
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 2, pp. 446–468. DOI:10.46586/tosc.v2021.i2.446-468

Power Yoga: Variable-Stretch Security of CCM
for Energy-Efficient Lightweight IoT

Emiljano Gjiriti1, Reza Reyhanitabar2 and Damian Vizár3

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
emiljano.gjiriti@epfl.ch

2 Siemens Energy, Erlangen, Germany, reza.reyhanitabar@siemens-energy.com
3 Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland,

damian.vizar@csem.ch

Abstract. The currently ongoing NIST LWC project aims at identifying new stan-
dardization targets for lightweight authenticated encryption with associated data
(AEAD) and (optionally) lightweight cryptographic hashing. NIST has deemed it
important for performance and cost to be optimized on relevant platforms, especially
for short messages. Reyhanitabar, Vaudenay and Vizár (Asiacrypt 2016) gave a
formal treatment for security of nonce-based AEAD with variable stretch, i.e., when
the length of the authentication tag is changed between encryptions without changing
the key. They argued that AEAD supporting variable stretch is of practical interest
for constrained applications, especially low-power devices operated by battery, due to
the ability to flexibly trade communication overhead and level of integrity.
In this work, we investigate this hypothesis with affirmative results. We present
vCCM, a variable-stretch variant of the standard CCM and prove it is secure when
used with variable stretch. We then experimentally measure the energy consumption
of a real-world wireless sensor node when encrypting and sending messages with vCCM
and CCM, respectively. Our projections show that the flexible trade of integrity level
and ciphertext expansion can lead up to 21% overall energy consumption reduction
in certain scenarios. As vCCM is obtained from the widely-used CCM by a black-box
transformation, allowing any existing CCM implementations to be reused as-is, our
results can be immediately put to use in practice. vCCM is all the more relevant
because neither the NIST LWC project, nor any of the candidates give a consideration
for the support of variable stretch and the related integrity-overhead trade-off.
Keywords: Authenticated encryption · variable-length tags · lightweight crypto ·
provable security · AES-CCM

1 Introduction
In the absence of a broadly accepted precise definition, lightweight cryptography can be
roughly understood to comprise cryptographic designs created and optimized for a specific
design trade-off (along the axes of computational complexity, memory complexity, security
level, qualitative security properties etc.), such that this trade-off is not well-served by
the existing general-purpose cryptography. In practice, a vast majority of these specific
design targets is dictated by severely constrained resources of the intended applications,
such as limited amount of energy available in a battery-operated device, limited power
available in externally-powered passive RFIDs, limited computational resources (HW
area/RAM/ROM/computational cycles) available for an implementation of cryptography,
or a limited bandwidth available for the communication overhead due to the use of
cryptography [KM].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-03-01 Accepted: 2021-05-01 Published: 2021-06-11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/429965793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.46586/tosc.v2021.i2.446-468
mailto:emiljano.gjiriti@epfl.ch
mailto:reza.reyhanitabar@siemens-energy.com
mailto:damian.vizar@csem.ch
http://creativecommons.org/licenses/by/4.0/

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 447

NIST LWC. Even though the field has already seen nearly two decades of research
activities [BP17, SWE02, WSRE03, nisa], lightweight cryptography has been truly brought
into the spotlight only recently by the ongoing NIST Lightweight Cryptography (LWC)
Standardization process [nisb]. NIST LWC aims at identifying the most suitable candidates
for a standardization of two symmetric-key functionalities: authenticated encryption with
associated data (AEAD) [Rog02], and optionally also cryptographic hashing. Mirroring
our informal definition, NIST states as their motivation that “the majority of current
cryptographic algorithms were designed for desktop/server environments, many of these
algorithms do not fit into constrained devices” [nisa]. The design requirement naturally
implied is that new special-purpose candidate algorithms, in particular lightweight AEAD
schemes, should perform significantly better in constrained environments compared to
current general-purpose NIST standards, such as GCM and CCM modes for AEAD
(instantiated with standard primitives e.g. AES).

Among other criteria, NIST has designated several cost metrics (e.g., area, memory,
energy consumption), performance metrics (e.g., latency, throughput, power consumption)
and implementation flexibility (in terms of achieving cost/performance trade-offs) for
the evaluation of a candidate algorithm’s merit. As has been the case in the other
standardization projects and academic competitions, the target security levels have been
fixed (e.g., 112-bit or 224-bit security against key recovery [nisb]), and the design parameters
of a competing algorithm, such as the nonce-length or the ciphertext expansion must be
fixed, resulting in one or more candidate instances.

Security-overhead trade-off. Meeting a clearly communicated, and generally accepted
quantitative security level is a baseline necessity in modern cryptography. However,
insisting on a single monolithic quantitative target for several security properties (of an
AEAD scheme), and the related fixing of certain design parameters make it impossible to
achieve an optimal trade-off between security and overhead, which is one of the central
principles in lightweight cryptography [BP17]. In particular, we argue that facilitating a
“flexible” security-overhead trade-off can be a practically relevant feature for several use
cases of lightweight algorithms, provided such a “flexible” trade-off can be done safely.

Variable stretch. To clarify what is meant by “flexible” security-overhead trade-off,
consider for example a nonce-based AEAD algorithm that is secure to use with variable
stretch [RVV16]; that is, under the same key, several tag lengths (a.k.a. ciphertext
expansion or stretch) can be securely used for authenticated encryption of different messages.
The tag length is a main determinant of the security level of an AEAD algorithm, but also
a major factor in increasing communication overhead, hence the energy consumption in a
battery-powered constrained device. The ease of varying the tag length without the need
for re-keying thus allows the authentication-related communication overhead to be adapted
to the level of sensitivity of each transmitted messages, having a significant impact on the
operation of the device overall, when considering energy consumption as a critical cost
metric in many application areas.

The impact of the incurred communication overhead can be quite significant in use
cases where authenticated encryption of predominantly (very) short messages is intended,
and unsurprisingly such use cases are abundant in practice [ALP+19, ADP+20]. For
example, in applications such as smart parking lots, the payload to be sent by the sensors
most of the time is just one bit (“free” or “occupied”), together with a unique identifier
of the sensor in the parking lot (e.g., 2 bytes). Here, a high tag length, e.g. 128 bits,
will then be the main contributor to the communication cost compared to the actually
transmitted information, and arguably disproportional to the impact of a successful forgery
(changing between “free” and “occupied” in a single status update). However, the sensors
will also need to send and receive management traffic, which is likely going to be more
sensitive (e.g., “go to sleep” or “enter high performance mode” commands being used for

448 AE with Variable-Length Tags

DoS attacks), requiring a higher level of protection. We note that NIST LWC [nisb] has
stressed as a design requirement that lightweight AEAD submissions “shall be optimized
to be efficient for short messages (e.g., as short as 8 bytes).

Yet, such an objective has neither been made explicit in the NIST LWC nor, to the
best of our knowledge, has any of the submitted AEAD candidates in NIST LWC yet
addressed the problem explicitly or claimed how to benefit from a variable-stretch AEAD
security for flexible trade-off between security and energy consumption.

Related work. The support of variable tag length in AEAD schemes has been investigated
by Reyhanitabar, Vaudenay and Vizár [RVV16] from both a misuse-resistance viewpoint
and optimizing computation and communication overheads in resource-constrained devices.
The work formalizes the security of nonce-based AEAD schemes with variable stretch in
the security notion nvae (for nonce-based variable-stretch AE), establishes relations with
existing notions, and proposes how to achieve and prove nvae security with the help of the
so-called kess property (for key-equivalent separation by stretch). An analogous treatment
of variable tag length security of nonce-based MAC schemes as well as an investigation of
possible construction strategies has been done by Ghosh and Sarkar [GS19]. Safavi-Naini,
Lisý and Desmedt proposed a game-theoretic approach for determining economically
optimal tag lengths for different types of messages in a single application [SLD17]. This
result complements the previous ones, and provides additional arguments for the hypothesis
that varying the tag length in an application is desirable.

Contribution. Our main motivation is to investigate usefulness of the notion of variable-
stretch AEAD for enabling the security-overhead trade-off with respect to the energy
consumption overhead due to the ciphertext expansion. In many applications relying
on battery-operated low-power devices (such as wireless sensor networks, smart medical
implants, etc.) energy is a critical resource and decreasing its consumption one of the
major optimization targets.

Towards this goal, we first propose a variable-stretch variant of the CCM standard,
naming it vCCM, and prove that it is a secure nonce-based variable-stretch AEAD scheme,
i.e., nvAE-secure as formalized by Reyhanitabar et al. [RVV16]. We then experimentally
measure the energy consumption of a real-world low-power wireless sensor platform
in a simple model scenario when using vCCM and CCM, respectively. Based on our
measurements, we estimate that the overall energy consumption can be reduced by about
8-21% in applications similar to our scenario, just by treating a majority of messages with
a shorter stretch than used for the most sensitive messages (which is not possible with
AEAD schemes that do not support the variable-stretch security).

Our results also raise the bar for evaluation of new (not only) lightweight algorithms,
adding the criterion of supporting variable tag length for achieving optimal security-energy
trade-off, with our lightweight variant of the existing CCM standard as a baseline reference.

Variable-stretch CCM in the wild. CCM mode for AEAD was originally proposed
in 2002 [WHF02, WHF03] for inclusion in the IEEE 802.11i standard. Despite initial
academic criticisms [RW03], CCM has become one of the most widely supported AEAD
schemes in real-world crypto, being used in IPsec, TLS, Bluetooth Low Energy (BLE) and
a minor variant (CCM*) in the ZigBee standard, to mention some.

Our proposed vCCM scheme is obtained from CCM using a black-box transformation,
i.e., without requiring any changes in the internals of the standard CCM scheme. This
property has been the primary design goal in this work: it allows practitioners to benefit
from existing software and hardware implementations of CCM, while instantly enabling the
trade-off between security level and energy consumption in a flexible and provably sound
manner. At the same time, our black-box transform itself is very lightweight, requiring
only a few elementary operations.

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 449

At the time of writing this paper, it is expected that NIST LWC project will conclude
in a year, resulting hopefully in one or several promising lightweight AEAD schemes with
significant improvements compared to current standards; however, considering the time
for standardization, inclusion in protocols and actual deployment in embedded systems,
the real availability of the new schemes can expected to be several years away at best. In
the meantime, we believe that salvaging a widely implemented standard such as CCM
and instantly enabling a provably graceful trading of security for energy savings is of high
interest, with the potential to bring measurable improvements to real-world applications.

2 Preliminaries and Prior AE Definitions

Notations. We let a ←$ S denote the uniform sampling of an element in a finite set
S and assigning it to the variable a. All strings are binary strings. We let |X| denote
the length of a string X, and X‖Y the concatenation of two strings X and Y . We let
ε denote the empty string of length 0. We let {0, 1}∗ denote the set of all strings of
arbitrary finite lengths (s.t. ε ∈ {0, 1}∗) and we let {0, 1}n denote the set of all strings of
length n for a positive integer n. For a string X ∈ {0, 1}∗, we let left`(X) denote the `
leftmost bits of X for an 0 ≤ ` ≤ |X|. We let N denote the set of all (positive) natural
numbers and N0 = N ∪ {0}. As the specification of CCM is byte-oriented, we define the
short-hands B = {0, 1}8 for the set of bytes, and for a byte string X ∈ B∗ the length in
bytes |X|8 = |X|/8. The sets of arbitrary length byte strings B∗ and byte strings of m
bytes Bm are defined in a natural way. It is also useful to define ({0, 1}n)∗, the set of all
strings whose length is a multiple of some integer n.

Longest common blockwise prefix and prefix-freeness. For two strings X,Y ∈
({0, 1}n)∗, we let llcpn(X,Y) = max0≤i≤min(|X|/n,|Y |/n) {i | lefti·n(X) = lefti·n(Y)} de-
note the length of the longest common blockwise prefix of X and Y in n-bit blocks.
We further let llcpn(X1, . . . , Xm;Y) = max{llcpn(X1, Y), . . . , llcpN (Xm, Y)} denote the
maximal value of llcpn between a string Y ∈ ({0, 1}n)∗ and a collection of m strings
X1, . . . , Xm ∈ ({0, 1}n)∗.

We call a mapping encode : S → ({0, 1}n)∗ that encodes elements of a domain S into
strings of multiple-of-n-bit length prefix-free if for each pair of distinct s, s′ ∈ S we have
llcpn(encode(s), encode(s′)) < min(|encode(s)|, |encode(s′)|)/n .

Resource-parameterized advantage. The (in)security of a scheme Π with respect
to a notion xxx is measured by taking the maximum over all adversaries A which use
resources bounded by r.

Blockciphers. A blockcipher is a function E : K × {0, 1}n → {0, 1}n for an integer
n, the blocksize, such that the mapping EK(·) = E(K, ·) is a permutation of {0, 1}n
for every K ∈ K with some finite K. We define the security of blockciphers though
indistinguishability from a random permutation by an adversary A as:

Advprp
E (A) = Pr

[
K ←$ K : A EK ⇒ 1

]
− Pr [π ←$ Perm(n) : A π ⇒ 1]

where Perm(n) is the set of all the permutations over n-bit strings.
Similarly, we define for a function with the same signature E : K × {0, 1}n → {0, 1}n

and a finite K (not insisting on the permutation property of EK(·))
Advprf

E (A) = Pr
[
K ←$ K : A EK ⇒ 1

]
− Pr [f ←$ Func(n) : A π ⇒ 1]

where Func(n) is the set of functions functions from {0, 1}n to itself.
The resource parameterized advantage functions are defined with the time complexity

(t) of the adversary and the total number of queries (q) asked by the adversary.

450 AE with Variable-Length Tags

proc initialize nae-RΠ

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A,M)
if N ∈ X then
return ⊥

C ← E(K,N,A,M)
X ← X ∪ {N}
Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A,C)
if (N,A,C) ∈ Y then
return ⊥

return D(K,N,A,C)

proc initialize nae-IΠ

X ← ∅

oracle Enc(N,A,M)
if N ∈ X then

return ⊥
C ←$ {0, 1}|M|+τ
X ← X ∪ {N}
return C

oracle Dec(N,A,C)
return ⊥

Figure 1: All-in-one definition of nAE security for a scheme Π = (K, E ,D) with ciphertext
expansion τ .

We now recall the security notions for nonce-based AE (nAE) schemes with associated
data (AEAD schemes) [Rog02].

Syntax. Following Reyhanitabar et al. [RVV16], we use the augmented syntax of AEAD
schemes that includes a stretch variable. A scheme for authenticated encryption is a triplet
Π = (K, E ,D) where K ⊆ {0, 1}∗ is the set of keys endowed with a (uniform) distribution
and E : K × N × A × IT ×M → C and D : K × N × A × IT × C → M∪ {⊥} are the
encryption and decryption algorithm respectively, both deterministic and stateless. The
argument domains of Π are N nonce space, A AD space,M plaintext space, C ciphertext
space, and IT stretch space (i.e. the set of ciphertext expansion values that can be applied
upon encryption), and we require that N ⊆ {0, 1}∗,M⊆ {0, 1}∗, A ⊆ {0, 1}∗, C ⊆ {0, 1}∗
and IT ⊆ N.

We also require that if M ∈M then {0, 1}|M | ⊆M, and that the scheme Π be correct
and tidy [NRS14]. Correctness means that for every (K,N,A, τ,M) ∈ K×N×A×IT×M,
if E(K,N,A, τ,M) = C then D(K,N,A, τ, C) = M . Tidiness means that for every
(K,N,A, τ, C) ∈ K×N×A×IT×C, if D(K,N,A, τ, C) = M 6= ⊥ then E(K,N,A, τ,M) =
C. In both cases |C| = |M |+ τ where τ denotes the stretch.

An ordinary nAE scheme that has a fixed stretch τ can be seen as a special case of the
just-defined syntax, having IT = {τ}. The value of the stretch argument being trivially
assigned in all encryption and decryption calls, it can be omitted from the list of arguments
in both cases. We let Π[τ] denote an ordinary nonce-based AE scheme obtained from
a nonce-based AE scheme with variable stretch Π by fixing the expansion value for all
queries to some value τ ∈ IT .

nAE security definition. The all-in-one nAE security definition by Rogaway and
Shrimpton captures AE security as indistinguishability of the real encryption and decryption
algorithms from a random strings oracle and an always-reject oracle in a nonce-respecting,
chosen ciphertext attack. The nae advantage of an adversary A against a scheme Π is
defined as Advnae

Π (A) = Pr[A nae-RΠ ⇒ 1]− Pr[A nae-IΠ ⇒ 1] with the security games
defined in Figure 1.

nvAE Security Definition. Reyhanitabar et al. define the security of an nvAE scheme

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 451

proc initialize nvae(τc)-RΠ

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then
return ⊥
X ← X ∪ {(N, τ)}
C ← E(K,N,A, τ,M)
if τ = τc then
Y ← Y ∪ {(N,A,C)}

return C

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then
return ⊥

return D(K,N,A, τ, C)

proc initialize nvae(τc)-IΠ

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
if τ = τc then

C ←$ {0, 1}|M|+τc
return C

return E(K,N,A, τ,M)

oracle Dec(N,A, τ, C)
if τ = τc then

return ⊥
return D(K,N,A, τ, C)

Figure 2: AE security with variable stretch. Security games for defining AE security of a
nonce-based AE scheme Π = (K, E ,D) with variable-stretch.

Π = (K, E ,D) through security games nvae(τc)-RΠ (left) and nvae(τc)-IΠ (right) in
Figure 2, parameterized by the so-called challenge stretch value τc ∈ IT , where the
adversary A cannot repeat a nonce-stretch combination in its queries [RVV16]. As
observed in Figure 2, a query, be it encryption or decryption, with a stretch other than τc
will always be answered with the real encryption/decryption algorithm, giving the adversary
extra information for distinguishing the real or ideal processing of queries stretched by
τc. We refer the reader to the original publication for a detailed explanation of the nvae
notion. We define the advantage of A in breaking the nvae security of Π with the target
stretch τc as Advnvae(τc)

Π (A) = Pr[A nvae(τc)-RΠ ⇒ 1]− Pr[A nvae(τc)-IΠ ⇒ 1].
We measure the resources of an nvae adversary in a fine-grained, vectorial fashion as

(t,qe,qd,σe,σd), where t denotes the running time of the adversary, qe = (qτe |τ ∈ IT)
denotes the vector that holds the number of encryption queries qτe made with stretch τ
for every stretch τ ∈ IT , qd = (qτd |τ ∈ IT) denotes the same for the decryption queries,
σe = (στe |τ ∈ IT) denotes the vector that holds the total amount of data στ processed in
all encryption queries with stretch τ for every τ ∈ IT , while σd denotes the same for the
decryption queries. As indicated by Reyhanitabar et al., a typical analysis will use the
resources related to τc (i.e. qτce , q

τc
d , σ

τc
e , σ

τc
d) and aggregate resources qe, qd, q, σe, σd, σ

with qe =
∑
τ∈IT q

τ
e , qd =

∑
τ∈IT q

τ
d , q = qe + qd, σe =

∑
τ∈IT σ

τ
e , σd =

∑
τ∈IT σ

τ
d and

σ = σe + σd. We additionally define the per-stretch aggregate variables qτ = qτe + qτd and
στ = στe + στd for all τ ∈ IT . Recall that an nae scheme Π with stretch τ is equivalent
with an nvAE scheme with IT = {τ}, so the vector-based adversarial resources become
synonymous with the aggregate variables.

Finally, we informally call a scheme Π nvae-secure if for every τc ∈ IT , for all “practical”
values of resources rτc the advantage Advnvae(τc)

Π (rτc) is “small”.

Key-equivalent separation by stretch. Reyhanitabar et al. proposed a notion
that captures the intuition that changing the value of stretch with a single key is
equivalent to having an independent key per stretch. The notion was primarily pro-
posed to facilitate nvae security proofs for schemes known to be nae secure. The kess
property of an nvAE scheme Π = (K, E ,D) is defined through indistinguishability of
the games defined Figure 3 by an adversary A . The advantage of A is defined as

452 AE with Variable-Length Tags

proc initialize kess-RΠ

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then
return ⊥
X ← X ∪ {(N, τ)}
return E(K,N,A, τ,M)

oracle Dec(N,A, τ, C)
return D(K,N,A, τ, C)

proc initialize kess-IΠ

for τ ∈ IT do
Kτ ←$ K

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
return E(Kτ , N,A, τ,M)

oracle Dec(N,A, τ, C)
return D(Kτ , N,A, τ, C)

Figure 3: Key-equivalent separation by stretch. Games defining kess property of a
nonce-based AE scheme Π = (K, E ,D) with variable stretch. Note that the independent keying
for each τ ∈ IT in game kess-IΠ can be done by lazy sampling if needed.

Advkess
Π (A) = Pr

[
A kess-RΠ ⇒ 1

]
− Pr

[
A kess-IΠ ⇒ 1

]
. The adversarial resources of in-

terest for the kess notion are (t,qe,qd,σ), as defined for the nvae(τc) notion in the
current Section. Reyhanitabar et al. proved Theorem 1; to prove that an nae-secure AE
scheme is nvae-secure, it suffices to show that the kess advantage of any adversary is
small.

Theorem 1 (kess ∧ nae⇒ nvae). Let Π = (K, E ,D) be a nonce-based AE scheme with
variable stretch. We have that

Advnvae(τc)
Π (t,qe,qd,σ) ≤ Advkess

Π (t′,qe,qd,σ) + Advnae
Π[τc](t

′′, qτce , q
τc
d , σ

τc),

with t′ = t+O(q) and t′′ = t+O(σ) where q =
∑
τ∈IT (qτe + qτd) and σ =

∑
τ∈IT (στe + στd).

3 Counter with CBC-MAC(CCM)
CTR + CBC-MAC is a nonce-based AE scheme proposed by Whiting,Housley, and
Ferguson [DWF03]. It is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n
with n = 128,1 a tag length τ ∈ {32, 48, 64, 80, 96, 112, 128}, and a nonce length ν ∈
{56, 64, 72, 80, 88, 96, 104}. A trade-off must be made between the nonce length ν and the
maximal message length 8 · (2120−ν − 1) bits. The AD and message space of CCM[E, τ, ν]
are respectively A =

⋃264−1
i=0 Bi andM =

⋃2120−ν−1
i=0 Bi. The encryption and the decryption

algorithms of CCM[E, τ, ν] are described in Figure 4.2 Internally, CCM can be split in
two parts.

Tag Generation with CBC-MAC. The tag generation step (upper part of Figure 5)
uses plain CBC-MAC to generate a 128-bit tag, which is then truncated to the desired
tag length τ . The string processed by the plain CBC-MAC is constructed as B =
encB0(N,A,M)‖encA(A)‖encM(M), with

encB0(N,A,M) = flags(A)‖N‖〈|M |8〉120−ν (outputs a single block),
flags(A) = 0‖1A6=ε‖〈τ/16− 1〉3‖〈14− ν/8〉3 (outputs a single byte),

1CCM is only defined to for use with 128-bit blockciphers [DWF03].
2Note that we deviate from he notation in the riginal publication [DWF03] and the CCM RFC [WHF03],

as the descriptions in these publications are incompatible with the common notation of AEAD.

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 453

101: Algorithm EK(N,A,M)
102: B0 ← encB0(N,A,M)
103: B1|| · · · ||B` ← encA(A)‖encM(M)
104: Y0 ← EK(B0)
105: for i← 1 to ` do
106: Yi ← EK(Bi ⊕ Yi−1)
107: T = leftτ (Y`)
108: M1‖M2 · · · ‖Mm←M where
109: |Mm| ≤ n and |Mi| = n otherwise
110: for i← 1 to m do
111: Zi ← ctr(N, i)
112: Ci ← left|Mi|(EK(Zi))⊕Mi

113: C ← C1‖C2‖ · · · ‖Cm
114: Z0 ← ctr(N, 0)
115: C ← C‖leftτ (EK(Z0))⊕ T
116: return C

201: Algorithm DK(N,A,C)
202: C1‖C2 · · ·Cm‖T←C where
203: |Cm| ≤ n and |Ci| = n otherwise
204: and where |T | = τ
205: for i← 1 to m do
206: Zi ← ctr(N, i)
207: Mi ← left|Ci|(EK(Zi))⊕ Ci
208: M = M1||M2|| · · · ||Mm

209: B0 ← encB0(N,A,M)
210: B1|| · · · ||B` ← encA(A)‖encM(M)
211: Y0 ← EK(B0)
212: for i← 1 to ` do
213: Yi ← EK(Bi ⊕ Yi−1)
214: Z0 ← ctr(N, 0)
215: T ′ = leftτ (Y` ⊕ EK(Z0))
216: if T = T ′ then
217: return M
218: return ⊥

Figure 4: CCM[E, τ, ν] mode for AEAD, with E : K×{0, 1}n → {0, 1}n a blockcipher. The
functions encB0(), encA(),encM() and ctr() are defined in Section 3.

EK EK EK

EK
EK

M0

C0

F̄‖N‖〈2〉L

EK

M1

C1

F̄‖N‖〈l〉L

EK

ML

Cl

F̄‖N‖〈0〉L

EK

CBC-MAC CTR

B1

...

τ

TB1||B2||...||BlB = encode(l(A))||A||0∗||M ||0∗

T

Cl+1

...

B2 BlBF ||N ||〈l〉L
F̄ ||N ||〈1〉L F̄ ||N ||〈2〉L F̄ ||N ||〈l〉L F̄ ||N ||〈0〉L

Figure 5: Illustration of the inner workings of CCM. The top half depicts the computation of
the tag using CBC-MAC and the bottom half depicts the encryption process using the CTR mode.
enc(A) is a prefix free encoding of A, while r is an integer such that |enc(M)|+ r is divisible by n

1A 6=ε = 1 iff A 6= ε and 1A6=ε = 0 otherwise, encA : B∗ → ({0, 1}n)∗ a prefix-free encoding
function that extends the length by at most a single block (i.e., |encA(A)|/n ≤ d|A|/ne+1),
and encM(M) = M ‖ 0r for the integer 0 ≤ r < n that makes |encM(M)| divisible by n.
We note that the composed encoding function itself encB0(N,A,M)‖encA(A)‖encM(M) is
prefix-free [Jon02]. The output of the plain CBC-MAC is then masked with a key stream
block computed in the second, CTR-mode part.

CTR Mode Encryption. The ciphertext blocks are computed with CTR mode (lower
part of Figure 5). The ith input counter block, used to generate the ith key stream block,
is computed as ctr(N, i) = flags′‖N‖〈i〉120−ν , where flags′ = 05‖〈14− ν/8〉3 is a one-byte
string.
The security of the standard CCM scheme was proven by Jonsson in [Jon02] in the
following theorem:

Theorem 2 ([Jon02]). For a blockcipher E : K × {0, 1}n → {0, 1}n and any valid values

454 AE with Variable-Length Tags

101: Algorithm EK(N,A, τ,M)
102: N ′ ← N‖〈τ/8〉8
103: C = CCM[E, τ, ν + 8].EK(N ′, A,M)
104: return C

201: Algorithm DK(N,A, τ, C)
202: N ′ ← N‖〈τ/8〉8
203: M = CCM[E, τ, ν + 8].DK(N ′, A, C)
204: return M

Figure 6: vCCM[E, IT , ν] mode for AEAD, with E : K × {0, 1}n → {0, 1}n a blockcipher.

of τ and ν we have

AdvauthCCM[E,τ,ν](t, qe, qd, σe, σd) ≤Advprf
E (t′, σ′) + qd

2τ + (2σ + 3q)2

2n+1

AdvprivCCM[E,τ,ν](t, qe, σe) ≤Advprf
E (t′, σ′′) + (2σe + 3qe)2

2n+1

where σ′ ≤ 2σ + 3q, σ′′ ≤ 2σe + 3qe and t′ ≤ t+ γ · σ for some “small” constant γ.

There is a seeming inflation of the bound compared to Jonsson’s theorems. This is due
to the difference in resource counting: while Jonsson defines the equivalents of σ and
σe already including the overhead due to CCM’s structure, we prefer to treat σ as data
complexity as perceived by the user, who doesn’t need to understand the internals of CCM.
Combining the bounds of Theorem 2 yields the following nae security bound.

Corollary 1 ([RS06]). For a blockcipher E : K × {0, 1}n → {0, 1}n and any valid values
of τ and ν we have

Advnae
CCM[E,τ,ν](t, qe, qd, σe, σd) ≤ Advprf

E (t′, σ′) + qd
2τ + (2σ + 3q)2

2n+1 + (2σe + 3qe)2

2n+1

where σ′ ≤ 2σ + 3q and t′ ≤ t+ γ · σ for some “small” constant γ.

4 Variable Tag CCM (vCCM)
vCCM is a nonce-based AE scheme parameterized by a blockcipher E : Kτ × {0, 1}n →
{0, 1}n with n = 128, an ordered set of non-zero tag lengths IT ⊆ {32, 48, 64, 80, 96, 112, 128},
and a nonce length ν ∈ {56, 64, 72, 80, 88, 96}. There is a trade-off between the nonce
length ν and the maximal message length of 8 · (2(112−ν)−1) bits. The associated data and
message space of vCCM[E, IT , ν] are respectively A =

⋃264−1
i=0 Bi andM =

⋃2112−ν−1
i=0 Bi.

The encryption and the decryption algorithms of vCCM[E, IT , ν] are described in Figure 6
and illustrated in Figure 7.

CCM [E, τ, ν]
C

|M |+ τ

ENC

M

A

τ

N

vCCM [E, IT , ν′]

N‖τ

vCCM [E, IT , ν′]

N‖τ
DEC

M
CCM [E, τ, ν]A

τ

N

|M |+ τ

C

Figure 7: Illustration of the black box transform of CCM to vCCM. Here, ν′ = ν − 8.

The Transform. The nvAE scheme vCCM is obtained as a black box transform of

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 455

CCM, requiring no modifications of the standard CCM. This property has been our
primary design goal, as it is key for the ability of the new nvAE scheme to benefit from
existing software and hardware implementations, and thus be instantly used at a massive
scale.

The options available for a black-box transform are, informally speaking, injecting
the tag length into the nonce, the associated data, or the key (not the message, due
to undesirable additional ciphertext expansion). With the option of tag-dependent key
undesirable, as discussed in the publication introducing the nvae model [RVV16], one is
left with a tag-dependent nonce, tag-dependent associated data, or a combination thereof.

In the particular case of CCM, injecting the stretch in the associated data does not
work; when the same message was encrypted with different tag lengths, the change would
propagate through the computation of CBC-MAC, and hence only to the last block of the
ciphertext. A trivial distinguishing attack could be mounted using the non-tag ciphertext
blocks.

On the other hand, injecting the stretch into the nonce propagates to every block of
ciphertext, thanks to the structure of CCM, as nonce is encoded into the initial bock B0
processed by the plain CBC-MAC, as well as into each counter block, used as blockcipher
input to compute the key stream blocks. This being an efficient and security-wise sufficient
option, our transform consists in simply dedicating the last byte of the CCM nonce to
containing an encoding of the used tag length.

5 Security of vCCM
In this section, we formally state and prove the nvae security of vCCM in Theorem 3.
The analysis is based on Theorem 1, allowing to reuse the result on nae security of CCM by
Jonsson [Jon02] and leaving only the kess property of vCCM to be analyzed. We formally
state and prove the latter in Lemma 1 using the technique of code-based games [BR06].

Theorem 3. Let E : K × {0, 1}n → {0, 1}n with n = 128 be a blockcipher, IT ⊆
{32, 48, 64, 80, 96, 112, 128} and ν ∈ {56, 64, 72, 80, 88, 96}. Then the following inequality
holds:

Advnvae[τc]
vCCM[E,IT ,ν](t,qe,qd,σe,σd) ≤|IT | ·Advprp

E (t′, σ′) + 3 · (2σ + 3q)2

2n

+ qd
2τ + (2στc + 3qτc)2

2n+1 + (2στce + 3qτce)2

2n+1

where σ′ ≤ 2σ+3q and t′ ≤ t+σ′ ·γ for a “small” constant γ, and the adversarial resources
are as defined in Section 2.

Corollary 2. As |IT | ≤ 7, we directly have

Advnvae[τc]
vCCM[E,IT ,ν](t,qe,qd,σe,σd) ≤7 ·Advprp

E (t′, σ′) + 3 · (2σ + 3q)2

2n

+ qd
2τ + (2στc + 3qτc)2

2n+1 + (2στce + 3qτce)2

2n+1

Proof. We start by replacing the block cipher in both the nvae(τc)-R and the nvae(τc)-I
game by a secret random permutation π ←$ Perm(n) to obtain the following inequality

Advnvae(τc)
vCCM[E,IT ,ν](t,qe,qd,σe,σd) ≤ Advnvae(τc)

vCCM[π,IT ,ν](t,qe,qd,σ)+|IT |·Advprp
E (t′, σ′) ,

with σ′ ≤ 2σ + 3q and t′ ≤ t + σ′ · γ, as there is a single instance of E used in the
game nvae[τc]-R and |IT | − 1 instances of E (used with independent keys) in the game
nvae[τc]-I, each of them processing no more than 2σ + 3q blocks in total. This is given
by the fact that a CCM encryption (resp. decryption query) with a AD blocks and m

456 AE with Variable-Length Tags

{0, 1}n

Identical distribution

kess-RvCCM[f, ,ν]IT

Identical distribution

kess-IvCCM[f, ,ν]IT

G0

Identical until bad

G1

+ (2σ + 3q /)2 2n

 sets G0 bad

≤ (2σ + 3q /)2 2n with no non-trivial CBC-
MAC collision sets

G0

bad

Dom(f)Dom()fτ

When processing a query , resp. ,
each primitive input resp. may trigger as:

:

(N , A, τ, M) (N , A, τ, C)
⊕Bj Yj−1 Zj bad

badimpossible OK

OK

 as now samples fresh
randomness, but does not

bad G1

G0

Figure 8: Outline of the proof of Lemma 1 and the visualization of the main bad event.

message blocks requires a + 2m + 3 blockcipher calls in the worst case, two extra calls
being necessary for processing of B0 and computing the keystream block for the tag, and
the third extra call being possibly induced by the length increase of encA(·). Note that in
the nvae[τc]-I, there are now |IT | − 1 independent permutations.

Using the standard RP-RF switching lemma [BR06], the random permutation π is
further replaced in both nvae[τc] games by a secret random function f ←$ Func(n) to
obtain

Advnvae(τc)
vCCM[π,IT ,ν](t,qe,qd,σe,σd) ≤ Advnvae(τc)

vCCM[f,IT ,ν](t,qe,qd,σ) + 2 · (2σ + 3q)2

2n+1 .

This is because the secret permutation π in nvae[τc]-R is used no more than (2σ + 3q)
times, contributing (2σ+3q)2

2n+1 to the bound, and the |IT | − 1 permutations in nvae[τc]-I are
used on no more than (2σ + 3q) blocks in total, so the sum of their individual switching
contributions is upper bounded by (2σ+3q)2

2n+1 as well.
Next, we use Theorem 1 to get the following inequality

Advnvae(τc)
vCCM[f,IT ,ν](qe,qd,σe,σd) ≤Advkess

vCCM[f,IT ,ν](qe,qd,σe,σd)

+ Advnae
vCCM[f,{τc},ν](qτce , q

τc
d , σ

τc
e , σ

τc
d) .

From Corollary 1 and the fact that Advprf
f (A) = 0, the following inequality holds:

Advnae
vCCM[f,{τc},ν](qτce , q

τc
d , σ

τc
e , σ

τc
d) ≤ qd

2τ + (2στc + 3qτc)2

2n+1 + (2στce + 3qτce)2

2n+1

The proof is finalized by applying Lemma 1 to upper bound Advkess
vCCM[f,IT ,ν](t,qe,qd,σe,σd).

By using the kess−security definition in Figure 3 and the games in Figure 9, we
obtain the following bound.

Lemma 1. Let f : {0, 1}n → {0, 1}n be a random function f ←$ Func(n) with n = 128,
IT ⊆ {32, 48, 64, 80, 96, 112, 128} and ν ∈ {56, 64, 72, 80, 88, 96}. Then the following
inequality holds:

Advkess
vCCM[f,IT ,ν](qe,qd,σe,σd) ≤ 2 · (2σ + 3q)2/2n .

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 457

proc initialize G0

f, fτ1 , . . . , fτ|IT |
← ⊥ everywhere G1

bad← false
coll-bad← false �
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
B0 ← encB0(N,A, τ,M)
B1|| · · · ||B` ← ‖encA(A)‖encM(M)
Y−1 ← 0n
for j ← 0 to ` do

if Bj ⊕ Yj−1 ∈ Dom(f) then

if j > llcpn(i) �
coll-bad← true �

yj ← f(Bj ⊕ Yj−1)

if Bj ⊕ Yj−1 /∈ Dom(fτ) then
bad← true

fτ (Bj ⊕ Yj−1)←$ {0, 1}n

yj ← fτ (Bj ⊕ Yj−1)

else
f(Bj ⊕ Yj−1)←$ {0, 1}n

fτ (Bj ⊕ Yj−1)← f(Bj ⊕ Yj−1)

yj ← f(Bj ⊕ Yj−1)
Yj ← yj

T = leftτ (Y`)
M1‖M2 · · ·Mm‖M∗

n←−M where
each |Mj | = n and |M∗| < n

M0 ← 0n
for j ← 0 to m do

Zj ← ctr(N, τ, j)
if Zj ∈ Dom(f) then

zj ← f(Zj)

if Zj /∈ Dom(fτ) then
bad←$ true

fτ (Zj)←$ {0, 1}n

zj ← fτ (Zj)

else
f(Zj)←$ {0, 1}n

fτ (Zj)← f(Zj)

zj ← f(Zj)
Cj = zj ⊕Mj

C = C1||C2|| · · · ||Cm||leftτ (C0)⊕ T
return C

oracle Dec(N,A, τ, C)
C1‖C2 · · ·Cm‖T←C where
|Cm| ≤ n and |Ci| = n otherwise
and where |T | = τ

C0 ← 0n
for j ← 1 to m do

Zj = ctr(N, τ, j)
if Zj ∈ Dom(f) then

zj ← f(Zj)

if Zj /∈ Dom(fτ) then
bad← true

fτ (Zj)←$ {0, 1}n

zj ← fτ (Zj)

else then
f(Zj)←$ {0, 1}n

fτ (Zj)← f(Zj)

zj ← f(Zj)
Mj = left|Ci|(zj)⊕ Cj

M = M1||M2|| · · · ||Mm

B0 ← encB0(N,A, τ,M)
B1|| · · · ||Bl ← ‖encA(A)‖encM(M)
Y−1 ← 0n
for j ← 0 to ` do

if Bj ⊕ Yj−1 ∈ Dom(f) then

if j > llcpn(i) �
coll-bad← true �

yj ← f(Bj ⊕ Yj−1)

if Bj ⊕ Yj−1 /∈ Dom(fτ) then
bad← true

fτ (Bj ⊕ Yj−1)←$ {0, 1}n

yj ← fτ (Bj ⊕ Yj−1)

else
f(Bj ⊕ Yj−1)←$ {0, 1}n

fτ (Bj ⊕ Yj−1)← f(Bj ⊕ Yj−1)

yj ← f(Bj ⊕ Yj−1)
Yj ← yj

T = leftτ (Y` ⊕M0)
if T = T ′

return M
else return ⊥

Figure 9: Games Definition Adversarial games G0 and G1 for the proof of Lemma 1. G0 is
obtained by omitting the boxed statements and the statements marked by �, while G1 is obtained
by including the boxed statements and omitting the statements marked by �. Here, we let for
a partially defined function f , Dom(f) denote the set {x ∈ {0, 1}n|f(x) 6= ⊥}. The functions
encB0() and ctr() are extended to process τ in the obvious way. For definition of llcpn(i) see proof
of Lemma 1.

458 AE with Variable-Length Tags

Proof. The proof is based on the games G0 and G1 in Figure 9. The code in Figure 9
is obtained by using vCCM to instantiate the Enc and Dec oracles of the kess games
(Figure 2), such that in the place of each invocation of the underlying primitive, there is
a nested if-else block (lines with gray background). In the following we will refer to the
underlying primitive used to instantiate vCCM simply by “primitive”. The proof outline
is visualized in Figure 8.

Simulating the kess games. Roughly speaking, these if-else blocks ensure that the
supposed primitive outputs are being sampled such that they are simultaneously compatible
with a single random function f and |IT | independent random functions fτ1 , . . . , fτ|IT | ,
for as long as possible. When it is no longer possible to maintain this double compatibility,
both games set flag bad to true. Formally, we claim that the games G0 and G1 are in fact
implementing kess-RvCCM[f,IT ,ν] and kess-IvCCM[f,IT ,ν], respectively.

This is easy to see for G0. When we omit the boxed statements, then in each query,
the primitive-output variable yj , respectively zj , is assigned a previously sampled value
whenever the input to the primitive (Bj ⊕ Yj−1, resp. Zj) is already in Dom(f), and
freshly sampled and used to extend f otherwise.

For G1, the boxed statements are included, ensuring that in each query, in the special
case when the input to the primitive (Bj⊕Yj−1, resp. Zj) is in Dom(f) but not in Dom(fτ),
the value of the primitive-output variable yj , respectively zj is freshly re-sampled, with τ
being the amount of stretch in current query. We note that the seemingly missing case
when an input to the primitive (Bj⊕Yj−1, resp. Zj) is present in Dom(fτ) but is missing in
Dom(F) (or else Dom(fτ)\Dom(f) 6= ∅) cannot occur. This is shown by a simple induction:
at initialization, all functions are undefined everywhere, and so Dom(fτ)\Dom(f) = ∅.
Every time the primitive output is computed in G1 in a query with stretch τ , if fτ is
extended by a preimage-image pair x, fτ (x), then f(x) is defined at the same time, or f(x)
has already been defined before.

We thus have for any adversary A that Advkess
vCCM[f,IT ,ν](A) = Pr[A G0 ⇒ 1] −

Pr[A G1 ⇒ 1]. Further, because the games G0 and G1 are identical until the flag bad is
set to true, we have by the fundamental lemma of game-playing [BR06]

Pr[A G0 ⇒ 1]− Pr[A G1 ⇒ 1] ≤ Pr[A G0 sets bad] ,

where the event “sets bad” is defined as the flag bad being true at the end of the experiment.
When flag bad is set, the game G1 diverges from G0, as visualized in Figure 8: the former
samples a fresh primitive output, while the latter reuses a previously sampled one, and
their distributions are no longer equivalent.

Characterizing the experiment. We start by characterizing the interaction of an
adversary A with its oracles as defined in Figure 9. We let N i, Ai, τi,M

i denote Ci denote
the nonce, the AD, the stretch, the (internally computed) plaintext and the ciphertext of
the ith query. We denote by Bi0, . . . , Bi`i the input blocks fed to plain CBC-MAC in the
ith query, by Y i1 , . . . , Y i`i the corresponding outputs, such that Y ij = yij for 1 ≤ j ≤ `i and
T i = Y i`i . Y

i
−1 = 0n is a special all-zero block in every query. We further let M i

1, . . . ,M
i
mi

denote the message blocks, Ci1, . . . , Cimi the corresponding ciphertext blocks, Zi0, . . . Zimi
the counter blocks, and zi0, . . . , zimi the corresponding primitive outputs, such that we have
Cij = M i

j ⊕ zij for 1 ≤ j ≤ mi and Ci0 ⊕ T i = zi0 ⊕ T i. This notation is valid irrespective of
whether the ith query is an encryption or a decryption query.

We assume that the adversary A makes no pointless queries; i.e., A makes no repeated
queries, does not make a decryption query N,A,C after a previous encryption query
N,A,M returned the ciphertext C, and does not make an encryption query N,A,M after
a previous decryption query N,A,C returned M 6= ⊥. This is without generality, as the
responses to these queries are all trivially known.

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 459

CBC collisions. To bound the probability Pr[A G0 sets bad], we first define an auxiliary
flag coll-bad, and extend the games G0 and G1 with the lines marked by the symbol � in
Figure 9. Here, the notation llcpn(i) is a shorthand for llcpn(B1, . . . , Bi−1;Bi)−1, the index
of the first block of the input to the plain CBC-MAC in the ith query Bi = Bi0‖ . . . ‖Bi`
that is beyond the longest common blockwise prefix with any of such inputs in the previous
i− 1 queries. Note that one is subtracted here because the blocks of Bi are indexed from
zero.

Since A makes no trivial queries and because the string Bi is a prefix-free encoding
of (N,A,M) in CCM, and consequently of (N,A, τ,M) in vCCM, we have llcpn(i) < `i
for every 1 ≤ i ≤ q. I.e., each Bi is distinct from all prefixes of B1, . . . , Bi−1. In
particular, the value of llcpn(i) is independent of the game’s randomness; when the
ith query is a decryption query, the value of llcpn(i) can be computed using the ci-
phertexts stripped of the tag as substitutes for the plaintext as llcpn(B̄1, . . . , B̄i−1; B̄i)
where B̄r = encB0(Nr, Ar, τr, left|Cr|−τ (Cr))‖encA(A)‖encM(left|Cr|−τ (Cr)) − 1 for 1 ≤
r ≤ i. This works, because encB0(Nr, Ar, τr, left|Cr|−τ (Cr)) only depends on the length
of left|Cr|−τ (Cr), and because the xor-based CTR encryption preserves the value of

llcpn(encM(left|Cr|−τ (Cr)), encM(left|Ci|−τ (Ci))) = llcpn(encM(Mr), encM(M i)) if
(Nr, τr, |Cr|) = (N i, τi, |Ci|). If the last condition is not met, the plaintext, resp. ci-
phertext blocks are irrelevant for the value of llcpn(i).

In a nutshell, the coll-bad corresponds to reusing an input Bij ⊕ yij−1 to the function f
(i.e., evaluating f on a point already in Dom(f)) beyond what is trivially determined by
the common prefix with previous queries. We observe that

Pr[A G0 sets bad] ≤ Pr[A G0 sets coll-bad] + Pr[A G0 sets bad|¬A G0 sets coll-bad]

and proceed to bound Pr[A G0 sets coll-bad] by induction on blocks yij , with the induction
assumption being that coll-bad = false when the block is about to be processed. When
ith query is being processed, coll-bad can only be set when sampling the values of yij for
llcpn(i) + 1 ≤ j ≤ `i. For each such value of j, we bound the probability of collision
between Bij ⊕ Y ij−1 and each element already in Dom(f), with help of the following case
analysis.

We have three base cases for the value of j, namely j = 0, 0 < j = llcpn(i) + 1 and
llcpn(i) + 1 < j ≤ `i. Before examining them, we note that the domain points of f ,
x ∈ Dom(f), can be classified in three “types”. We say x is of type1 when it has been
added as the initial CBC-MAC input block Bi′0 = encB0(N i′ , Ai

′
, τi′ ,M

i′) for some i′ < i.
We say x is of type2 when it has been added as an intermediate CBC-MAC input block
Bi
′

j′ ⊕ Y i
′

j′−1 for i′ < i or i′ = i, j′ < j. We say x is of type3 when it has been added as a
counter block ctr(N i′ , τi′ , j

′) for i′ ≤ i.
Case1: j = 0. The input Bi0 to f that may set coll-bad has no randomness. We examine
collision probabilities with the three types of elements in Dom(f), determining that the
maximal collision probability in this case is 1/2n:

type1: As llcpn(i) < j = 0 implies that N i has not been used in any previous query, the
probability of collision with an x of type1 is 0.

type2: This collision is equivalent to the event Y i′j′−1 = Bi0 ⊕Bi
′

j′ . Due to the induction
assumption, Y i′j′−1 is statistically independent of all variables returned to the adversary
so far (ciphertext blocks and tags), so this collision happens with probability at most
1/2n.

type3: This collision happens with probability zero, as the ranges of the two encoding
functions encB0(·, ·, ·, ·) and ctr(·, ·, ·) have an empty intersection, thanks to the
dedicated domain separation bits.

460 AE with Variable-Length Tags

Case2: 0 < j = llcpn(i) + 1. The potentially collision-causing input to f here is Bij ⊕ Y ij−1,
such that the value Y ij−1 = Y ĩllcpn(i) has been sampled in ĩth query with ĩ = min{r < i |
llcpn(Bi, Br) = llcpn(i) + 1}. Examining the collision probabilities with the three types of
elements in Dom(f) reveals the maximal collision probability in this case to be 1/2n:

type1: This is equivalent to Y ij−1 = Bij ⊕ Bi
′

0 . Even though Y ij−1 has been sampled in
ĩth query, the induction assumption implies that it is statistically independent of all
variables seen by the adversary, so happens with probability at most 1/2n.

type2: We have two sub-cases here. In the first, special case, the collision event is
Y ij−1 ⊕ Bij = Y i

′

j−1 ⊕ Bi
′

j , such that llcpn(Bi, Bi′) = llcpn(i) + 1. This implies
Y ij−1 = Y i

′

j−1 but since j > llcpn(i), we must have Bij 6= Bi
′

j by the definition of the
longest common prefix, corresponding to a collision probability zero.
In the second, general case, the collision event Y ij−1 ⊕ Bij = Y i

′

j′−1 ⊕ Bi
′

j′ with
j′ 6= llcpn(i)+1 happens with probability 1/2n, because the variables Y ij−1 and Y i′j′−1,
even though both sampled in a previous query, are statistically independent, and
unknown to A due to induction hypothesis.

type3: Similarly, as with type1, the collision event Y ij−1 ⊕Bij = ctr(N i′ , τi′ , j
′) happens

with probability at most 1/2n.

Case3: llcpn(i)+1 > j ≤ `i. Because of the induction assumption, and because llcpn(i)+1 >
j, the variable Y ij−1 is fresh and has not been used in the game before. The probability of
collision with an x ∈ Dom(f) of any type is thus 1/2n.

As there are at most 2σ + 3q possible values for (i, j) that could set coll-bad, and
because when sampling yij each such value (i, j) we have |Dom(f)| ≤ 2σ + 3q, we have
Pr[A G0 sets coll-bad] ≤ (2σ + 3q)2/2n.

Bad events. We next define the following fine-grained bad events:

ey-bad(i, j) is defined as the event that the ith adversarial query is an encryption query
and bad gets set to true when sampling the value yij (i.e., it has remained false in the
previous i− 1 queries and when sampling yi0, . . . , yij−1) for 1 ≤ i ≤ q and 0 ≤ j ≤ `i.

ez-bad(i, j) is defined as the event that the ith adversarial query is an encryption query
and bad gets set to true when sampling the value zij (i.e., it has remained false in the
previous i − 1 queries, when sampling yi0, . . . , yi`i and when sampling zi0, . . . , zij−1)
for 1 ≤ i ≤ q and 0 ≤ j ≤ mi.

dz-bad(i, j) is defined as the event that the ith adversarial query is an decryption query
and bad gets set to true when sampling the value zij (i.e., it has remained false in the
previous i− 1 queries and when sampling zi0, . . . , zij−1) for 1 ≤ i ≤ q and 0 ≤ j ≤ mi.

dy-bad(i, j) is defined as the event that the ith adversarial query is an decryption query
and bad gets set to true when sampling the value yij (i.e., it has remained false in the
previous i− 1 queries, when sampling zi0, . . . , zimi , and when sampling yi0, . . . , yij−1)
for 1 ≤ i ≤ q and 0 ≤ j ≤ `i.

Denoting by E the event “A G0 sets coll-bad” further on, we have Pr[A G0 sets bad | ¬E] ≤
q∑
i=1

`i∑
j=1

Pr[ey-bad(i, j) ∨ dy-bad(i.j) | ¬E] +
mi∑
j=1

Pr[ez-bad(i, j) ∨ dz-bad(i.j) | ¬E] . (1)

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 461

As ey-bad(i, j) and dy-bad(i.j) are mutually exclusive, we have Pr[ey-bad(i, j) ∨
dy-bad(i.j) | ¬E] ≤ max(Pr[ey-bad(i, j) | ¬E],Pr[dy-bad(i, j) | ¬E]). Similarly, we have
Pr[ez-bad(i, j) ∨ dz-bad(i.j) | ¬E] ≤ max(Pr[ez-bad(i, j) | ¬E],Pr[dz-bad(i, j) | ¬E]).

We first turn to the bad events related to the sampling of yij . We have that Pr[ey-bad(i, j) |
¬E] = Pr[dy-bad(i, j) | ¬E] = 0. This is because for 1 ≤ j ≤ llcpn(i), the input value
Y ij−1⊕Bij has already been used in a previous query i′ with τi′ = τi, as the latter is a neces-
sary condition for llcpn(i) > −1. For llcpn(i) < j ≤ `i, we must have Y ij−1 ⊕Bij /∈ Dom(f),
so bad cannot be set.

We bound Pr[ez-bad(i, j) | ¬E] which corresponds to ctr(N i, τi, j) ∈ Dom(f)\Dom(fτi)
through a case analysis of the collision probabilities with individual elements of this set,
using the three types of domain points defined before.

type1: This event is equivalent to ctr(N i, τi, j) = Bi
′

0 , such that τi 6= τi′ . Similarly, as with
Case1-type3 collision, this event happens with probability 0, thanks to the domain
separation of the involved encoding functions.

type2: This is equivalent to ctr(N i, τi, j) = Y i
′

j′−1 ⊕ Bi
′

j′ with τi 6= τi′ . As previously
argued, if coll-bad is not set during the experiment, all variables observed by the
adversary are statistically independent of Y i′j′−1 for 1 ≤ i′ ≤ q and 1 ≤ j ≤ `i. This
event thus happens with probability 1/2n.

type3: This event corresponds to ctr(N i, τij) = ctr(N i′ , τi, j
′) with τi 6= τi′ , which

obviously happens with probability zero.

With |Dom(f)\Dom(fτi)| ≤ 2σ+3q at any point in the experiment, we have Pr[ez-bad(i, j) |
¬E] ≤ (2σ + 3q)/2n. With the decryption event dy-bad(i, j) | ¬E being analyzed anal-
ogously, we also have that Pr[ez-bad(i, j) ∨ dz-bad(i.j) | ¬E] ≤ (2σ + 3q)/2n. By back-
substituting the upper-bounds into (1), evaluating the sums and maximizing `i, we get
Pr[A G0 sets bad | ¬E] ≤ (2σ + 3q)2/2n.

6 Experimental Validation of Energy Efficiency
In many applications relying on battery-operated low-power devices, (such as wireless sensor
networks), energy is among the most critical resources. In this section, we experimentally
validate that the flexible trade-off between security level and communication overhead
enabled by vCCM, an nvAE scheme, does indeed translate to measurable energy savings.
Our experiment and projections are based on a simple communication scenario where
one device always acts as a transmitter and another device as a receiver. We measure
and compare the energy consumption of the sending device when using CCM and vCCM,
respectively, to encrypt data and transmit it using a sub-GHz transceiver.

Communication scenario. In our scenario, the sender transmits two types of messages,
“non-critical” and “critical”, periodically. The “non-critical” messages are sent frequently
and are assumed to require a lower level of protection. The “critical” messages are sent
sporadically and are assumed to require a higher level of security. The sender does not
receive any transmissions. This scenario is a simplified model of numerous applications
where wireless sensor nodes regularly sense and report on their environment, as for example
temperature sensors in smart building systems, parking-lot sensors reporting occupancy,
manufacturing-line monitoring sensors in a predictive maintenance system, environmental
sensors for prediction of avalanches and so on. Here, the non-critical messages correspond
to the sensing data, where the impact of corruption of data due to an occasional forgery is
typically low (in the sense of risk management). The critical messages correspond to control
traffic (such as reporting a permanent shutdown due to a drained battery), where sporadic

462 AE with Variable-Length Tags

forgeries may have a significant impact. Thus, stretching the non-critical ciphertexts less
than the critical ones is appropriate, from the perspective of a cost-security trade-off.

Experimental Setup. Our setup consists of two embedded HW platforms, a sender
and a receiver. The sender is a custom low-power embedded platform designed at CSEM,
called Wisenode VXI (WN), with the nRF52840 SoC by Nordic Semiconductors [nrf] as
the main micro-controller unit (MCU) and the Sx1261 transceiver by Semtech [sx1] used
for wireless communication. The receiver is a Raspberry Pi 3B board [rpi] extended with
the LoRa/GPS hat by Dragino [dra]. For the transmission, we send raw packets using the
LoRa PHY modulation.

The HW platforms have been selected as follows. The sender platform uses an MCU
well-known for its low power consumption, and the LoRa radio is especially well-suited
to minimize overhead of transmission in terms of energy consumption. This would be a
natural choice for an application that has low-power requirements. The receiver platform
is based on widely available components off-the-shelf, relying on open-source libraries,
serving as a reference, and indirectly as a validation for the communication stack of the
sender.

To determine the energy consumption of the sender, we powered the sender with a lab
power supply at 3V, and measured the immediate current from the power supply with
a Keysight CX3324A Device Current Waveform Analyzer using a passive 0Ω probe at a
sampling frequency of 100MHz.

Figure 10: Power consumption measurement setup.

Implementation. The sender is running CSEM’s custom embedded real-time, multi-
process operating system µ111 [MFI94, MFG99], which implements most of the embedded
and process synchronization primitives, such as semaphores and precise timers, and is
designed specifically for low-power applications. Thanks to these features, µ111 lends itself
well for the task at hand. For the experiment, a driver for the Sx1261 radio has been
integrated in the OS. The application code uses a hardware timer run in one process to
precisely schedule data encryption and transmissions, in a second, synchronized process.
All unneeded peripherals are disabled, and the MCU and the radio are in sleep mode
between transmissions. The receiver is running Raspbian, the native, Linux-based OS
for Rasperry Pi, with the default driver for the Dragino LoRa hat. Both the sender and

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 463

receiver used the same implementation of vCCM, based on the CCM implementation of
mbedTLS [mbe].

Measurements. We carry out an experiment consisting of 10 measurements. In each
measurement, we capture the immediate current drawn by the sender, while repeatedly
encrypting and sending a payload every 10 seconds, acquiring data from 70 transmissions.
Such a measurement is done for each combination of a plaintext length (4 or 16 bytes), and
AE-scheme tag-length pair (CCM and 8 byte tags, CCM and 16-byte tags, vCCM and
4-byte tags, vCCM and 8-byte tags, and vCCM and 16-byte tags). In a post-processing
scripts, we isolate the consumption “peak” corresponding to the entire wake-up time of
the sender during each of the 70 transmissions. This includes the consumption due to
encryption, transmission and the OS-incurred processing overhead. In each measurement,
we compute the average duration and average energy consumed3 per single transmission
“peak”. These average values are displayed in Figure 12 and visualized in Figure 11.

4B
Va
rta
g

8B
Va
rta
g

16
B
Va
rta
g

8B
St
d

16
B
St
d

0

1

2

3

4
·10−3

2.49 · 10−3
2.81 · 10−3

3.4 · 10−3

2.81 · 10−3

3.41 · 10−3

(a) Energy Consumption(4B Messages)

4B
Va
rta
g

8B
Va
rta
g

16
B
Va
rta
g

8B
St
d

16
B
St
d

0

1

2

3

4

5
·10−3

3.38 · 10−3
3.72 · 10−3

4.35 · 10−3

3.73 · 10−3

4.36 · 10−3

(b) Energy Consumption(16B Messages)

Figure 11: Experiments Results

Tag length, AE
scheme

Avg Duration
per Transmis-
sion(s)/4B

Avg Energy
Consumption
per Transmis-
sion(J)/4B

Avg Duration
per Transmis-
sion(s)/16B

Avg Current En-
ergy per Trans-
mission(J)/16B

4B vCCM 0.04106 0.002489 0.05608 0.00338
8B vCCM 0.04639 0.00281 0.06164 0.00372
16B vCCM 0.05608 0.003396 0.07196 0.004349
8B CCM 0.04639 0.00281 0.06173 0.00373
16B CCM 0.05627 0.00341 0.07196 0.00436

Figure 12: Experimental result for 4-bytes and 16-bytes messages respectively

Energy Savings Projections. The energy consumption for transmissions with different values
of stretch already shows that varying the stretch does result in a tangible energy economy. To
better approximate the savings as perceived by the user of AE, we further investigate the overall
energy economy (i.e., also taking into account the sleep current). We estimate it by making
a projection of energy consumption of the sender for several instances of our communication
scenario.4

To compute a projected energy consumption, we assume the sender transmits a non-critical
message every 10 seconds, and a critical message once every minute. When using vCCM, the
non-critical ciphertexts are stretched less than the critical ciphertexts, such that we consider

3An approximation computed as the sum of current samples times the voltage times the inverse of
sampling frequency.

4The reason for doing a projection rather than a direct measurement is that the sender platform was
not yet fully optimized at the time of writing of this paper, and its sleep current was an order of magnitude
higher than what it is expected to achieve.

464 AE with Variable-Length Tags

several combinations of plaintext length and two tag lengths. When using CCM, we treat all
plaintexts with the longer of the two tag lengths.

The approximate energy consumed by a T -second long operation of the sender using the
standard CCM ECCM(T) is computed as shown in (2), where Ī denotes the average current drawn
during a transmission (can be used and computed from Figure 12 w.l.o.g.) and t̄ denotes the
average duration of the wake-up state per transmission. The formula assumes an optimal idle
state current consumption of 18 µA and that the voltage is 3V.

3 ·
(
(T − bT/10c · t̄) · 18× 10−6 + bT/10c · t̄ · Ī

)
J . (2)

The approximate energy consumed by a T -second long operation of the sender using vCCM
EvCCM(T) is computed as shown in (3), where Ī1 and Ī2 denote the average current drawn
during transmission of the non-essential and essential messages respectively, and t̄1 and t̄2 denote
the average duration of wake-up state per transmission for non-essential and essential messages
respectively. The formula again assumes an optimal idle state current consumption of 18 µA and
that the voltage is 3V.

3 ·
(
T − bT/10c ·

(5
6 · t̄1 + 1

6 · t̄2
))
· 18× 10−6 + bT/10c ·

(5
6 · t̄1 · Ī1 + 1

6 · t̄2 · Ī2
)

J . (3)

By evaluating the formulas (2) and (3) using the experimental results from Table 12 and by
setting the time T = 3600s (1 hour), we obtain the results displayed in Table 13, and visualized
in Figure 14 for T ≤ 3600s.

From Table 13, we see that we obtain 8% of overall energy saving when using 4B/8B tags
with vCCM instead of the 8B tags with CCM, 21% energy savings when using the 4B/16B tags
with vCCM instead of the 16B tags with CCM, and 14% energy savings when using the 8B/16B
tags with vCCM instead of 16B tags with CCM. This shows that an optimization as simple as
adjusting the tag length in communication scenarios with modest frame sizes leads to a noticeable
decrease of energy consumption. The relevance for practical applications is even higher due to
the fact that these savings are almost for free, owing to the simplicity of the black-box transform
underlying vCCM.

Energy Savings Tag Length
(Non-Critical/Critical)

Projected Energy Consumption (J)
4B messages 16B Messages

(1) 8% less than (4) 4B/8B Vartag CCM 0.30902 0.40516
(2) 21% less than (5) 4B/16B Vartag CCM 0.31981 0.42018
(3) 15% less than (5) 8B/16B vartag CCM 0.34532 0.45601
(4) - 8B standard CCM 0.36434 0.44187
(5) - 16B standard CCM 0.40053 0.53184

Figure 13: Projections Energy consumption projections for 1-hour operation

7 Yoga Is Not For Everyone
In Sections 4 and 5 we show that it is possible for an nAE secure scheme to be black-box
transformed into an nvAE secure scheme. This, together with the potential for substantial energy
savings achievable with help of nvAE schemes (showed in Section 6), raises the following questions.

Does this transformation work for all nAE schemes? This question has previously been
answered negatively by Reyhanitabar, Vaudenay and Vizár, who showed that an entire class of
nAE secure schemes5 succumbs to a non-trivial nvAE forgery attack when they are transformed
into nvAE schemes by encoding the tag length into their nonce, or into their AD, or even into
both their nonce and their AD simultaneously [RVV16]. Moreover, this class of AE schemes
includes OCB [RBBK01, Rog04, KR11] and GCM [MV04], two very well known and widely used

5More precisely this weakness applies to all schemes that internally use ciphertext-translation method
to authenticate AD [Rog02].

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 465

20 30 40 50 60

0.1

0.2

0.3

0.4

Time(min)

Energy(J)

Energy Projections 4-Byte Messages

4B/8B
4B/16B
8B/16B
8B
16B

(a) 4-byte messages.

20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

Time(min)

Energy(J)

Energy Projections 16-Byte Messages

4B/8B
4B/16B
8B/16B
8B
16B

(b) 16-byte messages.

Figure 14: Projections of energy consumption.

constructions, which further highlights CCM as the target whose transformation has the best
potential for immediate real-world impact.

Does this transformation work for any other nAE schemes? We confidently conjecture
an affirmative response to this question. The insight learned from the forgery attack presented by
Reyhanitabar et al. (and in a less general version by the Ascon team in the CAESAR competition
before that [Eic]) is, informally speaking, that for an nvAE construction to be secure, each call
to the underlying cryptographic primitive must have a stretch-dependent input. The blakcbox-
transformed OCB and GCM do not have this property because the processing of their AD blocks
is parallel and independent of the nonce. Interestingly enough, the sequential nature of CCM’s
authentication tag computation, sometimes criticized for its inefficiency [RW03], provides nvAE
security with the nonce-based transform: the nonce is part of the input to the first blockcipher call
in the plain CBC MAC, which propagates the “influence” of stretch throughout the computation
of the authentication tag.

This observation immediately suggests sequential modes as good candidates for the nAE-to-
nvAE transform from Section 4. In particular, sponge-based AE modes can be safely conjectured
to enjoy nvAE security with tag length encoded in the nonce. The informal proof sketch is
that, thanks to the reduction to a duplex object [BDPA11, MRV15] (essentially a blockwise,
stateful PRF), queries with different tag lengths will have all internal sponge states sampled
“independently”, which yields the kess property. A formal proof is required to confirm this
intuition, however. Moreover, sponge variants that cannot be reduced to keyed duplex, such as
Ascon [DEMS], will require dedicated proofs.

Reyhanitabar et al. [RVV16] also presented vΘCB, an nvAE secure variant of OCB, where
the tag length has been included as a tweak component for the underlying tweakable blockcipher,
in order to obtain the kess property. This suggests tweakable blockcipher-based nAE modes as
candidates for the nAE-to-nvAE transform from Section 4, though this class of AE schemes seems
to be without a significant representative construction.

8 Discussion
We have presented the first nvAE secure scheme that is obtained as a truly black-box transform of
a previous AEAD construction, such that the latter is perhaps the most widely supported AEAD
standard in embedded computational platforms. We have then experimentally confirmed that the
use of such a scheme is of practical interest, and brings measurable improvements of efficiency.

One important question, which has been addressed only partially in the existing literature,
is the resistance of CCM to multiple forgeries; i.e., how difficult is it to mount a forgery with a
τ -bit tag given that the adversary has already succeeded in making one or more forgeries? This is
especially relevant when considering extreme tag lengths (below 32 bits used e.g., in Bluetooth
standard), which can be meaningful for certain applications. Forler et al. indicate that CCM does
resist to such attacks in nonce-respecting setting [FLLW17], suggesting vCCM may be used with

466 AE with Variable-Length Tags

extremely short tags. However, it is necessary to integrate the reforgeability and the nvae security
notions and investigate the corresponding relations among notions to fully analyze the impact of
simultaneous tag variations and reforgeries on the security of vCCM and other nvAE schemes.

Another interesting open question is to identify which NIST LWC candidates are eligible for
an nvAE black-box transform, defining and analyzing these transforms, in order to compensate
for the lack of consideration for variable stretch in the standardization project.

Acknowledgments
We would like to thank Jean-Marc Koller, Robin Berguerand and Lorenzo Bergamini for their
help with the experimental setup.

References
[ADP+20] Elena Andreeva, Arne Deprez, Jowan Pittevils, Arnab Roy, Amit Singh Bhati, and

Damian Vizár. New Results and Insighs on ForkAE. NIST LWC workshop, 2020.
[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy,

and Damian Vizár. Forkcipher: A New Primitive for Authenticated Encryption of
Very Short Messages. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT
2019, Proceedings, Part II, volume 11922 of LNCS, pages 153–182. Springer, 2019.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the Sponge: Single-Pass Authenticated Encryption and Other Applications. In Ali
Miri and Serge Vaudenay, editors, SAC 2011, Revised Selected Papers, volume 7118 of
LNCS, pages 320–337. Springer, 2011.

[BP17] Alex Biryukov and Leo Perrin. State of the Art in Lightweight Symmetric Cryptogra-
phy. Cryptology ePrint Archive, Report 2017/511, 2017. https://eprint.iacr.org/
2017/511.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, EUROCRYPT 2006,
Proceedings, volume 4004 of LNCS, pages 409–426. Springer, 2006.

[DEMS] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schl affer. Ascon
v1.1 Submission to the CAESAR Competition. https://competitions.cr.yp.to/
round2/asconv11.pdf.

[dra] Lora/GPS HAT. http://wiki.dragino.com/index.php?title=Lora/GPS_HAT. Ac-
cessed: 2021-02-23.

[DWF03] Russ Housley Doug Whiting and Niels Ferguson. Counter with CBC-MAC. LNCS,
2003.

[Eic] Maria Eichlseder. Remark on variable tag lengths and OMD. crypto-competitions
mailing list. April 25, 2014.

[FLLW17] Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. Reforgeability of Authen-
ticated Encryption Schemes. In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP
2017, Proceedings, Part II, volume 10343 of LNCS, pages 19–37. Springer, 2017.

[GS19] Sebati Ghosh and Palash Sarkar. Variable Tag Length Message Authentication Code
Schemes. IACR Cryptology ePrint Archive, 2019:1347, 2019.

[Jon02] Jakob Jonsson. On the Security of CTR + CBC-MAC. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002, volume 2595 of LNCS, pages 76–93. Springer, 2002.

[KM] Masanobu Katagi and Shiho Moriai. Lightweight Cryptography for the Internet of
Things. https://iab.org/wp-content/IAB-uploads/2011/03/Kaftan.pdf.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages
306–327. Springer, 2011.

https://eprint.iacr.org/2017/511
https://eprint.iacr.org/2017/511
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
http://wiki.dragino.com/index.php?title=Lora/GPS_HAT
https://iab.org/wp-content/IAB-uploads/2011/03/Kaftan.pdf

Emiljano Gjiriti, Reza Reyhanitabar and Damian Vizár 467

[mbe] arm MBED. https://tls.mbed.org. Accessed: 2021-02-23.
[MFG99] Francesco Mondada, Edoardo Franzi, and André Guignard. The Development

of Khepera. In Proceedings of the First International Khepera Workshop, HNI-
Verlagsschriftenreihe, Heinz Nixdorf Institut, 64, pages 7–14, 1999.

[MFI94] Francesco Mondada, Edoardo Franzi, and Paolo Ienne. Mobile robot miniaturisation:
A tool for investigation in control algorithms. In Experimental Robotics III, pages
501–513. Springer, 1994.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State Keyed
Sponge and Duplex: Applications to Authenticated Encryption. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Proceedings, Part II, volume 9453 of
LNCS, pages 465–489. Springer, 2015.

[MV04] David A. McGrew and John Viega. The Security and Performance of the Ga-
lois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee Viswanathan,
editors, INDOCRYPT 2004, Proceedings, volume 3348 of LNCS, pages 343–355.
Springer, 2004.

[nisa] Lightweight Cryptography. National Institute of Standards and Technology. https:
//csrc.nist.gov/Projects/lightweight-cryptography.

[nisb] Submission Requirements and Evaluation Criteria for the Lightweight Cryptog-
raphy Standardization Process. National Institute of Standards and Technol-
ogy. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/final-lwc-submission-requirements-august2018.pdf.

[nrf] nRF52840 Product Specification v1.2. Nordic Semiconductor. https://infocenter.
nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering
Generic Composition. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 257–274. Springer, 2014.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption. In ACM CCS 2001, pages
196–205, 2001.

[Rog02] Phillip Rogaway. Authenticated-Encryption with Associated-Data. In ACM CCS
2002, pages 98–107, 2002.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 16–31. Springer, 2004.

[rpi] Raspberry Pi 3 Model B. Raspberry Pi Foundation. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT 2006, Proceedings,
volume 4004 of LNCS, pages 373–390. Springer, 2006.

[RVV16] Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. Authenticated Encryption
with Variable Stretch. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT
2016, Proceedings, Part I, volume 10031 of LNCS, pages 396–425, 2016.

[RW03] Phillip Rogaway and David Wagner. A Critique of CCM. IACR Cryptology ePrint
Archive, 2003:70, 2003.

[SLD17] Reihaneh Safavi-Naini, Viliam Lisý, and Yvo Desmedt. Economically optimal variable
tag length message authentication. In Aggelos Kiayias, editor, Financial Cryptography
and Data Security - FC 2017, volume 10322 of LNCS, pages 204–223. Springer, 2017.

[SWE02] Sanjay E. Sarma, Stephen A. Weis, and Daniel W. Engels. RFID Systems and Security
and Privacy Implications. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, CHES 2002, volume 2523 of LNCS, pages 454–469. Springer, 2002.

[sx1] Semtech SX1261: LoRa Core™ Long Range Low Power LoRa® RF Transceiver.
Semtec. https://www.semtech.com/products/wireless-rf/lora-core/sx1261.

https://tls.mbed.org
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.semtech.com/products/wireless-rf/lora-core/sx1261

468 AE with Variable-Length Tags

[WHF02] D. Whiting, R. Housley, and N. Ferguson. AES Encryption & Authentication Using
CTR Mode & CBC-MAC. IEEE P802.11 doc 02/001r2, May 2002.

[WHF03] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF
RFC 3610 (Informational), September 2003.

[WSRE03] Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels. Security
and Privacy Aspects of Low-Cost Radio Frequency Identification Systems. In Dieter
Hutter, Günter Müller, Werner Stephan, and Markus Ullmann, editors, Security in
Pervasive Computing, First International Conference, volume 2802 of LNCS, pages
201–212. Springer, 2003.

	1 Introduction
	2 Preliminaries and Prior AE Definitions
	3 Counter with CBC-MAC(CCM)
	4 Variable Tag CCM (vCCM)
	5 Security of vCCM
	6 Experimental Validation of Energy Efficiency
	7 Yoga Is Not For Everyone
	8 Discussion

