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Diamond Blackfan Anemia (DBA) is an inherited bone marrow (BM) failure syndrome,
characterized by a paucity of erythroid differentiation. DBA is mainly caused by the
mutations in ribosomal protein genes, hence classified as ribosomopathy. However, in
approximately 30% of patients, the molecular etiology cannot be discovered. RPS19
germline mutations caused 25% of the cases. On the other hand, CECR1 mutations also
cause phenotypes similar to DBA but not being a ribosomopathy. Due to the blockade of
erythropoiesis in the BM, we investigated the transcriptomic profile of three different cell
types of BM resident cells of DBA patients and compared them with healthy donors.
From BM aspirates BM mononuclear cells (MNCs) were isolated and hematopoietic
stem cells (HSC) [CD71−CD34+ CD38mo/lo], megakaryocyte–erythroid progenitor
cells (MEP) [CD71−CD34+ CD38hi] and Proerythroblasts [CD71+ CD117+ CD38+]
were sorted and analyzed with a transcriptomic approach. Among all these cells,
proerythroblasts had the most different transcriptomic profile. The genes associated with
cellular stress/immune responses were increased and some of the transcription factors
that play a role in erythroid differentiation had altered expression in DBA proerythroblasts.
We also showed that gene expression levels of ribosomal proteins were decreased in
DBA proerythroblasts. In addition to these, colony formation assay (CFU-E) provided
functional evidence of the failure of erythroid differentiation in DBA patients. According
to our findings that all patients resembling both RPS19 and CECR1 mutations have
common transcriptomic signatures, it may be possible that inflammatory BM niche may
have a role in DBA pathogenesis.
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INTRODUCTION

Diamond Blackfan Anemia (DBA) (OMIM# 105650) is a
rare (5–10/1,000,000) bone marrow (BM) failure syndrome,
characterized by blockade in erythropoiesis at earlier stages
(Da Costa et al., 2018) and usually affects only erythroid
lineage cells in the BM, however, pancytopenia may also be
seen in rare cases (Garçon et al., 2013; Danilova and Gazda,
2015). Patients usually have normochromic and macrocytic,
severe anemia with reticulocytopenia. DBA is usually inherited
autosomal dominantly (40%), due to loss of function mutations
or deletions in genes encoding ribosomal proteins. On the other
hand, most of the other patients have de novo sporadic mutations.
Approximately 50% of the patients have physical anomalies
like craniofacial defects, renal anomalies, limb anomalies, and
cardiac defects (Jaako et al., 2014; Nakhoul et al., 2014). The
mutations on the genes that encode ribosomal proteins are found
to be linked with DBA, however, molecular etiology cannot be
clarified in approximately 30% of the patients. To date, 19 of 79
ribosomal protein genes were associated with DBA (RPS19, RPL5,
RPS26, RPL35A, RPL11, RPS1, RPS24, RPS17, RPS7, RPL26,
RPS29, RPL15, RPS28, RPL31, RPS27, RPL27, RPL35, RPL18, and
RPS15A) (Avondo et al., 2009; Aspesi et al., 2014; Pereboom et al.,
2014; Kattamis, 2020). Due to the mutations in genes encoding
ribosomal proteins, DBA is classified as a ribosomopathy, which
is a failure in ribosome biogenesis. According to the previous
studies, 25% of the cases are associated with germline mutations
in RPS19 ribosomal protein (Gazda et al., 2006; Garçon et al.,
2013). On the other hand, recently, GATA-1 and TSR2 mutations
have been shown to cause DBA phenotype through X-linked
inheritance pattern (Sankaran et al., 2012; Gripp et al., 2014).

In recent studies, it has been noted that CECR1 mutations can
also cause a DBA-like phenotype. Although CECR1 mutations
are known as DADA2 deficiency, which causes a wide range of
phenotypes such as intermittent fevers, stroke, and polyarteritis
nodosa, it is not yet known by which mechanism it causes
DBA-like phenotype (Sasa et al., 2015; Ulirsch et al., 2018).

In the present study, BM resident hematopoietic
stem/progenitor cells from both DBA patients (both RPS19
and CECR1 mutations) and healthy donors were analyzed
with a transcriptomic approach. We identified some gene
expression differences related to cellular response to stress in
DBA proerythroblasts.

MATERIALS AND METHODS

Patients
Patients included in this study were diagnosed with DBA
according to the established criteria (Vlachos et al., 2008).
Healthy BM transplantation donors were chosen as age and
gender matching with DBA patients, from the Hacettepe
University Department of Pediatrics BM Transplantation
Unit and PEDI-STEM (Center for Stem Cell Research and
Development) BM registry. BM aspirate materials from 3 DBA
patients and 4 healthy donors were included in this study. The
clinical information and genotypic details of the individuals were

given in Table 1. The peripheral blood complete blood count
analyses and the BM samples were obtained on the transfusion
day and before transfusion was made. All of the clinically
diagnosed DBA patients were first screened for RPS19 point and
copy number mutations. Genome-wide copy number analysis
and whole-exome sequencing were performed for the patient
without any RPS19 variation. Genomic studies were completed
within The European Diamond-Blackfan Anemia Consortium
(EuroDBA). The study protocol was approved by the Hacettepe
University Local Ethical Committee (GO 15/721-19), according
to the ethical standards of the Declaration of Helsinki.

Mononuclear Cell Isolation From BM
Aspirate
Mononuclear cells (MNCs) were isolated from BM aspirate
according to phase separation method with FicollTM and frozen
at −150◦C for further studies. After all samples were collected,
BM MNCs were thawed with DMEM (supplemented with
10% FBS, 1% penicillin-streptomycin, and 1% l-glutamine) and
immediately taken to cell sorting procedure or thawed with
thawing medium for colony forming assay.

Erythroid Colony-Forming Assay (CFU-E)
Bone marrow-MNCs were thawed in 10 ml thawing medium
consisting of PBS, FBS (2%), and DNase I (10 ug/ml, DN25,
Sigma). 150.000 cells were suspended in IMDM (Gibco), mixed
with 1 ml Methocult with EPO (H4330; Stem Cell Technologies,
Vancouver, Canada), which was supplemented with Hemin
(0.002 M, 51280-1G, Sigma) and Stem Cell Factor (SCF,
0.2 mg/ml, 573904, Biolegend). Semisolid medium-cell mix was
plated in 35 mm petri dishes with blunt end needle in duplicate.
After 14 days, colony numbers were counted.

TABLE 1 | Clinical information of DBA patients.

Sample code DBA-1 DBA-2 DBA-3

Mutation RPS19 (p.Tyr79*) RPS19 (p.Gln11*) CECR1
(p.Tyr227fs*27)

Diagnosis age
(month)

1 1 8

BMA age (year) 6 1 3

Gender M M F

MCV (fl) 105.8 85.6 89.9

Erythrocyte
count (109/ul)

3,180 2,800 4,470

Hemoglobin
(gr/dL)

11.2 8.6 12.9

Treatment on
the day of BMA

Methylprednisolone
(0.25 mg/kg)

Hydrocortisone
(10 mg/m2); deferasirox
(12 mg/kg), on
transfusion program

On transfusion
program

The values of the hematological profiles of DBA-2 and DBA-3 were measured as
pre-transfusion. BMA: bone marrow aspiration, MCV: mean corpuscular volume, fl:
femtoliter, M: male, F: female.
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Immunophenotyping and Cell Sorting
With Fluorescence-Activated Cell Sorting
The antibodies; anti-human-CD34 (8G12), -CD117
(104D2) (BD Biosciences), -CD38 (HIT2), -CD71 (CY1G4)
(Biolegend), -eFluor660 F(ab’)2 (eBiosciences) were used in
immunophenotyping analyses and fluorescence-activated cell
sorting (FACS)-based cell sorting. The percentage of positive
cells were determined in comparison with the isotype-matched
antibody controls. Immunophenotyping and cell sorting
were performed from the BM MNCs of healthy donors and
DBA patients with BD FACSAriaTM II (BD Biosciences).
Surface markers were chosen as previously described
(Chen et al., 2009; Attar, 2014). Accordingly, hematopoietic
stem cells (HSC) were gated as CD71−CD34+CD38mo/lo,
Megakaryocyte–erythroid progenitor cells (MEP) were gated
as CD71−CD34+CD38hi, Proerythroblasts (Pro-E) were gated
as CD71+ CD117+ CD38+, Basophilic Erythroblasts (Baso-E)
were gated as CD71+ CD117−CD38+ and Polychromatophilic
Erythroblasts (Poly-E) were gated as CD71+ CD117−CD38−
populations (Supplementary Figure 1). Healthy donor MNCs
were pooled before cell sorting. Cell percentages of all samples
were given in Supplementary Figure 2. Four different cell
populations (HSC, MEP, proerythroblasts, and Baso/Poly
erythroblasts) were sorted, 3 cell types (HSC, MEP, and
proerythroblasts) were taken to transcriptomic profiling. Because
Baso/Poly erythroblasts were heterogeneous, transcriptomic
profiling was not performed.

RNA Isolation, Library Preparation, and
Sequencing
After cell sorting, RNA was isolated with Single Cell RNA
Purification Kit (Norgen Biotek Corp.) and stored at −80◦C
for further experiments. Total RNA samples of HSC, MEP,
and proerythroblasts were amplified with REPLI-g WTA Single
Cell Kit (Qiagen). Transcriptome libraries were prepared with
Ion AmpliSeqTM Transcriptome Human Gene Expression Kit
(Thermo Fisher Scientific) on Ion Chef Instrument (Thermo
Fisher Scientific). Library quantitation was measured with Qubit
dsDNA High Sensitive Quantitation Kit by using Qubit 2.0
Instrument (Thermo Fisher Scientific). Combined libraries were
clonally amplified by emulsion PCR and Ion PI Hi-Q OT2 200
Kit was used. Next-generation sequencing (NGS) reaction was
performed with Ion PI Hi-Q Sequencing 200 Kit on Ion Proton
Semiconductor Sequencer (Thermo Fisher Scientific).

Data Analysis
For quantitative transcriptomic analysis, plug-in codes in Ion
Torrent server were used. After NGS reaction, raw reads were
normalized according to the reads per million (RPM) method
and mapped to genome assembly hg19 AmpliSeq Transcriptome
version by TMAP (Torrent Mapping Alignment Program). Each
sample was studied in duplicates. Sequence read counts were
given in Supplementary Table 1. For differentially expressed
gene (DEG) analysis DESeq2 codes were used. The gene
expression differences with a fold change higher than 2 and
FDR cutoff value was lower than 0.05 were considered as

significant. iDEP.91 bioinformatic analysis tool was used for
further analysis and data visualization1 (Ge et al., 2018). For
functional enrichment analysis, g:Profiler was used2 by using
g:SCS (set counts and sizes) correction method with default
parameters (Raudvere et al., 2019). Ordinary one-way ANOVA
was used was performed using GraphPad Prism version 8.4.3.
for Windows (GraphPad Software, La Jolla, CA, United States)3.
Expression data have been submitted to the Dryad Digital
Repository4.

RESULTS

Diamond Blackfan Anemia Patient
Samples Demonstrate Diminished/Lack
of Colony-Forming Potential
After 14 days of incubation, samples were examined for their
erythroid colony formation capacity. All healthy donor samples
successfully formed colonies. The sample of DBA-1 did not
form any colonies, samples of DBA-2 and DBA-3 showed
lower colony-forming potential (Figure 1). Interestingly, the
morphology and size of the colonies of DBA-3 were similar
to the healthy donors’. But generally, DBA patient samples
had a failure at the formation of mature colonies and formed
significantly low colony numbers. At this stage, only colonies
of DBA-3 were taken into transcriptomic profiling due to
the colony presence. However, there were no significant gene
expression differences when compared with healthy donor
colonies (data not shown).

Diamond Blackfan Anemia
Proerythroblasts Had a Distinct
Transcriptomic Profile
The transcriptomic profiles of some of the BM stem/progenitor
cells (HSC, MEP, and proerythroblasts) were examined. The
highest number of DEGs, between DBA patients and healthy
donors, were observed in proerythroblasts (686 up-regulated, 320
down-regulated genes) (Figure 2 and Supplementary Table 2a).
According to the enrichment analysis (g:Profiler), there were no
significant pathways found in HSCs and MEPs (Supplementary
Figure 3). However, it was striking that there were many
differentially expressed immune system-related genes in HSCs
(Supplementary Figure 4 and Supplementary Table 2b). The
total number of DEGs of MEPs was low (43 transcripts),
interestingly, increased expression of CDKN1A (p21) was
remarkable (Supplementary Table 2c).

According to the pathway enrichment analysis, only up-
regulated genes of DBA proerythroblasts showed significant
results (Figure 3, Supplementary Figure 3, and Supplementary
Table 3). Most of the up-regulated genes were mainly
responsible for cellular metabolic processes. Among up-regulated

1http://bioinformatics.sdstate.edu/idep/
2https://biit.cs.ut.ee/gprofiler/gost
3www.graphpad.com
4https://datadryad.org/stash
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FIGURE 1 | Erythroid colony formation assay. (A) DBA patient samples had diminished/lack of colony forming potential (B) and had significantly low number of
erythroid colonies. HD: Healthy donor (∗p: 0.0015; ∗∗p: 0.0007; ∗∗∗p: 0.0003).

pathways in DBA proerythroblasts, the cellular response to
stress (GO:0033554) pathway was of notice (p-value: 6.891e-16).
Among these, cytokine response and proteasome related genes
were striking (Figure 3C).

At this stage, it was observed that there was a common
gene expression profile between patients resembling CECR1 and
RPS19 mutations, compared to healthy donors (Supplementary
Figure 5 and Supplementary Table 4). When examining patient-
specific gene expression changes in detail, it was noteworthy that
transcripts such as NFKB1, IL1B, NFKBIZ, and NFKBID were
up-regulated in individual with homozygous CECR1 mutation.
On the other hand, no significant patterns were found for DEGs
specific to individuals with RPS19 mutations. Hence, regardless
of the genotype, it was thought that there could be a common
DBA-specific transcriptional response in proerythroblasts.

Gene Expression Levels of Ribosomal
Proteins Were Decreased in DBA
Proerythroblasts
Although there was no significant pathway enrichment for
decreased transcripts of proerythroblasts (Supplementary
Figure 3), reduced expression of ribosomal protein genes was
striking. Therefore, total transcriptomic data was evaluated
in terms of all 75 ribosomal protein-coding genes. In DBA
proerythroblasts, total ribosomal protein gene expression was
significantly lower than the healthy donors. Furthermore,
according to our in-house data, which was generated with
the same NGS library preparation method and sequencing
platform, proerythroblasts had the highest total ribosomal
protein gene expression level (Figure 4). Total ribosomal protein
gene expression levels of HSCs and MEPs did not show a
significant difference. Interestingly, the patient with CECR1
mutation (DBA-3), also showed low total ribosomal protein
expression as the other patients with harboring RPS19 mutation
(Supplementary Figure 6). In addition to the total reduction of
ribosomal protein expression levels, BAZ2A, which is responsible

for repressing RNA polymerase I transcription, was found to be
the most increased transcript (log2 fold change: 6.28) in DBA
proerythroblasts.

Diamond Blackfan Anemia
Proerythroblasts Have Altered
Transcription Factor mRNA Expression
In order to identify key gene expression regulators in DBA
proerythroblasts, we examined all known transcription factors
(nearly 1,600) and 76 of them were found to be altered
(Supplementary Table 5). Among these, the expression levels of
some of the critical transcription factors that negatively/positively
regulates erythroid differentiation (ARNT, FOXO3, GATA1,
GATA2, KLF13, SATB1, SKI, STAT3, and TRPS1) were striking
(Figure 5). In addition, other transcription factors that could
be related to cellular stress or inflammation were also of
notice (Figure 5).

DISCUSSION

Identification of the molecular signature and genotype-
phenotype correlation of rare syndromes is an important step
toward understanding disease mechanisms and developing
potential therapeutics. For many years, the molecular
pathophysiology of DBA was investigated in different in vitro
and in vivo models. DBA is a rare (5–10/1,000,000) BM failure
syndrome with a paucity of erythroid progenitor cells. To date,
different groups performed microarray-based transcriptomic
studies of BM -derived, peripheral blood-derived cells, or
fibroblast cells of DBA patients (Gazda et al., 2006; Koga et al.,
2006; Avondo et al., 2009; O’Brien et al., 2017). Gazda et al. (2006)
determined that the pathways related to apoptosis and cancer had
altered in adult DBA patients in remission at the time. O’Brien
et al. (2017) studied with relatively younger (transfusion or
steroid-dependent) patients with RP and GATA1 mutations, and
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FIGURE 2 | Differentially expressed gene (DEG) numbers between DBA and healthy donors. For DEG analysis, all three DBA samples were grouped and compared
with healthy donors.

FIGURE 3 | (A) Pathway analysis of the upregulated genes, (B) significant pathways belong to biological process (BP) performed using g:Profiler, (C) differentially
expressed genes belong to cellular stress in DBA proerythroblasts. BP: Biological Process, HDs: healthy donors.

they demonstrated that peripheral blood-derived CD34 + cells
showed altered gene expression profile. The strength of this
work is the comparison of the DBA and DADA2 transcriptional
profiles. It has been a question in the field as to why a subset
of DADA2 patients has a phenotype that overlaps with that of
DBA, but that DBA patients rarely have the fever/inflammation
symptoms typically seen in DADA2 patients. Here, we purified

BM resident progenitor cells of young DBA patients and analyzed
their transcriptomic profile.

According to our transcriptomic profiling results, the most
drastic change was observed in the gene expression profile of
DBA proerythroblasts. It was remarkable that the expression
of the genes associated with cellular stress was increased and
some of the transcription factors that play a role in erythroid
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FIGURE 4 | Total ribosomal protein mRNA expression of different cell types.
Different cell types analyzed with the same transcriptomic approach from the
in-house dataset were evaluated. RPM: reads per million, NK: natural killer,
BM-MSC: bone marrow mesenchymal stem cells. HSC: hematopoietic stem
cell, MEP: Megakaryocyte–Erythroid Progenitor Cell, ns: non-significant. ∗p
value < 0.0001.

differentiation had altered expression. Some of the genes
associated with the cellular stress response were also associated
with the immune response. In addition, the presence of some
changes in immune system-related genes in the DBA HSCs
may be another evidence of increased inflammation in the BM
microenvironment. Although minimal changes were detected at
the transcriptomic level, the CDKN1A expression increase in
MEPs should be validated with further studies and its effect on
the transition to the proerythroblast stage should be investigated.

The patients included in this study, harboring RPS19 (two
patients) and CECR1 (one patient) mutations, presented with
similar clinical features. This condition, defined as phenocopy, is
also observed in the transcriptomic profile of proerythroblasts.
At the beginning of the study, our expectation was to find
differences in the transcriptomic signatures between the patient
with CECR1 mutation and those with RPS19. However, both the
cellular stress-related gene expression pattern and the decrease
in ribosomal protein gene expression showed a similar response
or defect in all patients’ proerythroblasts. The increase in BAZ2A
(responsible for silencing rRNA transcription) expression, in
addition to the decrease in ribosomal protein gene expression,
suggested that there may be a common inhibition in the
ribosome synthesis pathway. In other words, while ribosomal
protein synthesis was decreasing, ribosomal RNA transcription
was also suppressed. Despite not being direct evidence, this
observation suggested a specific cellular response rather than
a secondary finding. The decrease in total ribosomal protein
gene expression in cells with the RPS19 mutation has been

previously observed, but it has been an important finding that
this condition is also seen in cells with the CECR1 mutation
(Morgado-Palacin et al., 2015).

The results of our study also suggested that the gene
expression profile reflecting cellular stress and cytokine
response in proerythroblasts may be associated with increased
inflammation in the BM microenvironment. It has been shown
that TNF-α inhibits erythroid differentiation (Buck et al.,
2008). Recently, ribosomal stress-induced TNF-α production of
non-erythroid cells and increase in p53 expression was reported
in DBA patients (Bibikova et al., 2014). An increase in TNF-α
production has also been demonstrated in individuals with
CECR1 mutation (Caorsi et al., 2017; Barzaghi et al., 2018).
Therefore, the similar gene expression pattern in different
patients with RPS19 and CECR1 mutations in the present
study may suggest a contribution of TNF-α in an inflamed
BM niche. It may also be a possibility that the inflammatory
microenvironment decreases the expression of ribosomal
proteins by causing cellular stress. Morgado-Palacin et al.
(2015) previously demonstrated reduced ribosomal protein
gene expression in Rpl11 mutant mice. We also found a
global decrease in ribosomal protein gene expression in
proerythroblasts. However, the effect of CECR1 mutations in
DBA pathogenesis should be investigated in detail if there is a
direct relationship with ribosome biogenesis.

When we focused on transcription factors, which are cardinal
players of gene expression changes, we found evidence that may
be directly related to the differentiation defect of erythroid lineage
cells. GATA1 and GATA2 balance have critical importance in
erythroid differentiation. At early stages GATA1 expression is
low, but increases as the process progress. Reversely, GATA2
decreases during erythroid differentiation (Ferreira et al., 2005;
Suzuki et al., 2011, 2013). We observed that GATA1 and
GATA2 were up-regulated in DBA proerythroblasts compared
to healthy donors. Moreover, we found increased expression of
KLF13 and SKI, negative regulators of erythroid differentiation
(Ueki et al., 2004; Mitsuma et al., 2005; Singbrant et al.,
2014). FOXO3 (forkhead box O3) is also one of the critical
regulators of erythroid differentiation and regulates other gene
expressions as well (Liang and Ghaffari, 2016). Therefore, the
differential expression of FOXO3 could lead to a misregulation
in further pathways. Erythropoiesis is regulated by hypoxic
conditions. At low oxygen levels, ARNT (aryl hydrocarbon
receptor nuclear translocator, HIF-1ß) activates other cascades
in order to maintain oxygen homeostasis (Liang and Ghaffari,
2016). Hence, the increase of ARNT expression may be
the cause or consequence of the reduced oxygen-carrying
mechanism. As mentioned in a previous study, STAT3 (Signal
Transducer and Activator of Transcription 3) is responsible
for organizing a “fine-tune” EPOR (Erythropoietin Receptor)
response (Mauracher et al., 2020). In addition, a gain of
function mutation of STAT3 leads to impaired erythropoiesis
and anemia phenotype, also autoimmunity (Milner et al.,
2015; Mauracher et al., 2020). Although it is not possible
to determine the cumulative effect of all these changes,
it can be speculated that DBA proerythroblasts have an
imbalanced pattern in terms of transcription factor networks.
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FIGURE 5 | Differentially expressed transcription factors that are primarily related with erythroid lineage or other critical cellular responses. HDs: healthy donors.

This expression pattern could be an indicator/promoter of
altered homeostasis.

According to the transcriptomic signature of the erythroid
progenitor cells from the patient’s BM, we could speculate
that inflammation is a critical component of DBA and this
inflammation may cause erythroid failure. The reason that
CECR1 mutations have similar gene expression pattern with
DBA is that erythroid lineage cells affect is the same way
due to the inflammatory marrow microenvironment. Pesciotta
et al. (2015) also stated that DBA patient samples showed an
inflammatory signature in proteomics analysis and stated that
DBA patients may have changes in BM microenvironment.
Interestingly, Danilova et al. emphasized the role of immune
system in DBA, mentioning the possible cause of DBA is

activated immune system due to different cellular responses
(Danilova et al., 2018).

In our study, DBA patient samples showed diminished or
lack of colony-forming potential as expected. Two samples with
RPS19 are failed to form any colonies. However, interestingly,
the sample with CECR1 mutation formed a reduced number
of colonies that have a similar morphology (and transcriptomic
profile) with healthy donor samples. From a transcriptomic point
of view, the gene expression profiles of the colonies did not show
a significant difference, however, as also mentioned before, the
transcriptomic profiles of BM -derived proerythroblasts of DBA
patients were different. This data emphasizes the importance
of using and analyzing pure patient-derived cells without any
cultural treatment.
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On the other hand, the possibility of the effect of steroid
use and transfusion on the transcriptomic profile in BM cells
used in this study should be kept in mind. The most important
difference in this respect is that the patients involved in our study
are under treatment and anemia phenotype is present. Analyzing
more patients will be the most important factor in understanding
both whether there are specific effects on treatment responses
and whether patients with different genotypes will show similar
expression patterns. The question that there may be sub-
clinical inflammation in DBA patients should be answered in
further studies.

Lastly, our findings regarding the BM resident cells may
contribute to a better understanding of the cellular characteristics
of DBA. Future studies investigating the effects of the
inflammatory niche on cells in different stages of erythroid
lineage might provide novel insights into this subject.
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