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Abstract. This paper considers the linear cryptanalyses of Authenticated Encryptions
with Associated Data (AEADs) GIFT-COFB, SUNDAE-GIFT, and HYENA. All of these
proposals take GIFT-128 as underlying primitives. The automatic search with the
Boolean satisfiability problem (SAT) method is implemented to search for linear
approximations that match the attack settings concerning these primitives. With
the newly identified approximations, we launch key-recovery attacks on GIFT-COFB,
SUNDAE-GIFT, and HYENA when the underlying primitives are replaced with 16-round,
17-round, and 16-round versions of GIFT-128. The resistance of GIFT-128 against
linear cryptanalysis is also evaluated. We present a 24-round key-recovery attack
on GIFT-128 with a newly obtained 19-round linear approximation. We note that
the attack results in this paper are far from threatening the security of GIFT-COFB,
SUNDAE-GIFT, HYENA, and GIFT-128.
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1 Introduction

Linear cryptanalysis [Mat93] is one of the most fundamental methods to evaluate the
security of symmetric-key primitives. This method pays attention to the linear relationship
among the input, the key, and the output of the objective function. Compared to differential
cryptanalysis [BS90], we find that linear cryptanalysis is more suitable to the cryptanalysis
of the Authenticated Encryption with Associated Data (AEAD) since it works under the
known-plaintext attack setting.

This paper manages to evaluate the security of GIFT-COFB, SUNDAE-GIFT, and HYENA
with the linear method. The targets are set as the encryption functions in the ciphertext
generating phases. According to the individual features of these proposals, we implement
automatic search with the Boolean satisfiability problem (SAT) method in [SWW18] to
search for linear approximations satisfying specific restrictions. We propose three 10-round
linear approximations that fit the attack settings of these primitives. With the newly
obtained distinguisher, we realise linear key-recovery attacks on GIFT-COFB, SUNDAE-GIFT,
and HYENA when the underlying primitives are replaced with round-reduced versions of
GIFT-128. An overview of our results is shown in Table 1. Also, the resistance of GIFT-128
against linear cryptanalysis is checked. A 24-round key-recovery attack is proposed with
the newly identified 19-round linear approximation. Please find in Table 1 a sketch of the
24-round attack.

Organisation.  In Sect. 2, we introduce the primitives analysed in the paper. Also, the
automatic technique for the search of linear approximations is briefly recalled. The main
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Table 1: Summary of the cryptanalytic results on the three AEADs and GIFT-128

‘ Algorithm ‘ Attack ‘ Rounds ‘ Time ‘ Data ‘ Memory | Success probability ‘ Ref. ‘
15 290.70 262,00 296 _ 7DCt21
GIFT-COFB | Linear 2 [ ]
16 2122.80 | 262.10 247 80.01% Sect. 4.1
) 16 291.20 260.00 296 _ [ZDC+21]
SUNDAE-GIFT Linear
17 2123.38 | 261.51 249 80.01% Sect. 4.2
HYENA Linear | 16 | 212200 [ 6151 [ 952 80.01% | Sect. 4.3 |
23 2120.00 2120.00 286 _ [ZDY19]
26 9124.42 9124.42 2109 _ TWZ719
Differential — . [ ]
26 212&20 212&25 21()9 _ [.JZZDQO]
GIFT-128 , —
27 212485 2123.53 280 _ [ZDC+21]
29 9117.00 9117.00 278 _ [ZDC+21]
Linear
24 2124.45 | 2122.55 2105 80.01% Sect. 5.2

method to estimate the complexity of the linear attack and the linear approximations
exploited in the key-recovery procedure are presented in Sect. 3. In Sect. 4, we launch
linear attacks for three AEADs with GIFT-128 as underlying primitives. The security of
GIFT-128 regarding linear cryptanalysis is also considered, and a 24-round linear attack is
proposed in Sect. 5. Sect. 6 concludes the paper.

2 Preliminaries

In this section, we first introduce GIFT-128, which works as the building blocks for the three
subsequent AEAD algorithms. Then, the overall structures of GIFT-COFB, SUNDAE-GIFT,
and HYENA are presented. After that, we briefly recall the automatic method for the
search of linear approximations.

2.1 Description of GIFT-128

GIFT-128 is one version of GIFT [BPP'17] that exploits the Substitution-Permutation
Network (SPN). GIFT-128 is a 40-round cipher with 128-bit inputs. The plaintext is
initialised as bgb; - - - b127, and by stands for the most significant bit. The cipher also
receives a 128-bit key K = kqgl|lk1|| - - - ||k7, where k;’s are 16-bit words. Each round of
GIFT-128 is composed of three steps: SubCells, PermBits, and AddRoundKey.

SubCells GIFT-128 employs the same invertible 4-bit S-box GS.

x 0x0 | Ox1 | Ox2 | 0x3 | Ox4 | 0x5 | 0x6 | Ox7 | 0x8 | 0x9 | Oxa | Oxb | Oxc | Oxd | Oxe | Oxf
GS(z) || 0x1 | Oxa | 0x4 | Oxc | 0x6 | Oxf | 0x3 | 0x9 | 0x2 | Oxd | Oxb | 0x7 | 0x5 | 0x0 | 0x8 | Oxe

The S-box is applied to every nibble of the inner state.

PermBits The bit permutation maps the bit from bit position i of the cipher state to bit
position P(3), i.e.,

bpay < bi,i € {0,1,...,127}.

The value of P(i) can be calculated as

127 — (127 — i) mod 16 _ _
127 — 44 6 +32 (3 — + (127 — i) mod 16 | + (127 — i) mod 4 p mod 128.
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AddRoundKey This step consists of adding the round key and the round constant. After
extracting a 64-bit round key RK from the key state, we partition it into two 32-bit
words as RK = U||V = wouq -+ -uz1||vovy - - -v31. U and V are XORed with the
cipher state as follows

baip1 < baiy1 @ us, baiyo < baiyo Dvg, 1 €4{0,1,...,31}.

The adding round constant operation is not introduced here as it does not affect the
validity of the attacks in this paper.

To minimise the hardware area and maintain the software friendly simultaneously, the
designers only implement state rotation and bit rotation operations in the key schedule.

Key schedule Note that the round key should be extracted before the update of the key
state. In each round, the 64-bit round key RK = U||V is firstly assigned as

U+ kg”kg, V + k‘ﬁ”k‘7
Then, the key state is updated as follows,
kollkal - - - llk7 <= (ke 3> 2)[|(k7 >> 12)||kol| - - - || ksl k5.

2.2 Three AEADs with GIFT-128 as Underlying Primitives

This paper investigates the linear attacks for GIFT-COFB, SUNDAE-GIFT, and HYENA. In
this subsection, we recall the overall structures of these primitives and refer readers to
[BCTT20, BBP 19, CDJN19] for more details.

2.2.1 GIFT-COFB

GIFT-COFB [BCI™20] is an Authenticated Encryption with Associated Data (AEAD) that
instantiates the COmbined FeedBack (COFB) mode [CIMN17] with GIFT-128. As in
Figure 1, the encryption algorithm takes the following data as inputs:

e an encryption key K € {0,1}12%;
« anonce N € {0,1}'28;

o associated data and message A, M € {0,1}*.
The algorithm outputs the following data:

« a ciphertext C' € {0,1}/M;

e atag T € {0,1}1%8.

The Ek functions in Figure 1 are referred to as the cipher GIFT-128. The feedback function
G {0,1}'28 — {0,1}!28 is defined as G(Yp||Y1) = Y1||(Yo < 1), where Yy, Y; € {0,1}54.
The 64-bit value L depends on the values of N and K and thus is unknown. Furthermore,
L is applied to generate masks for all the subsequent Fx functions. The designers claim
that GIFT-COFB achieves 64 bits IND-CPA security under the nonce respecting scenario.

2.2.2 SUNDAE-GIFT

SUNDAE-GIFT [BBP*19] is a family of AEAD schemes that exploit the AEAD scheme
SUNDAE [BBLT18] with GIFT-128 as the underlying block cipher. The encryption algorithm,
which is illustrated in Figure 2, takes as input a key K € {0,1}!?8, an associated data
A €{0,1}*, and a message M € {0,1}*. For variants accepting a fixed-length nonce N,
the nonce is prepended to and regarded as a part of the associated data A. The output of
the encryption is a ciphertext C' € {0, 1}|M‘ and a tag T'. The operation ‘x’ in Figure 2 is
the multiplication by 2 or 4, which depends on the length of the last blocks of A and M.
For more information about the primitive, please refer to [BBP*19].
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Figure 1: Encryption of GIFT-COFB.
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Figure 2: Encryption of SUNDAE-GIFT.

2.2.3 HyENA

The word HYENA in [CDJN19] has two meanings. For the one thing, it stands for the
Hybrid feedback-based ENcryption with Authentication mode of operation that provides
Nonce-based Authenticated Encryption with Associated Data (NAEAD) functionality. It
also indicates the instantiation of the mode of operation mentioned above with the cipher
GIFT-128. In this paper, we take the second meaning when we refer to HYENA.

The encryption of HYENA is shown in Figure 3, which takes an encryption key
K € {0,1}'%8 a nonce N € {0,1}, an associated data A € {0,1}*, and a message
M € {0,1}* as the input and returns a ciphertext C' € {0, 1}/ and a tag T € {0,1}%.
Similar to the case in GIFT-COFB, HYENA also creates a 64-bit unknown value A before
the associated data processing phase. This value assists in masking half of the input state
for all of the following Ex functions. Under the nonce respecting scenario, the designers
claim that for a valid attack on HYENA, the data requirement should be less than 264,
and the time complexity is bounded by 228,

2.3 Automatic Method for the Search of Linear Approximations

The most fundamental step to launch a linear attack is to find a linear distinguisher. This
paper utilises the automatic tool with the Boolean satisfiability problem (SAT) method
in [SWW18] to search for linear approximations of GIFT-128. In different settings, we
start with searching the linear trail with the absolute value of the correlation being no less
than the predetermined value c¢. Then, we select the distinguisher that matches the attack
setting of the primitive under consideration. After fixing the input and output masks of
the linear approximation, we manage to discover all linear trails, whose absolute values of
correlations are no less than ¢ - 2729, in this approximation.
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Figure 3: Overall structure of HYENA.

To enable the SAT problem to realise the search of linear trails, we should use Boolean
formulas to represent the linear property of the cipher. Benefiting from the simple but
elegant structure of GIFT-128, describing the propagation of the linear mask inside the
cipher boils down to tracing the propagation of the linear mask across the S-box. In other
words, we should create a set of Boolean expressions that incorporates the full information
of the Linear Approximation Table (LAT) of the S-box.

Denote x € F3 and y € F5 the input and output masks of the S-box. Since the absolute
values of the entries in the LAT belong to the set {0,2, 4,8}, the absolute value of the
correlation for the possible propagation only has three possibilities, i.e., 272, 271, and 1.
To encode the absolute value of the correlation |cor|, we employ two Boolean variables
g0 and &7 so that €9 + €1 equals the opposite number of the binary logarithm of |cor|.
Specifically, if |cor| equals 272, golleq is set as (1,1); if |cor| equals 271, gglley is set as
(0,1); if the propagation is deterministic, olle; is set as (0,0). Next, following the method
in [SWW18], we define a 10-bit Boolean function f(x||y|leolle1) as

1, if  — y is a possible propagation with |cor| = 2~ (co+e1)

f(®[ylleoller) = {

0, otherwise

After simplifying the expression of f with the off-the-shelf software Logic Friday!, we get
a set of Boolean formulas that precisely depicts the relation among x, y, ¢, and &;.

Aside from tracking the propagation of linear mask inside the cipher, the SAT problem
should clarify the correlation of the targeted linear trail. Suppose we intend to search for
the r-round trail with the absolute Value of the correlation being no less than ¢ = 27¢,
where £ is a positive integer. Let 5 ) be the auxiliary variable regarding the j-th S-box
in the i-th round, where 0 <7 <r—1,0 < j < 31,0 < k < 1. The valid linear trail should
satisfy the condition

r—1 31

N IELEL

=0 j=0 k=0

As in [SWW18], we apply the sequential encoding method [Sin05] to convert this inequality
constraint into a sequence of Boolean expressions.

So far, the problems of searching for linear trails can be converted into SAT problems,
and we invoke the SAT solver Cryptominisat5 [SNC09] to solve the problems in this paper.
At last, we refer readers to [SWW18] for more information about the automatic technique.

lhttps://web.archive.org/web/20131022021257 /http: //www.sontrak.com/
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3 Linear Distinguishers in the Attacks

In this section, we first introduce the method to evaluate the complexity of the linear
attack. After that, we propose the linear approximations employed in the attacks.

3.1 Complexity Analysis of the Linear Attack

Let u 72" 4 be an r-round linear approximation of an iterated block cipher with

block size n bits. Denote the absolute value of the correlation regarding the dominating
characteristic 7 = (79,71, ...,7) with 79 = u and 7. = v of this linear approximation as
c. The expected linear potential ELP(u,v) of linear approximation equals the quadratic
sum of the correlations for all characteristics belonging to the linear approximation.

In the linear attack based on this approximation, we perform partial encryption and
decryption and estimate the linear approximation’s empirical correlation by guessing the
values of some round keys. The key candidate is accepted if its empirical correlation is
greater than the predefined value of the threshold ©.

Denote the probability that the correct key survives as Pg, which is called the success
probability of the attack. 27¢ represents the proportion of keys that are discarded in the
screening process, and we call the exponent a the advantage [Sel08] of the attack. In the
hypothesis test, the probabilities for the two types of errors are calculated as

apg=2"%and a3 =1 — Pg,

where oy is the probability that a wrong key candidate is accepted, and «a; is the probability
that the correct key is rejected.

Suppose that N known plaintexts participate in the key-recovery attack. The threshold
value is set as

0=/1/N ¢! (1 . 2—<a+1>) ,

where ® stands for the cumulative distribution function of the standard normal distribution.
With the method in [BN17], the success probability of the linear attack is

<c- VN —-o71(1- 2—(“+1)) V1 +N.2—n>
P3%(I) .
V1+ N - (ELP(u,v) — )

(1)

3.2 Linear Approximations in the Attacks on Three AEADs

In the test phase, we observe that the absolute value of the correlation for the optimal
11-round linear trail regarding GIFT-128 is 273!, Given the linear hull effect of GIFT-128
is relatively weak, we guess that the data requirements for linear attacks with 11-round
approximations may be larger than 2%4, which is the common upper bound for the three
AEADs analysed in this paper. Thus, we utilise 10-round linear approximations to realise
key-recovery attacks for the three AEADs.

Beyond that, in the test, we notice that the maximum absolute value of the correlation
for the 10-round linear trail is 2726. However, a further investigation reveals that all the
16384 10-round trails with this optimal correlation do not result in good performances
in the key-recovery attacks. That is to say, the number of appended rounds concerning
the optimal trail in the key-recovery attack is shorter than those regarding some 10-round
distinguishers with a bit lower correlations. Therefore, the dominating linear characteristics
of the three 10-round linear approximations in this section are not the optimal ones.
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3.2.1 10-Round Linear Approximation in the Attack on GIFT-COFB

Since the designers claim 64 bits IND-CPA security under the nonce respecting scenario,
the data requirement of a valid attack on GIFT-COFB should be lower than 24, Besides,
as the most significant 64 bits of the input for the Ej functions in the data processing
phase are masked by the unknown value L, the verification of the linear relation should be
irrelevance with these bits. To accomplish the search of linear approximations fulfilling
this restriction, we attempt to encode it with Boolean equations. These extra Boolean
equations are integrated into the original SAT problem in Sect. 2.3 to create a specialised
SAT problem targeting the conditional linear trail. As a result, the outcome of the
specialised SAT problem returned by the SAT solver will automatically coordinate with
the attack setting.

Specialised SAT problems Given that GIFT-128 achieves full diffusion after four rounds,
we conjecture the maximum number of rounds annexed before the linear distinguisher
in the attack on GIFT-COFB is three. Regarding the three rounds extended before the
linear approximation, we introduce extra variables to locate the bits involved in verifying
the linear relation. According to the functionality, the extra Boolean equations in the
specialised SAT problem can be divided into three parts.

Part I: Identifying the necessary bits for the calculation of the linear relation For each
S-box in the three appended rounds, we introduce four Boolean variables (uo, i1, fi2, it3)
to signify whether the four values of the input bits (zg, z1, 22, 23) should be known for
checking the linear relation, respectively. To be explicit, for 0 < ¢ < 3, we set u; as

{1, if the value of x; should be known for the verification of the linear relation
pi = :

0, otherwise

Likewise, we utilise four Boolean variables (v, 11, v2,v3) to stand for whether the four
values of the output bits (yo,y1,¥2,y3) are the necessary bits for calculating the linear
relation. Since the S-box is a non-linear operation, the four values of the input bits must
be known if any of the four output bits turn into necessary bits. Consequently, the newly
included variables should satisfy the following constraint

po =1 = pio = pz = (o V1 VinVus). (2)
Then, we consider an 8-bit Boolean function

1, if the inputs validate Eq. (2)

F(pollpallpzllpsllvollv flv2llvs) = )
0, otherwise

Note that this constraint can be converted into Boolean expressions with the method in
[SWW18], which is also recalled in Sect. 2.3. These expressions constitute the first part of
extra Boolean equations in the specialised SAT problem.

Part 1I: Ensuring the irrelevance with the most significant 64 input bits Denote ,u,(f’j)

and V,(Cw ) the variables for the j-th S-box in the i-th appended round before the linear
approximation, where 0 <7 < 2, 0 < 5 <31, 0 <k < 3. To make sure that the evaluation
of the linear relation does not rely on the most significant 64 bits of the input, we should
supplement the following 64 equations to the SAT problem

p? =1, 0<5 <15, 0< k<3,

These equations are the second part of extra Boolean equations in the specialised SAT
problem.
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Part Ill: Connecting the extended rounds with the linear trail Suppose that the input
mask of the 10-round linear trail in the original SAT problem is symbolically represented
as (ap, a1, ...,a127). The values of the bits masked with a; = 1 should be known so that we
can estimate the validity of the linear relation. Hence, to establish the connection between
the affixed three rounds and the linear trail, we generate the following 128 equations

Vliz.,j) =ap.jr), 0< 7 <31, 0< k<3,

where P is the bit permutation in the PermBits step. Equivalently, these equations can be
transformed into 256 Boolean expressions

v vapaym =1, v Vapujim =1, 0< <31, 0< k< 3.

These equations form the third part of extra Boolean equations in the specialised SAT
problem.

We apply the specialised SAT problem to assist the search of linear distinguishers for
GIFT-COFB. In the test phase, we find no trail satisfying the specialised SAT problem
if the absolute value of the objective correlation for the linear trail is fixed as 2726 or
2727, When the objective correlation is set as 2728, 16896 linear trails are returned by
the SAT solver. Indeed, these trails can be forward extended by three rounds in the
key-recovery phase. Nevertheless, for all the 16896 distinguishers, we also notice that
appending three rounds after the distinguisher will increase the number of guessed subkey
bits. The considerable time complexity disables us from performing a 16-round attack. So,
we lower the objective correlation of the specialised SAT problem to 2729 and discover
424320 linear trails. When we append three rounds both before and after these trails, we
observe the minimum number of guessed subkey bits is 69. Furthermore, the dominating
trail in the following linear approximation is the unique trail that achieves the minimum

number of guessed subkey bits.

Taken together, we exploit a 10-round linear approximation wu; ™% 4, with

ELP(uj,v;) = 27°7% where
u; = 0x0000 0x0000 0x0000 0x0000 0xa002 0x0000 0x0000 0x5001,
vy = 0x0000 0x0000 0x0000 0x0000 0x0000 0x0044 0x0000 0x0022.

The dominating linear characteristic with correlation ¢ = 2729 is exhibited in Figure 4.

3.2.2 10-Round Linear Approximation in the Attack on SUNDAE-GIFT

Unlike the case in GIFT-COFB, because there is no limitation at the input of the Ex function,
we purpose to attach four rounds and three rounds before and after the distinguisher. The
original SAT problem is exploited to search for the linear distinguisher of SUNDAE-GIFT.
Again, we note that all the 16384 optimal 10-round trails of GIFT-128 with correlation 2726
cannot derive 17-round attacks for the massive number of guessed subkey bits. Therefore,
we reduce the objective correlation to 2727. As there are numerous 10-round trails with
correlation 2727, the SAT solver outputs 919882 solutions and terminates the search for
memory error. We explore the feasibility of employing the 919882 trails to implement
17-round attacks and find that none of them can complete this task. We further lower the
objective correlation to 2728 and analyse the 658845 trails returned by the solver. Among
the 658845 trails, we choose the unique one attaining the minimum number of guessed
subkey bits, say 88, as the final distinguisher in the attack, which is the dominating trail

in the following linear approximation.

For the attack on SUNDAE-GIFT, we employ a 10-round linear approximation wus 10round,

vo with ELP(ug,ve) = 275536 where
ug = 0x0000 0x0000 0x002a 0x002a 0x0000 0x0000 0x0000 0x0000,
vy = 0x0044 0x0000 0x0022 0x0000 0x0000 0x0000 0x0000 0x0000.
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Figure 4: 10-round trail with ¢ = 272 in the approximation concerning GIFT-COFB.

The dominating linear characteristic with correlation ¢ = 272® is shown in Figure 5.

3.2.3 10-Round Linear Approximation in the Attack on HyENA

Similar to the case in GIFT-COFB, as the unknown value A masks the least significant 64
bits of the input for the Ex functions in the data processing phase, the estimation of the
linear equation must have no relevance to these bits. Likewise, we suspect the maximum
number of rounds extended before the linear distinguisher in the attack on HYENA is
three, considering that four rounds of GIFT-128 accomplish full diffusion. Accordingly, we
employ the specialised SAT problem in Sect. 3.2.1 and replace the second part of extra
Boolean equations with the following ones

pO =116 <j <31, 0< k< 3.

Then, the result of this specialised SAT problem will automatically suit the attack setting.

In the test, we obtain no trail satisfying the specialised SAT problem if the absolute
value of the objective correlation for the linear trail is fixed as 2726 or 2727, When the
objective correlation is set as 2728, the SAT solver outputs 14848 trails. We append three
rounds both before and after these trails and compute the minimum number of guessed
subkey bits. The minimum number of guessed subkey bits is 71, and four trails among
the 14848 ones reach this minimum value. The dominating trail of the following linear

approximation is one of the four trails that possesses the most significant linear hull effect.

Thus, the 10-round linear approximation ug m vz with ELP(us,vs3) = 2755.36 g

utilised, where

uz3 = 0x0000 0x0000 0x008a 0x8a00 0x0000 0x0000 0x0000 0x0000,
vz = 0x0044 0x0000 0x0022 0x0000 0x0000 0x0000 0x0000 0x0000.
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Figure 5: 10-round trail with ¢ = 272% in the approximation concerning SUNDAE-GIFT.

The dominating linear characteristic with correlation ¢ = 2728 is presented in Figure 6.

4 Cryptanalyses of Three AEADs Based on GIFT-128

Based on the linear approximations in Sect. 3, we present linear attacks on the three
AEADs in this section.

4.1 Linear Cryptanalysis of GIFT-COFB

We target the encryption functions in the message processing phase highlighted in red in Fig-
ure 1. Suppose we obtain a plaintext-ciphertext pair (M || Ma]| -+ || My, C1||C2|| - - - [|Cim)
of GIFT-COFB. With this information, the structure of GIFT-COFB enables us to compute
the values of the least significant 64 bits of X, ; and the 128 bits of Y, ; for 1 <i < m—2.
Then, we can launch a linear attack regarding the underlying primitive GIFT-128 with the
(m — 2) pairs {(Xq+i[64-127],Yoq4) | 1 < i < m — 2},

With the 10-round linear approximation u; 10-round, vy in Sect. 3.2.1, we launch a

16-round linear attack on GIFT-128 by appending three rounds both before and after
the distinguisher. As depicted in Figure 7, the key-recovery attack is realised with the
following steps.

247

S1 We allocate a counter Cnty[z;] for each of possible values of

z1 = X [Index™ (X )]| X P [Index™ (X )| EY **[Index> (EY °)]||t1,

where Index® (X14), Index®! (X'?), and Index®! (EY ) are index sets containing the
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Figure 6: 10-round characteristic with ¢ = 2728 in the approximation concerning HYENA.

bit positions that should be memorised,

Index>' (X)) = {119,126,127},
Index®(X'®) = {84,86,117,119},
Index®(EY™®) = {4-7,12-15,20-23, 36-39, 44-47, 52-55, 68-71, 76-79, 100-103, 108-111},

and t1 is a 1-bit string calculated as
t1 = X°%[64] ® X*[66] ® X*[78] ® X*[113] @ X°[115] ® X*[127] @ X "*[118].
Then, we compute the value of z; for each possible 42-bit subkey value

RK°[Index™ (RK®)]||RK [Index® (RK )| EK " [Index® (EK )] || EK [Index® (EK?)],

where
Index®*(RK®) = {815,24-31,56-63},
Index®*(RK') = {2,3,6,7,30,31,34,35,39,63},
Index® (EK™) = {59,63},
Index®! (EK™®) {15, 31,42, 46,62, 63},

by using each of the (m — 2) pairs (X444[64-127],Y,+;) and update Cnty[z1] by
Cnty[21] + 1. The time complexity of this step is (m — 2) - 242 - 42 G'S operations.

S2 Allocate a counter Cnta[2o] for each of 238 possible values of

2z = X [Index?? (X)) EY **[Index? (EY **)]||t2,
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where

Index*?(X ') {93,94, 119,126,127},
Index>*(EY'®) = {4-7,12-15,36-39, 44-47,68-71,76-79, 100-103, 108-111},
ta t1 @ X [85] @ X'[86).

For each possible 5-bit subkey value EK4[47]| EK'[10, 11, 26, 27], we compute the
value of zo and update Cnta[z3] by Cnta[z2] + Cnty[21]. The time complexity of this
step is 247 . 242.25 .4 G'S operations.

S3 Allocate a counter Cnts[z3] for each of 225 possible values of
23 = X'[52,60,61,93,94,119,126,127]| EY °[4-7, 36-39, 68-71, 100-103]||£3,
where t3 =ty ® X14[53]. Then, for each possible 10-bit subkey value
EK'[26,30]|EK'®[6,7,22,23,38,39, 54, 55|,

we compute the value of z3 and update Cntz[z3] by Cnts[z;] + Cnta[22]. The time
complexity of this step is 23% - 247 . 210 . 6 G'S operations.

S4 Initialise a counter X. For each possible 12-bit subkey value
EK™[62]||EK[10,11, 14]| EK®[2, 3, 18,19, 34, 35, 50, 51],
we compute the value of ¢4
ts =tz ® X°[89] @ X'*[93] @ X ?[122] @ X '*[126].

If the value of t4 equals zero, we update ¥ as ¥ + Cnts[z3]. The time complexity of
this step is 22° - 257 . 212.. 10 G'S operations.

The threshold is set as ©. The key guess will be accepted as a candidate if the value of
the counter ¥ validates the condition |X/(m — 2) — 0.5] > ©. All master keys that are
compatible with the guessed 69 subkey bits are tested exhaustively against a maximum of
two plaintext-ciphertext pairs.

Complexity Analysis We set the advantage of the attack as a = 5.20 and the number of
blocks m in the message as 26210, which constitutes the data complexity of this attack.
With Eq. (1), we obtain the success probability Pg = 80.01%. The time complexity of the
attack is composed of the time complexity in the subkey enumeration phase as in Steps S1
- S4 and the time to check the remaining 59-bit value in the master key exhaustively. In
this case, the total time complexity of the attack is 212280, Since Cnt;[z1] constitutes the
largest memory, the memory complexity is roughly 247.

4.2 Linear Cryptanalysis of SUNDAE-GIFT

We aim at the encryption functions in the ciphertext generating phase highlighted in
red in Figure 2. With a plaintext-ciphertext pair (Mj||Ma]| - [|Mg,,, C1]|Ca| - - |Ce,,)
of SUNDAE-GIFT, we can generate (¢3; — 1) plaintext-ciphertext pairs {(M; ® C;, M; 11 @

Cit1) | 1 € i< €y — 1} for the underlying primitive GIFT-128.

With the 10-round linear approximation us 10round, ve in Sect. 3.2.2, we launch a

17-round linear attack on GIFT-128 by appending four rounds and three rounds before and
after the distinguisher, respectively. The key-recovery procedure is illustrated in Figure 8.
We adopt the following steps to accomplish the key-recovery attack.
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S1 We allocate a counter Cnt;[z1] for each of 249 possible values of
z1 = Z'[64-79,96-111]|| EY °[8-11, 40-43, 72-75, 104-107] |1,

where t; = Y3[34] ® Y3[98] © X'4[9] @ X '4[13]. Then, we compute the value of z;
for each possible 64-bit subkey value

REK°[0-31]|| RK " [0-7]|| RK[49]|| EK "®[Index® (EK '®)]|| EK "® [Index® (EK %)),

by using each of the (¢3; — 1) pairs (M; & C;, M; 11 & C;y1) and update Cnty[z;1] by
Cnty[z1] + 1, where

Index® (EK'®) {0,16,17, 32, 33, 48,49},
Index® (EK'®) = {4,5,12,13,20,21,28,29,36,37, 44,45, 52, 53,60, 61}.

The time complexity of this step is (£ — 1) - 254 - 76 G.S operations.

233

S2 Allocate a counter Cntg[zs] for each of possible values of

2 = Z'[96-111]|| EY ' [8-11, 40-43, 72-75, 104-107] ||t2,

where to = t; ®Y3[50] © Y3[114]. We compute the value of 2, for each possible 10-bit
subkey value RK!'[32-39]||RK?[56,57] and update Cnta[z2] by Cnta[ze] + Cnty[z].
The time complexity of this step is 249 - 264 . 219. 6 G'S operations.

S3 Allocate a counter Cnts[z3] for each of 217 possible values of
23 = EY'°[8-11,40-43, 72-75,104-107]||t3, t3 = to ® Y>[56] © Y*[120].

For each possible 10-bit subkey value RK'[48-55]|| RK?[60, 61], we compute the value
of z3 and update Cnts[zs] by Cnts[z3] + Cntz[z2]. The time complexity of this step is
233 .274.210. 6 GS operations.

S4 Initialise a counter . For each possible 4-bit subkey value EK'[5,21, 36,52], we
compute the value of t4 = t3 ® X'4[42] ® X14[46]. If ¢, equals zero, we update X as
¥ + Cntz[z3]. The time complexity of this step is 217 - 284 .24 .6 G'S operations.

The threshold is set as ©. The key guess will be accepted as a candidate if the value of
the counter X validates the condition |X/(€3 — 1) — 0.5| > ©. All master keys that are
compatible with the guessed 88 subkey bits are tested exhaustively against a maximum of
two plaintext-ciphertext pairs.

Complexity Analysis We set the advantage of the attack as a = 6.00 and the number of
blocks ¢;; in the message as 25151, which constitutes the data complexity of this attack.
With Eq. (1), we obtain the success probability Pg = 80.01%. The time complexity of the
attack is composed of the time complexity in the subkey enumeration phase as in Steps S1
- S4 and the time to check the remaining 40-bit value in the master key exhaustively. In
this case, the total time complexity of the attack is 212338, Since Cnt;[z1] constitutes the
largest memory, the memory complexity is roughly 24°.

4.3 Linear Cryptanalysis of HyENA

The target of this attack is the encryption functions in the message processing phase
highlighted in red in Figure 3. Given a pair (Mo| M| - ||Mm—1,Col|C1||- - |Cm—1) of
HYENA, the values of the most significant 64 bits of the input and the full state of the
output for the Ex functions in red can be generated. These pairs can be used to launch a

linear attack on the underlying primitive GIFT-128.

With the 10-round linear approximation ug 10round, vg in Sect. 3.2.3, we launch a

16-round linear attack on GIFT-128 by appending three rounds both before and after the
distinguisher. The key-recovery attack is performed as follows, which is also in Figure 9.
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S1 Allocate a counter Cnty[21] for each of 252 possible values of

21 = X'*[32,40,41]|| EY *[Index® (EY '®)]||t1,

where
S1,prr15y 0-3,16-19, 24-27, 32-35, 48-51, 56-59, 64-67,
Index™ (EY™™) = { 80-83, 88-91, 96-99, 112-115, 120-123 } ’
ti = Y?[40] @ Y?[50] @ Y[56] @ YZ[72] @ Y°[82] @ Y*[88].

Then, we compute the value of z; for each possible 41-bit subkey value
RK°[Index® (RK°)]||RK " [Index® (RK ]| EK *[17, 21]| EK°[4, 37, 53],

by using each of the (m — 1) pairs and update Cnt;[z1] by Cnty[z1] + 1, where
Index®’ (RK®) = {16-23,32-39,48-55},
Index®’(RK') = {20,21,24,25,28,29,36,37,40,41, 44,45}

The time complexity of this step is (m — 1) - 24! - 40 G'S operations.

S2 Allocate a counter Cnty[zo] for each of 240 possible values of

z = EY'°[Index®*(EY *®)]|| X 4]0, 3,8, 11, 32, 40, 41] | ¢,

where IndexS2(EY'5) = {16-19,24-27, 48-51, 56-59, 80-83, 88-91, 112-115, 120-123}.
For each possible 7-bit subkey value EK'[1, 5]| EK'°[0,1,17,33,49], we compute
the value of z3 and update Cnta[z3] by Cntz[z2] + Cnty[21]. The time complexity of
this step is 2°2 - 241 .27 .6 G'S operations.

S3 Allocate a counter Cnts[z3] for each of 226 possible values of
z3 = EY'°[24-27, 56-59, 88-91, 120-123]|| X '*[0, 3, 8, 11, 32, 40, 41, 73, 74] | £,
where to = t; ® X14[65] ® X!4[66]. For each possible 11-bit subkey value
EK'[32,33,36]| EK'°[8,9, 24, 25,40, 41, 56, 57],

we compute the value of z3 and update Cntz[z3] by Cnts[z;] + Cnta[22]. The time
complexity of this step is 240 - 248 . 211 . 6 G'S operations.

S4 Initialise a counter Y. For each possible 12-bit subkey value
EK'[20,23]| EK'[48, 52| EK?[12,13, 28,29, 44, 45, 60, 61],

we compute the value of t3 = to & X13[9] © X13[13] © X13[42] © X 13[46]. If t3 equals
zero, we update ¥ as X+ Cntz[z3]. The time complexity of this step is 226 .259.212.10
G'S operations.

The threshold is set as ©. The key guess will be accepted as a candidate if the value of
the counter ¥ validates the condition |3/(m — 1) — 0.5] > ©. All master keys that are
compatible with the guessed 71 subkey bits are tested exhaustively against a maximum of
two plaintext-ciphertext pairs.

Complexity Analysis We set the advantage of the attack as a = 6.00 and the number of
blocks m in the message as 261>, which constitutes the data complexity of this attack.
With Eq. (1), we obtain the success probability Ps = 80.01%. The time complexity of the
attack is composed of the time complexity in the subkey enumeration phase as in Steps S1
- S4 and the time to check the remaining 57-bit value in the master key exhaustively. In
this case, the total time complexity of the attack is 2122:%°. Since Cnt;[21] constitutes the
largest memory, the memory complexity is roughly 2°2.
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5 24-Round Linear Attack on GIFT-128

This section provides a 19-round linear approximation for GIFT-128 first and then gives a
24-round linear attack with this linear approximation.

5.1 19-Round Linear Approximation of GIFT-128

With the experimental result, we identify that the absolute value of the correlation for the
optimal 20-round linear trail is 27%4. Considering the weak linear hull effect of GIFT-128,
we think that the data complexity of a linear attack with a 20-round approximation
may be larger than 2'2%. Hence, we adopt 19-round linear approximations to launch the
key-recovery attack.

Note that the maximum absolute value of the correlation for the 19-round linear trail is
2759 and we get 8192 trails with the optimal correlation. For all these trails, if we append
three rounds both before and after the distinguisher, the time complexity will exceed 2128,
So, we turn to check the possibility of extending three and two rounds before and after the
distinguisher and find that 24 trails enable us to give valid 24-round linear attacks. Since
the linear hull effects of the 24 linear approximations are almost the same, we randomly

pick one as the distinguisher in the attack.

The 24-round linear attack is based on a 19-round linear approximation uy 19-round, V4

with ELP(ug,v4) = 271743 where
ug = 0x0000 0x0000 0x0000 0x0000 0x000c 0x000c 0x0600 0x0000,
vy = 0x0400 0x0040 0x0202 0x0000 0x0001 0x0010 0x0000 0x0000.
The number of characteristics belonging to this linear approximation with different correla-

tions is demonstrated in Figure 10. The dominating linear characteristic with correlation
¢ = 2759 is exhibited in Figure 11.

The number of characteristi

Linear correlation of one characteristic

Figure 10: Distribution of characteristics belonging to the 19-round linear approximation.

5.2 Linear Attack on GIFT-128

With the 19-round linear hull, we launch a 24-round linear attack on GIFT-128 by appending
three and two rounds before and after the distinguisher, respectively. The key-recovery
attack is shown in Figure 12.

Suppose that the number of plaintext-ciphertext pairs utilised in the attack is N. We
allocate a global counter Cntg[zo] for each of 21%° possible values of

20 = Z°[80-111]|| EY **[0-11, 16-23, 32-43, 48-55, 64-67, 72-75, 80-87, 100-107, 112-119] ||¢1,
where t; is computed as
t1 = (EYZ[68] A EY?[71]) & EY*[69] & EY **[70]
@ (EY?3]96] A EY**[99]) @ EY**[97] & EY**[98).
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Figure 11: 19-round trail with ¢ = 27%9.

For each of N plaintext-ciphertext pairs, we compute the value of zy and update Cntg[zo]
as Cntg[zo] + 1. The time complexity of this step SO is N 24-round of encryptions. Then,
we exploit a similar method as in Sect. 4.1 to realise the enumeration of subkey bits. The
detailed information about the counters constructed in the subkey enumerating phase can
be found in Table 2. After executing step S20, we initialise a counter X. If 19 equals zero,
we update the value 3.

We set the threshold as ©. The key guess will be accepted as a candidate if the
value of the counter ¥ validates the condition |3/N — 0.5] > ©. All master keys that are
compatible with the guessed 62 subkey bits are tested exhaustively against a maximum of
two plaintext-ciphertext pairs.
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Table 2: Detailed computation of complexity.

Step Guessed sublor \ Information about the counter Time complexity
’ | Object Quantity | (GS operations)
s1 o BET1] ,20[8?71%1])&2;3[“1. 16-23, 32-43, 48-55, 64-67, 72-75, 80-87, 100-107, 112-119)] | £, 01 91052
by = t1 & X2
o ‘ PR#(50,51] 'Z"ES(:—liilﬂii':;['1—11‘16—23.32—43.r18—55‘6r1—67.72—75.,8()—87‘1[)'1—1[)7.112—119]\\[1;. g7 o101 g2 g2
ty =ty ®
S3  EK*[16,17] X23[35]|| Z°[80-111]|| EY 2 [4-11, 16-23, 36-43, 48-55, 64-67, 72-75, 80-87, 104-107, 112-119)|¢5 o2 P o G o P
s | BRI, 39 Z0[80-111]|| EY 23[4-11,16-23, 36-43, 48-55, 72-75, 80-87, 104-107, 112-119)] 4, - 9096 925
ty =t3 ® (EY 2[4 A EY (7))
S5 EK*[2,3] X23[7]|| Z2°[80-111]| EY 3[8-11, 16-23, 36-43, 48-55, 72-75, 80-87, 104-107, 112-119] | t4. o> oG o)
6 ‘ BR[18, 19 Z°[80-111]|| EY ?3[8-11, 16-23, 40-43, 48-55, 72-75, 80-87, 104-107, 112-119) | t5, o1 25691092 o
ts =ty & (BEY2[24] A EY22[27])
ST BK®[8,9] X?3[16](|2°[80-111]|| BY 23[8-11, 20-23, 40-43, 48-55, 72-75, 80-87, 104-107, 112-119] [¢5 PR 281. 912 92
S8 \ EK?[24,25) \ X?3(16,49]| 2°[80-111] || BY 23(8-11, 20-23, 40-43, 52-55, 72-75, 80-87, 104-107, 112-119] |¢5 278 278914 . 92
S9  EK*[40,41] X23[16, 49, 82][| Z°[80-111]|| EY 23[8-11, 20-23, 40-43, 52-55, 72-75, 84-87, 104-107, 112-119)||¢5 e B o 1 o 5P
S10 | EK?[56,57) | X2316,49, 82, 115][| 20[80-111] | EY 2*[8-11,20-23, 40-43, 52-55, 72-75, 84-87, 104-107, 116-119] 5 269 272.918 . 92
si | EK(3 %) 12‘1[8(2,11 1&5;:[8—11.20—23. 40-43,52-55, 7275, 84-87, 104-107, 116-119]|t, 265 960 920 92
6 =15 S 7
s12 | EK2(10,11] | X2323])| Z0[80-111] | EY 22[8-11, 40-43, 52-55, 72-75, 84-87, 104-107, 116-119] |16 262 205922 . 92
S13 EK?(26,27] X%3[23,52]|| 2°[80-111]|| EY 23[8-11,40-43, ,84-87,104-107, 116-119] |t 97 262924 . 92
S14 | EK®[42,43] | X2323,52,85])| Z0[80-111] | EY 2*[8-11, 40-43, 72-75, 104-107, 116-119] 6 256 6. 92
S15  EK?[58,59) X?3(23,52,85, 118][| 2°[80-111] || EY 23[8-11, 40-43, 72-75, 104-107] |t ZB B0 o 329 o 63
S16 \ EK?[44,45] \ Z°[80-111]|| EY 23[8-11,40-43, 72-75, 104-107] |7, t7 = tc & X22[91] 219 2°3. 930 . 92
S17  EK?[4,5,20,21,36,37,52,53] X?3[8,10,41, 43,72, 74,105, 107] || 2°[80-111]||¢- o 249.932.98 .4
S18 | BK?2(18,19,22,23] | Z0080-111))1ts. ts = t7 © X?2[38] @ X?2[46] 233 211910919
S19  RK°[49-55]| RK*[29] Z°[80-95] |to, to = ts & Y2[26] & Y2[57] & Y[121] oa FE R T o T
520 | RK°[40-43,45-47)| [ RK[27,58.59] | 10 = to @ Y2[21) & Y2[52] & Y2[116] 2! 217.952.910 .7
Total = - = P

Complexity Analysis We set the advantage of the attack as ¢ = 4.00 and the number
of pairs N as 21225, Thus, the data complexity of this attack is 2122-°. With Eq. (1),
we obtain the success probability Ps = 80.01%. The time complexity of the attack is
composed of the time complexity in the subkey enumeration phase as in steps SO - S20 and
the time to check the remaining 66-bit value in the master key exhaustively. In this case,
the total time complexity of the attack is 212445, Since Cntg[zo] constitutes the largest
memory, the memory complexity is roughly 2105,

6 Conclusion

This paper first studies linear cryptanalyses of three AEADs with GIFT-128 as underlying
primitives. We realise key-recovery attacks on GIFT-COFB, SUNDAE-GIFT, and HYENA
when round-reduced versions of GIFT-128 replace the underlying primitives. Also, we
check the security of GIFT-128 regarding to the linear attack. With a newly obtained
19-round linear approximation, we accomplish a 24-round linear attack on GIFT-128.
Finally, we note that the attack results in this paper are far from threatening the security
of GIFT-COFB, SUNDAE-GIFT, HYENA, and GIFT-128.
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