARCH AS SUBSTRATE	
	Introduction	166

Materials and Methods	167
Preparation of RSDE Solution	167
Preparation of Acid-Treated Sago Starch	167
Measurement of Physical Properties of Sago Starch	168
Enzymatic Hydrolysis of Starch Granules	168
Determination of Glucose Conversion	168
Results and Discussion	169
Effect of Acid-Temperature Pretreatment on the	169
Rheological Properties of Sago Starch	
Enzymatic Hydrolysis of Acid-Treated Sago Starch	171
Glucose Production	173
Conclusions	178
CONCLUSIONS	179
BIBLIOGRAPHY	181
APPENDICES	198
APPENDIX A	199
APPENDIX B	202
APPENDIX C	208
BIODATA OF THE AUTHOR	215

IX

LIST OF TABLES

Table		Page
1	Distribution of microorganisms producing raw starch degrading enzymes	32
2	Mechanism of action of different raw starch degrading enzymes and basis for classification	33
3	Several important producers of raw starch degrading enzyme and growth conditions	43
4	Various models for the purification of raw starch degrading enzyme from microorganisms	61
5	Properties of purified raw starch degrading enzymes	62
6	Qualitative analysis of RSDE ability of different strains of endophytic fungi on raw starches	78
7	Data blast of 18S rRNA of <i>Gibberella pulicaris</i> (EP7) as subject compared to the published of <i>Gibberella pulicaris</i> (AB003) with 1740 nucleotide	88
8	Morphological characteristic of Gibberella pulicaris, Acremonium sp. and Synnematous sp. of endophytic fungi	91
9	Ratio of raw starch degrading activity to gelatinized starch activity (RDA) on raw sago and potato starches by three selected endophytic fungi	110
10	Maximum RSDE activity, dry weight of mycelium and protein concentrations of crude extract from the fermentation of <i>Acremonium</i> sp. at 27 °C grown at different pHs.	135
11	Maximum RSDE activity, dry weight of mycelium and protein concentrations of crude extract from the fermentation of <i>Acremonium</i> sp. at pH 5.0 grown at different temperatures	137
12	Maximum RSDE activity, dry weight of mycelium and protein concentration of crude extract from the fermentation of <i>Acremonium</i> sp. at 30°C, initial pH 5.0 in the presence of different carbon sources	138

13	Effect of various combinations of nitrogen sources on cell growth and RSDE activity at 30°C pH 5.0, 20 g/l raw sago starch as carbon source	141
14	Purification of RSDE from Acremonium sp. endophytic fungus	155
15	Effect of various reagents on raw starch degrading enzyme (RSDE) activity of <i>Acremonium</i> sp. endophytic fungus	161
16	Substrate specificity of RSDE from <i>Acremonium</i> sp. endophytic fungus	163
17	Rheological properties of acid-treated and untreated sago starch	170

LIST OF FIGURES

Figure		Page
1	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw sago as carbon source	81
2	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw potato as carbon source	81
3	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw tapioca as carbon source	82
4	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw corn as carbon source	82
5	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw wheat as carbon source	83
6	A typical clear zone formed by isolate EP23 of endophytic fungus after 5 days incubation on Czapek-Dox agar using raw rice as carbon source	83
7	Quantitative analysis of RSDE activity of different strains of endophytic fungi grown on various raw starches	84
8	Phylogenetic relationships of Gibberella pulicaris (EP7) and references based on 18S rRNA.	92
9	Giant colony of <i>Gibberella pulicaris</i> grown on potato dextrose agar medium after incubation at 27°C for 5 days	93
10	Giant colony of <i>Acremonium</i> sp. grown on potato dextrose agar medium after incubation at 27°C for 5 days	93
11	Giant colony of Acremonium sp. grown on potato dextrose agar medium after incubation at 27°C for 7 days	94
12	Giant colony of <i>Acremonium</i> sp grown on potato dextrose agar medium after incubation at 27°C for 10 days	94
13	Photomicrograph of conidiaphore of Acremonium sp. (enteroblastic type).	95

14	Photomicrograph of hyphae and mycelia of Acremonium sp. with septa.	95
15	Photomicrograph of hyaline hyphae and single cell of spore of <i>Acremonium</i> sp.	96
16	Giant colony of Synnematous sp. grown on potato dextrose agar medium after incubation at 27°C for 7 days	96
17	Photomicrograph of conidiophore from Synnematous sp.	97
18	Photomicrograph of conidiasphores from Synnematous sp.	97
19	Growth profiles of three selected endophytic fungi that produced RSDE	104
20	Effect pH reaction of RSDE on raw starches from selected endophytic fungi	106
21	Substrate specificity of RSDE on raw starches from selected endophytic fungi	108
22	Analysis of end product by TLC	112
23	Optimum pH reaction of RSDE produced by <i>Acremonium</i> sp.	115
24	Optimum temperature reaction of RSDE produced by <i>Acremonium</i> sp.	116
25	Enzymatic hydrolysis of raw starches to glucose by RSDE from <i>Gibberella pulicaris</i>	121
26	Enzymatic hydrolysis of raw starches to glucose by RSDE from Acremonium sp.	124
27	Enzymatic hydrolysis raw starches to maltose by RSDE from Synnematous sp.	126
28	Enzymatic hydrolysis of raw starches to glucose by RSDE from Synnematous sp.	127
29	RSDE activity, dry weight and protein content of crude extract produced by <i>Acremonium</i> sp. grown on original basal medium	133
30	Effect of different carbon sources on the production of RSDE	140
31	Changes of RSDE activity during growth of Acremonium sp. at different concentrations of sodium nitrate as the nitrogen source	143

32	Changes of RSDE activity during growth of <i>Acremonium</i> sp. at different concentrations of peptone as the nitrogen source	144
33	An ion-exchange chromatograph of RSDE from <i>Acremonium</i> sp. on DEAE-Toyopearl 650 S	153
34	Gel filtration chromatograph of RSDE from Acremonium sp. on Sephadex G-150	154
35	NATIVE and SDS-PAGE of RSDE from Acremonium sp.	156
36	Standard curves showing relationship between relative mobilities on polyacrylamide gel and relative molecular masses of RSDE	157
37	Optimum pH and pH stability of purified RSDE from <i>Acremonium</i> sp.	159
38	Optimum temperature and temperature stability of purified RSDE from <i>Acremonium</i> sp.	160
39	HPLC chromatograph of the product degradation of raw sago starch by purified RSDE	165
40	Effect of enzymatic hydrolysis on acid-treated sago starch	172
41	Effect of enzyme concentration on glucose production using acid-treated sago starch	175
42	Effect of acid- treated sago starch on glucose production using 100 unit/ml enzyme	176
43	Glucose production using acid-treated and untreated sago starch	177

LIST OF ABBREVIATIONS

MEA	malt extract agar
RSDE	raw starch degrading enzyme
RDA	raw starch degrading ability
rpm	rotation per minute
v/w	volume per weight
mol.wt	molecular weight
TLC	Thin-layer chromatography
HPLC	High liquid chromatography
min	minute
h	hour
Gl	glucose
G2	maltose
G3	maltotriose
Μ	molar
mM	millimolar
μm	micromol
g	gram
mg	milligram
ml	milliliter
cm	centimeter
sp.	species
PDA	potato dextrose agar

