

UNIVERSITI PUTRA MALAYSIA

IMPROVEMENT IN ORGANOGENESIS AND THE DEVELOPMENT OF A TRANSFORMATION PROCEDURE FOR CUCUMBER AND MUSKMELON

A. K. M. MOHI UDDIN

FSMB 1998 20

IMPROVEMENT IN ORGANOGENESIS AND THE DEVELOPMENT OF A TRANSFORMATION PROCEDURE FOR CUCUMBER AND MUSKMELON

By

A. K. M. MOHI UDDIN

Dissertation Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Food Science and Biotechnology, Universiti Putra Malaysia.

December 1998

Specially Dedicated Jo My

Jather (Alhajj Md. Lutful Hoque) Mother (Jahera Hoque) Jather-in-law (Md. Salimullah) Mother-in-law (Masuma Salim) and Wife (Mazneen Salim)

ACKNOWLEDGEMENTS

First and foremost, my deepest thanks to **ALLAH** for He has guided me through and provided me wisdom, strength and comfort to complete the degree successfully.

I would like to extend my sincere gratitude to my supervisors, Dr. Suhaimi Napis, Dr. K. Harikrishna, Dr. Zaliha Christine Abdullah, Dr. M. Kamal Uddin Chowdhury and Dr. Tan Siang Hee for all their guidance, help, tutelage and invaluable advice during my Ph. D. project and the preparation as well as completion of this thesis. Their criticisms and suggestions have been most constructive and are highly appreciated. Their patience, trust and enthusiasm have left depth of feeling that could not be expressed in words. I express my sincere thanks to Professor Marziah Mahmood for her advice too.

I am profoundly indebted to my parents, father and mother-in-law, brothers, sisters and wife for their sacrifices and encouragement to do higher study in the field of Plant Biotechnology and would like to express my sincere thanks and deepest gratitude to them for their invaluable love and prayers throughout the years to complete my study. I dedicated this work to my parents, father and mother-in-law, with all my love. To my wife, whose love, help, understanding, and encouragement has been the biggest motivation in completing this degree, I dedicated this work to her, with all my love, too. My daughter, **Ramisa** also deserves appreciation for her patience and sacrifice. A special thanks to Professor Md. Sharif, Ex. Chairman and Head of Department of Botany, Jagannath University College, Bangladesh, Assistant Professor Dr. Md. Imdadul Hoque, Department of Botany, University of Dhaka, Bangladesh and Mrs. Nurjahan Begum, Lecturer, Department of Botany, Jagannath University College, Bangladesh for their valuable advice and help.

Accordingly, I would like to say thank to the Ministry of Science, Technology, and the Environment, Malaysia for financial support (Graduate Assistantship) (IRPA Grants, 50304 and 51267) which gave me the opportunity to pursue my Ph. D. degree in Malaysia. I also express my sincere thanks to the Government of The People's Republic of Bangladesh for providing me one way plane fare. Indeed, I wish to thank the Rubber Research Institute of Malaysia (RRIM) for providing *Agrobacterium* strains.

I would also like to thank my friends, entire staff of Faculty of Food Science and Biotechnology and Graduate School, Universiti Putra Malaysia and staffs of Tissue Culture and Genetic laboratory, Biotechnology Department for their friendship, invaluable help, and encouragement throughout my endeavour here.

I hope any who are not mentioned by name will recognise my gratitude for their kindness, advice, and moral support on completion of my degree at Universiti Putra Malaysia. To all others who have contributed as well as assisted me in providing different inputs in one way or another to the successful completion of my study throughout my student life, they are conferred my appreciation.

TABLE OF CONTENTS

		Page
ACKNOWLE	DGEMENTS	iii
LIST OF TABLES		
LIST OF FIGURES		X
		xvi
LIST OF PLA	TES	xix
LIST OF ABE	BREVIATION	xxi

		XXIII
ABSTRAK		xxvi
CHAPTER		
1	GENERAL INTRODUCTION	1
	Plant Genetic Manipulation	1
	Study on Cucumber and Muskmelon	3
	Justification of the Study	4
	Objectives of the Study	5
II	LITERATURE REVIEW	7
	Study of Tissue Culture on Cucumber and Muskmelon	7
	Organogenesis	7
	Somatic Embryogenesis	9
	Effect of Hormone on Organogenesis	11
	Effect of Hormone on Somatic Embryogenesis	14
	Effect of Carbohydrates on Shoot Regeneration Physical State of the Media	17
	Effect of Physical Environment	18 19
	Somaclonal Variation in Cucumber	19
	Somaclonal Variation in Muskmelon	20
	Study on Ethylene Inhibitors AgNO ₃ and CoCl ₂	21
	AgNO ₃ and CoCl ₂ Action on Cucumber	22
	AgNO ₃ and CoCl ₂ Action on Muskmelon	23
	Study on Infection of Oncogenic Agrobacterium	23
	Virulence Consideration	23
	Crown Gall and Hairy Root Induction	24
	Study on Plant Genetic Transformation	24
	Physical Methods for Plant Gene Transfer	25
	Agrobacterium-mediated Transformation	26
	Biology of Agrobacterium	27
	Recombinant Vector Plasmids	29
	Genes Required for Transformation Study	30
	Intron-containing Reporter Gene	31
	Identification of Transgenic Plants	31
	Genetic Selection	31

Conformation of Transformation and Stability of DNA
OPTIMIZATION OF RAPID SHOOT ORGANOGENESIS
Preface
Materials and Methods
Seed Surface Sterilisation
Seed Germination
Explant Preparation
Experiments
Culture Conditions and Shoot Primordia Induction
Shoot Primordia Elongation
Studies on Phenotypical Normal and Abnormal
Shoots
Root Induction
Dark Incubation
Statistical Analysis
Acclimatisation of Regenerants
Results (Part I)
Callus Induction
Effect of BAP on Cucumber Shoot Primordia
Induction
Effect of BAP and 2,4-D on Cucumber Shoot
Primordia Induction
Effect of BAP and NAA on Cucumber Shoot
Primordia Induction
Shoot Primordia Elongation
Effect of Hormone on Phenotypically Normal Shoot Production
Effect of Hormone on Phenotypically Abnormal Shoo
Production
Effect of Auxin (IBA) on Root Induction
Effect of Dark Incubation on Root Induction
Results (Part II)
Effect of BAP on Muskmelon Shoot Primordia
Induction
Shoot Primordia Elongation
Effect of BAP and 2,4-D or NAA on Muskmelon
Shoot Primordia Induction
Shoot Primordia Elongation
Phenotypical Normal Muskmelon Shoot Production-
Phenotypically Abnormal Shoot Production of
Muskmelon
Effect of Auxin on Muskmelon Root Induction
Effect of Dark Incubation on Root Induction
Acclimatisation of Cucumber and Muskmelon
Regenerants
Discussion

Preface	1
Materials and Methods	1
Source of Explants	1
Preparation of Shoot Primordia Induction Medium	1
Experiments	1
Results (Part I)	1
Effect of ÁgNO ₃ on Cucumber Callus Induction	1
Effect of AgNO ₃ with SGM on Cucumber Shoot	
Regeneration	1
Effect of AgNO ₃ in SPI Medium on Cucumber	
Shoot Regeneration	1
Effect of AgNO ₃ in SGM and SPI Medium on	
Cucumber Shoot Regeneration	1
Shoot Primordia Elongation	1
Effect of AgNO ₃ on the Production of Normal Shoots-	1
Root Induction	1
Effect of AgNO ₃ on Muskmelon Shoot Regeneration	1
Discussion	1
Results (Part II)	1
Effect of CoCl ₂ on Cucumber Callus Induction	1
Effect of CoCl ₂ in SGM on Shoot Regeneration	1
Effect of CoCl ₂ in SPI Medium on Cucumber Shoot	
Regeneration	1
Effect of CoCl ₂ in SGM and SPI Medium on	
Cucumber Shoot Regeneration	1
Shoot Primordia Elongation	1
Effect of CoCl ₂ on Production of Morphologically	
Normal Shoots	1
Root Induction	1
Effect of CoCl ₂ on Muskmelon Shoot Regeneration	1
Discussion	1
IDENTIFICATION OF SUSCEPTIBILITY OF DIFFERENT	
AGROBACTERIUM STRAINS	1
Preface	1
Materials and Methods	1
Germination of Seedlings	1
Medium for <i>Agrobacterium</i> Culture	1
Agrobacterium Strains	1
Experiments	1
Statistical Analysis	1
Results	1
Crown-gall Induction in Cucumber and Muskmelon Plants	1
1 101113	

IV

V

Effect of Dark Incubation on Crown Gall and Hairy Root Induction	'
Effect of Light Intensity on Crown Gall and Hairy R	Root
Induction Effect of Acetosyringone on Crown Gall Induction	
Effect of Acetosyringone to Hairy Root	
Production	
UDIES ON GENETIC TRANSFORMAT	
eface	
aterials and Methods	
Plant Materials	
Agrobacterium Strain and Vector Plasmid	
Agrobacterium Culture	
Feeder Layer Preparation	
Determination of Minimal Inhibitory Concentration	
(MIC) of Kanamycin	
Preparation of Regeneration Medium	
ExperimentsStatistical Analysis	
Olanoliou, / malyolo	
esults	
Role of Pre-culture Medium	
Role of Pre-culture Medium Effect of Co-cultivation Period on Cucumber and	
Role of Pre-culture Medium Effect of Co-cultivation Period on Cucumber and Muskmelon Shoot Regeneration	
Role of Pre-culture Medium Effect of Co-cultivation Period on Cucumber and Muskmelon Shoot Regeneration Role of Feeder Layer on Cucumber and Muskmelo	on
Role of Pre-culture Medium Effect of Co-cultivation Period on Cucumber and Muskmelon Shoot Regeneration Role of Feeder Layer on Cucumber and Muskmelo Shoot Regeneration	on
Role of Pre-culture Medium Effect of Co-cultivation Period on Cucumber and Muskmelon Shoot Regeneration Role of Feeder Layer on Cucumber and Muskmelo	on

VI

VII ANALYSIS OF TRANSFORMANTS------ 195 Preface------- 195

Preface	195
Materials and Methods	
Analysis of GUS Enzyme Activity	195
GUS Assay	195
Components of GUS Extraction Buffer	196
Genetic Analysis	196
DNA Isolation from Plants and Agrobacterium	196
Primer Selection	196
Polymerase Chain Reaction and Gel	
Electrophoresis	197
Southern Blotting	197
Results	198
Confirmation of Transformation Through GUS	

	Expression	198
	Effect of Feeder Layer on GUS Expression	198
	Effect of Acetosyringone on GUS Expression	198
	Confirmation of Transformation Through Genetic	150
	Analysis	200
	PCR Analysis	200
	Southern Blot Analysis	200
	Discussion	202
VIII	GENERAL DISCUSSION AND CONCLUSION	205
	Experimental Approach	205
	Overview on Cucumber and Muskmelon	205
	Organogenesis	205
	Overview on the Improvement of Cucumber Shoot	200
	Organogenesis by AgNO ₃ and CoCl ₂	207
		207
	Overview on Agrobacterium Susceptibility to	
	Cucumber and Muskmelon	207
	Overview on Cucumber and Muskmelon	
	Transformation and Confirmation Study	208
	Conclusion	210
	Strategies for Further Study	211
REFFERENCES		213
APPENDIX	<u></u>	227
Α	Murashige and Skoog (MS) Medium	228
B	Tobacco Suspension Culture Medium and B5 Vitamins	229
Ċ	LB and YMB Medium	230
D	Additional Tables	231
U		201
VITA		242
	List of Publication in Refereed Journals	243
	List of Publication in Proceedings	243

LIST OF TABLES

Table		Page
3.1	Effect of BAP on Multiple Shoot Primordia Induction from Proximal Cotyledons and Hypocotyls of SS, SC, SL, TL and TG cultivars of cucumber	45
3.2	Different Numbers of Shoots Induced from Explants of SS, SC, SL, TL and TG Cultivars at Different BAP Levels	45
3.3	Effect of BAP and 2,4-D on Shoot Primordia Induction from Explants of SS, SC, SL, TL and TG Cultivars	49
3.4	Variation on Numbers of Shoots Induced from Explants of Five Cucumber Cultivars at Different BAP and 2,4-D Combinations	51
3.5	Influence of BAP and NAA on Shoot Primordia Induction from Explants of SS, SC, SL, TL and TG Cultivars	54
3.6	Effects of BAP and NAA on Number of Shoot Primordia Induced from Explants of Cucumber Cultivars	56
3.7	Comparison of Percentage of Elongated Shoots Derived from Explants of Five Cucumber Cultivars on Elongation Medium	60
3.8	Effects of BAP and Combinations of BAP with 2,4-D or NAA on Phenotypically Normal Shoot Induction from Cucumber Explants	63
3.9	Effects of IBA on Root Induction from Regenerated Shoots of Cucumber Cultivars, Namely SS, SC, SL, TL and TG	71
3.10	Influence of Dark Incubation on Root Induction from Non-rooted Shoots of Five Cucumber Cultivars SS, SC, SL, TL and TG	71
3.11	Effect of BAP on Shoot Primordia Induction from Different Explants of Muskmelon	75
3.12	Variation on Numbers of Shoot Primordia Induced from Different Explants of Muskmelon by BAP	75
3.13	Influence of BAP on Elongation of 10, 15, and 20-day-old Shoot Primordia, Derived from Explants of Muskmelon	79
3.14	Effect of BAP on Height of 10, 15, and 20-day-old Elongated Shoots, Derived from Different Explants of Muskmelon	79
3.15	Influence of Combinations of BAP-2,4-D and BAP-NAA on Muskmelon Shoot Primordia Induction	82
3.16	Variations on Number of Shoots Induced from Muskmelon Explants by Hormone Combinations of BAP+2,4-D and BAP+NAA	84
3.17	Effect of BAP on Elongation of 15-day-old Shoot Primordia Induced from Medium Containing BAP Either with 2,4-D or NAA	87
3.18	Influence of BAP Added to Elongation Medium on Phenotypical Normal Shoot Production from Muskmelon Explants Which	
	Cultured on SPI Medium Containing BAP	87

3.19	Effect of BAP on Production of Phenotypical Normal Shoots Derived from Explants of Muskmelon on SPI Medium Containing BAP either with 2,4-D or NAA
3.20	Effect of NAA on Root Induction from Different Explants of Muskmelon cv. Birdie
3.21	Effect of Dark Incubation on Root Induction from Non-rooted Shoots of Muskmelon
3.22	Variation on Rates of Cucumber Plantlets Acclimatised to Ambient Environment and Survived in Soil
3.23	Variation on Rates of Muskmelon Plantlets Acclimatised to Ambient Environment and Survived in Soil
4.1	Effect of AgNO ₃ with SGM on Shoot Primordia Induction from Different Explants of SS
4.2	Influence of AgNO $_3$ with SGM on Shoot Primordia Induction from Different Explants of TG
4.3	Effect of $AgNO_3$ in SPI Medium on Shoot Regeneration from Different Explants of SS
4.4	Influence of AgNO ₃ in SPI Medium on Shoot Regeneration from Explants of TG
4.5	Effect of AgNO ₃ in SGM and SPI Medium on Shoot Regeneration from Different explants of SS
4.6	Influence of $AgNO_3$ in the SGM and SPI Medium on Shoot Regeneration from Different explants of TG
4.7	Shoot Primordia Elongation Ability of Cucumber Obtained from Different Explants of SS and TG Cultivars on MSO
4.8	Influence of AgNO ₃ on Production of Morphologically Normal Cucumber Shoots
4.9	Rotting Ability of Cucumber Shoots Derived from Different Explants of SS and TG Cultivars at 0.5 mg/I IBA
4.10	Shoot Regeneration of Muskmelon cv . Birdie at Different AgNO ₃ Concentration Levels
4.11	Effect of CoCl ₂ in SGM on Shoot Primordia Induction from Different Explants of SS
4.12	Influence of CoCl ₂ in SGM on Shoot Primordia Induction from Different Explants of TG
4.13	Effect of CoCl ₂ in SPI Medium on Shoot Primordia Induction from Different Explants of SS
4.14	Influence of CoCl ₂ in SPI Medium on Shoot Primordia Induction from Different Explants of TG
4.15	Effect of CoCl ₂ in Both SGM and SPI Medium on Shoot Primordia Induction from Different Explants of SS

4.16	Influence of CoCl ₂ in Both SGM and SPI Medium on Shoot Primordia Induction from Different Explants of TG 135
4.17	Variation on Cucumber Shoot Elongation Ability of DifferentExplants of SS and TG on MSO Medium141
4.18	Effect of CoCl ₂ on Production of Morphologically Normal Cucumber Shoots Derived from Different Explants of SS and TG Cultivars
4.19	Percentage of Rooting in Shoots Derived from Different Explants of SS and TG on Medium Containing IBA at 0.5 mg/l 143
4.20	Effect of CoCl ₂ on shoot primordia induction from different explants of muskmelon cv. Birdie 143
5.1	Strain-dependent Variation in Numbers of Hairy Root Induction on Cucumber cv. SS and muskmelon cv. Birdie (BD)158
6.1	Effect of Co-cultivation Period on Shoot Regeneration of Cucumber and Muskmelon 185
6.2	Effect of feeder layer Incubation on Cucumber and Muskmelon Shoot Regeneration
6.3	Effect of feeder layer on the Rates of Survival of Cucumber and Muskmelon Regenerants in Selection Medium 189
6.4	Role of Acetosyringone (20, 40, 100 μM) on Shoot Regenerationof Cucumber and Muskmelon Explants Cultured onMS+cefotaxime for 2-3 days189
6.5	Effect of acetosyringone (20, 40, 100 μM) on Shoot Regeneration of Cucumber and Muskmelon Explants Cultured on MS+Cefotaxime+Kanamycin
6.6	Effect of Acetosyringone on the Rates of Cucumber and Muskmelon Survival Regenerants in Selection Medium 191
7.1	Effect of Feeder Layer Incubation on Variation of Numbers of Shoots Showed <i>GUS</i> Expression 199
7.2	Effect of Acetosyringone on Variation of Numbers of Shoots Showed GUS Expression

Additional

Table

1	Analysis of Variance for the Effect of Treatment (BAP Concentration) on Shoot Primordia Induction (Variable) from Different Cultivars of Cucumber	231
2	Analysis of Variance for the Effect of Treatment (BAP+2,4-D Concentration) on Shoot Primordia Induction (Variable) From Different Cultivars of Cucumber	231
3	Analysis of Variance for the Effect of Treatment (BAP+NAA Concentration) on Shoot Primordia Induction (Variable) From Different Cultivars of Cucumber	231
4	Analysis of Variance for the Effect of Treatment (MSO) on Shoot Primordia Elongation (Variable) of Cucumber	232
5	Analysis of Variance for the Effect of Treatment (Hormone) on Induction of Cucumber Phenotypically Normal Shoots (Variable)	232
6	Analysis of Variance for the Effect of Treatment (Hormone) on Root Induction (Variable) of Cucumber Regenerated Shoots	232
7	Analysis of Variance for the Effect of Treatment (Dark Incubation) on Root Induction (Variable) of Cucumber Regenerated Shoots	233
8	Analysis of Variance for the Effect of Treatment (hormone Concentration or combination) on Muskmelon Shoot Primordia Induction (Variable)	233
9	Analysis of Variance for the Effect of Treatment hormone Concentration or combination) on Elongation (Variable) of 10, 15 and 20-day-old Muskmelon Shoot Primordia	233
10	Analysis of Variance for the Effect of Treatment (hormone Concentration or combination) on Induction of Phenotypically Normal Muskmelon Shoots (Variable)	234
11	Analysis of Variance for the Effect of Treatment (hormone Concentration or combination) on Induction of Phenotypically Normal Muskmelon Shoots (Variable)	234
12	Analysis of Variance for the Effect of Treatment (Silver Nitrate $[AgNO_3]$, Added to Seed Germination Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. SS	234
13	Analysis of Variance for the Effect of Treatment (Silver Nitrate $[AgNO_3]$, Added to Seed Germination Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	235
14	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃], Added to Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. SS	235
15	Analysis of Variance for the Effect of Treatment (Silver Nitrate $[AgNO_3]$, Added to Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	235
16	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃], Added to Seed Germination Medium and Regeneration	

	Medium) on Shoot Primordia Induction (Variable) of Cucumber cv.	236
17	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃], Added to Seed Germination Medium and Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	236
18	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃]) on Shoot Primordia Elongation (Variable) of Cucumber cvs. SS and TG	236
19	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃]) on Induction of Phenotypically Normal Shoots (Variable) from Cucumber cvs. SS and TG	237
20	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃]) on Root Induction (Variable) from Cucumber Shoots cvs. SS and TG	237
21	Analysis of Variance for the Effect of Treatment (Silver Nitrate [AgNO ₃]) on Shoot Primordia Induction (Variable) from Muskmelon cv BD	237
22	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Seed Germination Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. SS	237
23	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Seed Germination Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	238
24	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. SS	238
25	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	238
26	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Seed Germination Medium and Regeneration Medium) on Shoot Primordia Induction Variable) of Cucumber cv. SS	239
27	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂], Added to Seed Germination Medium and Regeneration Medium) on Shoot Primordia Induction (Variable) of Cucumber cv. TG	239
28	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂]) on Shoot Primordia Elongation (Variable) of Cucumber cvs. SS and TG	239
29	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂]) on Induction of Phenotypically Normal Shoots (Variable) from Cucumber cvs. SS and TG	240
30	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂]) on Root Induction (Variable) from Cucumber Shoots cvs. SS and TG	240

31	Analysis of Variance for the Effect of Treatment (Cobalt Chloride [CoCl ₂]) on Shoot Primordia Induction (Variable) from Muskmelon cv BD	240
32	Analysis of Variance for the Effect of Co-cultivation Period on Shoot Regeneration from Explants Cultured on Medium Containing Cf Either with or without Km (Variable)	240
33	Analysis of Variance for the Effect of Feeder Layer Incubation on Shoot Regeneration from Explants of Cucumber and Muskmelon Cultured on Medium Containing Cf Either with or without Km (Variable)	241
34	Analysis of Variance for the Effect of Acetosyringone on Shoot Regeneration from Explants of Cucumber and Muskmelon Co- cultured for 10 and 20 min (Variable) and subsequently cultured on MS+Cf	241
35	Analysis of Variance for the Effect of Acetosyringone on Shoot Regeneration from Explants of Cucumber and Muskmelon Co- cultured for 10 and 20 min (Variable) and subsequently cultured on MS+Cf+Km	241

LIST OF FIGURES

Figure		Page
3.1	Effect of BAP on Shoot Regeneration from Proximal Cotyledon and Hypocotyl of Cucumber Cultivars	48
3.2	Effect of BAP on Number of Shoots Induced Per Proximal Cotyledon and Hypocotyl of Cucumber Cultivars	48
3.3	Effect of BAP and 2,4-D on Shoot Regeneration of Cucumber	52
3.4	Effect of BAP and 2,4-D on Numbers of Shoots Induced From Explants of Various Cucumber Cultivars	52
3.5	Effect of BAP and NAA on Induction of Shoot Primordia from Explants of Cucumber Cultivars	57
3.6	Effect of BAP and NAA on Number of Shoots Induced from Cucumber Explants	57
3.7	Effect of BAP or in Combinations with 2,4-D or NAA on Elongation of Shoots Obtained from Cucumber Explants	61
3.8	Effect of BAP or in Combinations with 2,4-D or NAA on Height of Elongated Shoots Obtained from Cucumber Explants	61
3.9	Effect of BAP or in Combinations with 2,4-D or NAA on Induction of Phenotypically Normal Shoots Obtained from Cucumber Explants	65
3.10	Effect of BAP or in Combinations with 2,4-D or NAA on Height of Phenotypical Normal Shoots Induced from Explants of Cucumber-	65
3.11	Effect of BAP or in Combinations with 2,4-D or NAA on Induction of Phenotypically Abnormal Shoots Obtained from Cucumber Explants	69
3.12	Effect of BAP or BAP+2,4-D or BAP+NAA on Height of Phenotypical Normal Shoots Obtained from Cucumber Explants	69
3.13	Effect of IBA on Root Induction from Cucumber Shoots	72
3.14	Effect of IBA on Average Number of Roots Induced from Cucumber Shoots	72
3.15	Effect of Dark Incubation on Root Induction from Non-rooted Cucumber Shoots	73
3.16	Effect of Dark Incubation on Induction of Average Number of Roots per Shoot	73
3.17	Effect of BAP on Shoot Regeneration from Muskmelon Explants	78
3.18	Effect of BAP on Average Number of Shoots Induced per Explant	78

4.1	Increase of Shoot Regeneration from Proximal Cotyledon and Hypocotyl of SS and TG Cultivars by AgNO ₃
4.2	Enhancement of Number of Shoots Induced from Proximal Cotyledon and Hypocotyl of SS and TG Cultivars
4.3	Enhancement of Shoot Regeneration from Explants of SS and TG Cultivars
4.4	Enhancement of Number of Shoots Induced from Explants of SS and TG Cultivars
4.5	Effect of AgNO $_3$ on Shoot Regeneration from Explants of SS and TG Cultivars
4.6	Highest Average Numbers of Shoots Induced from Explants of SS and TG Cultivars
4.7	Increase of Shoot Regeneration from Proximal Cotyledon and Hypocotyl of SS and TG Cultivars by CoCl ₂
4.8	Enhancement of Number of Shoots Induced from Proximal Cotyledon and Hypocotyl of SS and TG Cultivars
4.9	Enhancement of Shoot Regeneration from Explants of SS and TG Cultivars
4.10	Enhancement of Number of Shoots Induced from Explants of SS and TG Cultivars
4.11	Effect of CoCl ₂ on Shoot Regeneration from Explants of SS and TG Cultivars
4.12	Effect of CoCl ₂ on Average Numbers of Shoots Induced from Explants of SS and TG Cultivars
5.1	Strain-dependent Variation in Crown Gall Induction on Cucumber, Explants cv. SS
5.2	Strain-dependent Variation in Crown Gall Induction on Muskmelon Explants cv. BD
5.3	Variation in hairy root Induction Percentage on Cucumber cv. SS Inoculated with <i>A. rhizogenesis</i>
5.4	Variation in Hairy Root Induction Percentage on Muskmelon Explants cv. BD Inoculated with <i>A. rhizogenesis</i>
5.5	Variation in Hairy Root Induction Percentage under Dark Incubation on Muskmelon Explants Inoculated with <i>A.</i> <i>rhizogenesis</i>
5.6	Effect of Dark Incubation on Induction of Average Numbers of Hairy Roots from Muskmelon Explants Inculated with <i>A rhizogenesis</i>
5.7	Effect of Acetosyringone on Crown Gall Induction from Stem Explants of Cucumber
5.8	Effect of Acetosyringone on Crown Gall Production from Petiole Explants of Cucumber

5.9	Effect of Acetosyringone on Crown Gall Induction from Stem of Muskmelon
5.10	Effect of Acetosyringone on Crown Gall Induction from Petiole Explants of Muskmelon
5.11	Effect of Acetosyringone on Hairy Root Induction from Stem Explants of Cucumber, cv. SS
5.12	Effect of Acetosyringone on Hairy Root Induction from Petiole Explants of Cucumber, cv. SS
5.13	Effect of Acetosyringone on Hairy Root Induction from Stem Explants of Muskmelon
5.14	Effect of Acetosyringone on Hairy Root Induction from Petiole Explants of Muskmelon
5.15	Variation on Number of Hairy Roots Induced from Cucumber Stem Inoculated by <i>A. rhizogenes</i> Grown with Acetosyringone
5.16	Variation on Number of Hairy Roots Induced from Cucumber Petiole Explants Inoculated by <i>A. rhizogenes</i> Strains Grown with Acetosyringone
5.17	Variation on Numbers of Hairy Roots Induced from Muskmelon Stem Inoculated by <i>A. rhizogenes</i> Strains Grown with Acetosyringone
5.18	Variation on Numbers of Hairy Roots Induced from Muskmelon Petioles Inoculated by <i>A. rhizogenes</i> Grown with Acetosyringone
6.1	A Schematic Diagram of T-DNA Region of a Binary Vector Plasmid <i>p35SGUSINT</i> Used in the Transformation Study of Cucumber and Muskmelon

LIST OF PLATES

Plate		Page
3.1	Shoot Primordia Induction in Cucumber	47
3.2	Induction of Cucumber Shoots	58
3.3	Elongation of Cucumber Shoot Primordia	62
3.4	Phenotypical Abnormalities in Cucumber	66
3.5	Root Induction in Cucumber Shoots	70
3.6	Shoot Primordia Induction in muskmelon	77
3.7	Shoot Primordia Elongation	83
3.8	Induction of Phenotypical Normal and Abnormal Shoots	89
3.9	Root Induction	94
3.10	Acclimatisation of Cucumber and Muskmelon Plantlets	95
5.1	Callus Initiated from Wound Site of Cucumber Stem (a) and Crown Gall Formed in Muskmelon Petiole (b) After Infection with <i>Agrobacterium tumefaciens</i> Strain LBA 4404	153
5.2	Hairy Root Initiated from Wound Site of Cucumber Stem (a) and Muskmelon Stem (b) 14 Days After Infection with <i>Agrobacterium rhizogenes S</i> train 8196	157
5.3	Callus Initiated from Wound Site of Muskmelon Stem at 39.3 μ mol m ⁻² s ⁻¹ (a) Subsequently Formed Hairy Roots at 23.6 μ mol m ⁻² s ⁻¹ (b) 14 Days After Infection with <i>A. rhizogenes</i> strain A 105	162
5.4	(i) Hairy Roots Initiated from Inoculated site of Cucumber Stem (a) Muskmelon Stem (b) Petiole (c) 21 Days After Infection with <i>A.</i> <i>Rhizogenes S</i> train 8196 with Acetosyringone. (ii) Hairy Roots Elongated on Hormone Free MS Medium (a) and Elongation Stopped on MS Medium with 2,4-D (b).	170
6.1	The Muskmelon Regenerated Shoots Died on Medium Containing Kanamycin	188
6.2	The Transformed cucumber shoots survived on Rooting medium (MS+kanamycin)	188
7.1	The Leaves of Putative Transformed Shoots Derived from Proximal Cotyledon of Cucumber Showed GUS Expression After	

	Staining (Left). Control Leaves were Unresponsive (Right)	201
7.2	PCR Amplification of the <i>GUS</i> Gene from Genomic DNA Isolated from Transgenic Cucumber (lane 3) and Muskmelon (lane 6) Plants. No Bands Obtained from Negative Control Plants (lane 4 and 5). Lane 2 is the Positive Vector Control and Lane 1 is 1kb	
	Ladder	201
7.3	Southem Blot Hybridisation of <i>Hind</i> III Restricted DNA from Transgenic Cucumber (Iane 2), Muskmelon (Iane 5) and Untransformed Control Plants (Iane 3, 6). Lanes 1 and 4	201
	are the Positive Control (vector DNA)	201

LIST OF ABBREVIATION

ANOVA	analysis of variance
BAP	6-benzylaminopurine
Вр	base pair
CaMV	cauliflower mosaic virus
CAT	chloramphenicol acetyl transferase
Cf	Cefotaxime
CPA	p-chlorophenoxyacetic acid
CV	cultivar
CVS	cultivars
d	day
DMRT	duncan multiple range test
2,4-D	2,4-dichlorophenoxyacetic acid
9	gram
GUS	β-glucuronidase
h	hour
IAA	indole acetic acid
IBA	indole-3-butyric acid
2iP	6-(γ-γ-dimethylallylamino) purine
Kg	Kilogram
Km	kanamycin
L	liter
LB	left border
LB medium	Luria-Bertani medium
М	molar
Min	minute
ml	millilitre

MS	Murashige and Skoog
MUG	4-methyl umbelliferyl glucuronide
NAA	naphthalene acetic acid
NOS	nopaline syntheses
nptll	neomycin phosphotransferase II
OD	optimal density
PCR	polymerase chain reaction
P ^H	hydrogen ion concentration
RB	right border
Rf	rifampicin
Ri	root-inducing
SAS	statistical analysis system
s	second
2,4,5-T	2,4,5-trichlorophenoxyacetic acid
TDZ	thidiazuron
Ті	tumour-inducing
v/v	volume/volume
w/v	weight/volume
X-gluc	5-bromo-4-chloro-3-indolyglucuronide
μ	micro

Abstract of dissertation submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy.

IMPROVEMENT IN ORGANOGENESIS AND THE DEVELOPMENT OF A TRANSFORMATION PROCEDURE FOR CUCUMBER AND MUSKMELON

By

A.K.M. MOHI UDDIN

December 1998

Chairman: Dr. Suhaimi Napis

Faculty: Food Science and Biotechnology

A comprehensive study was carried out to optimise and improve a direct shoot organogenesis system to facilitate the transfer of reporter genes (*GUSINT* and *nptll*) into cucumber (*Cucumis sativus* L.) and muskmelon (*C. melo* L.) plants. The studies carried out were: (i) a comparative study on direct and indirect shoot regeneration ['](ii) the improvement of a direct shoot regeneration system by using an ethylene action inhibitor, silver nitrate and an ethylene biosynthesis inhibitor, cobalt chloride (iii) identification of suitable strains of *Agrobacterium tumefaciens* and *A. rhizogenes* that are able to infect cucumber and muskmelon plants (iv) development of an *intron* containing gene transformation system for both cucurbit species through *A. tumefaciens* and (v) analysis of transformants.

For the comparative study of direct and indirect shoot regeneration, four different types of explants from five elite commercial cucumber cultivars namely Spring Swallow, Suyo Cross, Suyo Long, Tasty Glory, Tasty Green and one muskmelon cultivar called Birdie were used. Explants from both species were cultured onto Murashige and Skoog medium containing different concentrations of *6*-benzylaminopurine alone and in combination with either 2,4-dichlorophenoxyacetic acid or naphthalene acetic acid. *6*-benzylaminopurine alone at 1.0 or 2.0 mg/l significantly (p < 0.05) induced shoot primordia

from the largest number of proximal cotyledon and hypocotyl explants of all cucumber cultivars and muskmelon explants tested. However, the addition of either 2,4dichlorophenoxyacetic acid or naphthalene acetic acid to 6-benzylaminopurine, resulted in a reduction of the shoot primordia induction rate.

Higher number of shoots induced from explants as well as high numbers of morphological normal shoots were obtained when explants were cultured on medium containing 6-benzylaminopurine alone. Specific concentrations of indole-butyric acid and naphthalene acetic acid significantly (p<0.05) contributed to root initiation from the largest number of cucumber and muskmelon shoots, respectively. Dark treatment was sufficient to significantly induce root formation from the non-rooting cucumber and muskmelon shoots.

The addition of either silver nitrate or cobalt chloride to the seed germination medium or shoot primordia induction medium caused a significant (p<0.05) enhancement of shoot regeneration rate from cucumber cv. SS and TG explants compared to the control. The regeneration rate was further enhanced when these two ethylene inhibitors were added to both SGM and SPI media. Furthermore, the number of shoots induced from explants of both Spring Swallow and Tasty Green cultivars was also enhanced upon the same treatment. However, muskmelon shoot induction and regeneration were reduced when the same treatment was employed.

In the Agrobacterium-mediated transformation experiments inoculation of cucumber cultivar Spring Swallow and muskmelon cultivar Birdie explants with A. *tumefaciens* and A. *rhizogenes* wild type strains revealed the different degrees of virulence of both bacteria. It was found that the virulence of both Agrobacterium species was enhanced when acetosyringone was added to the culture of inoculum

xxiv