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Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by
abdominal pain or discomfort. Previous studies have illustrated that the gut microbiota
might play a critical role in IBS, but the conclusions of these studies, based on various
methods, were almost impossible to compare, and reproducible microorganism
signatures were still in question. To cope with this problem, previously published 16S
rRNA gene sequencing data from 439 fecal samples, including 253 IBS samples and 186
control samples, were collected and processed with a uniform bioinformatic pipeline.
Although we found no significant differences in community structures between IBS and
healthy controls at the amplicon sequence variants (ASV) level, machine learning (ML)
approaches enabled us to discriminate IBS from healthy controls at genus level. Linear
discriminant analysis effect size (LEfSe) analysis was subsequently used to seek out 97
biomarkers across all studies. Then, we quantified the standardized mean difference
(SMDs) for all significant genera identified by LEfSe and ML approaches. Pooled results
showed that the SMDs of nine genera had statistical significance, in which the abundance
of Lachnoclostridium, Dorea, Erysipelatoclostridium, Prevotella 9, and Clostridium sensu
stricto 1 in IBS were higher, while the dominant abundance genera of healthy controls
were Ruminococcaceae UCG-005, Holdemanella, Coprococcus 2, and Eubacterium
coprostanoligenes group. In summary, based on six published studies, this study
identified nine new microbiome biomarkers of IBS, which might be a basis for
understanding the key gut microbes associated with IBS, and could be used as
potential targets for microbiome-based diagnostics and therapeutics.
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INTRODUCTION

Irritable bowel syndrome (IBS) is a common gastrointestinal
disorder characterized by chronic, recurrent episodes of
abdominal discomfort and pain with altered bowel habits. It
has affected approximately 12% of the global population and over
16% of the United States population (Schmulson et al., 2006;
Poulsen et al., 2017; Ma et al., 2020). According to defecation
pattern, IBS patients can be divided into four main subtypes,
including IBS with constipation (IBS-C), IBS with diarrhea
(IBS-D), IBS with mixed bowel habits (IBS-M), and unclassified
IBS. Currently, the Rome criteria (Rome IV) has defined IBS as
recurrent abdominal pain with at least one day of abdominal pain
per week for the past three months and two or more of the
following symptoms: pain related to defecation, change in fecal
frequency, change in fecal shape, and any of these not less than six
months before diagnosis (Hellstrom and Benno, 2019; Asghar
et al., 2020; Palsson et al., 2020). IBS has become a significant
disease burden in terms of increased absenteeism from school or
work and reduced health-related quality of life, although it is not
a fatal disease (Zhen Lu et al., 2006; Ma et al., 2020; Yao et al.,
2020). IBS is a complex and heterogeneous disease with many
factors involved in its etiology and pathogenesis (i.e., mucosal
immune hyperactivity, food intolerances, distortions in the gut
microbiome) (Quigley, 2005; Mullin et al., 2014; Moloney et al.,
2016; Gonzalez-Castro et al., 2017).

An increasing number of studies have reported a critical role for
the gut microbiome in health and IBS, respectively (Kassinen et al.,
2007; Krogius-Kurikka et al., 2009; Carroll et al., 2011; Rajilic-
Stojanovic et al., 2011; Jeffery et al., 2012), but trends in the
microbial biomarkers associated with IBS in these reports are
inconsistent. At the phylum level, some studies showed higher
abundance of Proteobacteria in IBS (Carroll et al., 2012; Pozuelo
et al., 2015), whereas other research showed no difference of
Proteobacteria relative to healthy ones (Chung et al., 2016; Dior
et al., 2016). At the genus level, Faecalibacterium, Blautia (Pozuelo
et al., 2015; Tap et al., 2017), Veillonella (Tana et al., 2010;
Rigsbee et al., 2012), and Ruminococcus (Pozuelo et al., 2015)
were identified to be positively associated with IBS and
Methanogens (Rajilic-Stojanovic et al., 2011) was depletion in IBS.
A study indicated that Lachnoclostridium was significantly associated
with the clinical symptoms of IBS (Zhu et al., 2019), while there was
little concern in other studies. Thus, it remains uncertain whether
there are highly reproduciblemicrobial signatures that can differentiate
IBS subjects from healthy controls across cohorts and study designs.

Meta-analysis has been used as a tool to establish and validate
associations between the intestinal microbiome and diseases across
populations or cohorts (Walters et al., 2014; Sze and Schloss, 2016;
Duvallet et al., 2017; Sze and Schloss, 2018; Armour et al., 2019).
Several meta-analyses have been performed based on studies linking
the gut microbiome to IBS using bacterial culture and qPCR, or 16S
rRNA gene technology (Liu et al., 2017; Zhuang et al., 2017; Wang
et al., 2020). Nevertheless, these existing meta-analysis studies still
have limitations. The bacteria cultivation and qPCR technologies
(Kassinen et al., 2007; Krogius-Kurikka et al., 2009; Rajilic-
Stojanovic et al., 2011) focused on only a limited number of
microorganism species (Gerritzen et al., 2011). Analysis based on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
this evidence can only evaluate whether there are significant changes
within “common” bacteria when IBS occurs, rather than looking for
key bacterial characteristics without preconceived assumptions. For
example, these articles highlighted only lower Lactobacillus and
Bifidobacterium and higher Escherichia coli levels in IBS compared
to the healthy group. This indicates that research based on non-
targeted microbial identification methods, such as 16S rRNA gene
technology, deserve more attention in meta-analysis. Besides,
previous meta-analyses were almost always based on the final
results of independent studies, rather than the raw sequencing
data, which could not alleviate the incompatibility among multi-
cohort efforts due to the variation in bioinformatics pipelines
(Pollock et al., 2018). Meta-analyses based on raw sequencing
data have successfully characterized the microbiome signatures in
colorectal cancer, tumors (Shah et al., 2018; Sze and Schloss, 2018;
Thomas et al., 2019), and obesity (Finucane et al., 2014; Walters
et al., 2014; Sze and Schloss, 2016). Therefore, it is thus necessary to
conduct such analyses to identify significant differences in the gut
microbiome between IBS and healthy controls, which have not been
reported to date.

Here, we collected 16S rRNA gene sequence data of stool
samples (n=439) from six studies (Saulnier et al., 2011; Pozuelo
et al., 2015; Labus et al., 2017; Zhuang et al., 2018; Lo Presti et al.,
2019; Zhu et al., 2019). A unified pipeline was used to process raw
sequencing data to investigate whether biomarkers describing
bacterial communities or community-specific microbiota profiles
could more accurately identify IBS and healthy controls. The
results of our study showed that alterations in bacterial
communities are indeed associated with IBS and that a subset of
the bacterial profiles may be considered as potential biomarkers
for identifying the presence of IBS.
MATERIALS AND METHODS

Data Sets Collection
We followed previously published methods for the meta-analyses
of microbiome data (Duvallet et al., 2017; Sze and Schloss, 2018).
Raw data andmetadata for the included cohorts were downloaded
from the Sequence Read Archive (SRA). We collected 16S rRNA
gene sequence data of 439 stool samples from six previously
published studies, whose sequencing methods were performed
using Illumina sequencing or 454 sequencing. We excluded
studies that were reviewed or meta-analyzed, focused on
cultivation and qPCR techniques, or were used only as abstracts
for conference papers. Studies without controls or with fewer than
five case patients were also excluded. Any studies that failed to
provide either publicly available sequences or metadata were
excluded. The reuse of these published data in our meta-
analysis complied with all relevant ethical regulations. Of the
included studies, two were from the US, two were from China,
one was from Italy, and one was from Spain. We manually
curated metadata tables for the public case-controls.

Data Processing
Raw sequence data and metadata were obtained from the
Sequence Read Archive (SRA) in NCBI. To avoid bias caused
June 2021 | Volume 11 | Article 645951
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by different bioinformatic analysis pipelines, the sequence read
pools for each study were filtered and analyzed using the same
custom script based on the QIIME2-2020.2 (Hall and Beiko, 2018;
Bolyen et al., 2019). Each dataset was imported and assembled in
QIIME2-2020.2 against single-end sequences for 454 sequencing
or paired-end sequences for Illumina-sequencing. Denoising was
implemented using DADA2 (divisive amplicon denoising
algorithm 2) which discards chimeras and erroneous sequences
(Callahan et al., 2016). The individual real biological sequences,
referred to as amplicon sequence variants (ASV) (Callahan et al.,
2017) were retrieved as a higher resolution version of the
operational taxonomic unit (OTU) table than those generated
by traditional methods, as well as their frequencies. All remained
sequences had a length of ≥200 bp and an average sequence
quality score of ≥20. Subsequently, the resulting representative set
of sequences was aligned and classified using the SILVA database
(Quast et al., 2013; Yilmaz et al., 2014). ASVs with fewer than 10
reads were removed. We normalized the relative abundance of
each ASV by dividing its value by the total number of reads for
each sample. We then collapsed the ASVs to the genus level by
summing their respective relative abundances, discarding any
ASVs which were unannotated at the genus level. All statistical
analyses were performed on the relative abundance data at this
genus level.

Community Analysis
Both alpha and beta diversity analyses were performed within
each dataset through the q2-diversity plugin in QIIME2. Alpha
diversity metrics (i.e., evenness, observed-OTUs, and Shannon)
were calculated based on ASV level. The non-parametric
Kruskal-Wallis test (Sculco, 2001; Ren et al., 2018) was used to
test alpha diversity metric dissimilarities, and the p-value was
corrected using the Benjamini-Hochberg method (Ferreira, 2007;
Abbas et al., 2013). The Bray-Curtis distance was used to
measure beta diversity metrics. We explored the community
structure of the samples with PERMANOVA (Kelly et al., 2015)
using the beta-group-significance command. Rarefaction was
performed on the feature table before calculating the distances
in QIIME2.

Statistical Analysis
Two classification algorithms were used to classify healthy and IBS
individuals.We built an AdaBoost classifiers (Montazeri et al., 2016)
function with 1000 estimators utilizing Python’s scikit-learn module
(Pedregosa et al., 2011), and random forest classification models
using the RandomForest package (Lebanov et al., 2020). All models
were built with 10-fold cross-validation using data at the genus level.
Based on the test results of cross-validation, the interpolated area
under the receiver operating characteristic (ROC) curve (AUC) was
calculated. AUC represents the area under the ROC curve, which
can evaluate the classification ability of machine learning models.
The higher the AUC, the better the model at correctly classifying
instances, and 0.5 is the decision threshold.

Univariate analysis based on the relative abundances of
genera was performed using the linear discriminant analysis
effect size (LEfSe) method (Segata et al., 2011). We focused on
those biomarkers that had significant difference between cases
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and controls per dataset, and then combined these results across
all studies. Finally, we performed fixed-effects model based on all
important features and estimated the effect size standardized
mean differences (SMDs). The entire analytical workflow is
shown in Figure 1.
RESULTS

A total of 106 studies were identified in PubMed (Figure S1). A
total of 31 studies that were reviews or animal studies were
excluded. Of the 75 full-text articles reviewed for eligibility, 52
studies that did not meet certain eligibility requirements were
discarded, and 23 studies had datasets with inclusion criteria.
However, 17 datasets were excluded due to unavailable raw data
or incomplete metadata. We finally collected and re-processed
the original stool 16S rRNA sequence data published in six
studies, including 253 IBS samples and 186 control samples
(Saulnier et al., 2011; Pozuelo et al., 2015; Labus et al., 2017;
Zhuang et al., 2018; Lo Presti et al., 2019; Zhu et al., 2019). A
summary of the included studies, data characteristics, and
metadata is presented in Table 1.

No Consistent Significant Shifts in
Community Diversity Analysis
We firstly assessed whether there was a divergence in microbial
community composition and distribution at the ASV level
between healthy controls and IBS patients. For the alpha
diversity metrics, evenness, observed-OTUs, and Shannon were
calculated. The result of the K-W test showed that only two of the
six studies had statistically significant differences between the
two groups (Pozuelo et al., 2015; Zhu et al., 2019), according to
the Shannon and observed-OTUs indices (Table S1). To test for
differences in microbiota profiles between IBS disease stages and
healthy controls, we performed PERMANOVA analysis within
each dataset based on the Bray-Curtis distance (Table S2). The
results demonstrated that the statistically different studies were
consistent with those found in alpha diversity analysis (Pozuelo
et al., 2015; Zhu et al., 2019), and a study had a p-value
marginally greater than 0.05 (Saulnier et al., 2011). These
results implied that from a microbial perspective, the correlates
of IBS might be some of the key taxa found, rather than the the
entire community structure depicted at the level of ASVs
or OTUs.

Machine Learning Algorithm
Showed Microbiological Changes
at the Genus Level
Next, we wondered whether the relationship between intestinal
microbiota and IBS would be recapitulated when rearranging
microbiological data at a higher taxonomic level. To utilize the
biodiversity data more effectively, two sensitive ML algorithms,
AdaBoost and random forest classifiers, were employed at the
genus level, to estimate whether the gut microbiota was altered in
IBS, and to distinguish cases from controls, respectively. As
shown in Figure 2A, both classifiers, especially the AdaBoost,
provided AUC values greater than 0.8 in at least four datasets.
June 2021 | Volume 11 | Article 645951
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These results indicated that although the ASV results shown
above were not expected, IBS patients carry an altered gut
microbiota that can be correctly classified by genus-level gut
microbiome data using the ML method.

Identified Significant
Microbiome Biomarkers
The linear discriminant analysis effect size (LEfSe) tool was
utilized to search for bacterial biomarkers within each dataset.
After pooling respective biomarkers from six datasets, a total of
97 biomarkers (LDA SCORE > 2) were identified (Figure 2B).
However, the great majority of genera were dataset-specific,
with only Parabacteroides genera being shared in four of
the six studies and four genera being identified in 3/6 studies,
i.e., Lachnospiraceae_NK4A136_group, Butyricimonas, Dorea,
and Lachnoclostridium.

Then, the AdaBoost and random forest classifiers were built
based on the 97 biomarkers to further assess the combined
biomarkers selected by LEfSE analysis. We observed an
impressive classification with an AUC value of 0.86 (random
forest) and 0.77 (AdaBoost), separately (Figures S2, S3). To obtain
the essential taxa, after performing feature selection and pruning
random forest trees, the AdaBoost and random forest classifiers
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
retained the 23 and 25 most important features, respectively
(Figure 3). The most crucial genus was Parabacteroides, and
other features included genera such as Dorea, Ruminococcaceae
UCG-005, and Prevotella 9. Thus, to avoid the loss of essential
genera information, we pooled the results from the two classifiers,
and got 35 important features.

A fixed-effect model was used to aggregate these pieces of
evidence in order to accurately assess the degree of consistency of
bacterial biomarkers of IBS disease across datasets. Of the 35
important genera mentioned above, we found nine genera had
statistically significant difference between the two groups across
studies (Figure 4). Three of these significant genera showed a
significant decrease in the impurity of the random forest tree,
such as Erysipelatoclostridium (SMD=-0.18, 95% CI: -0.32 to
-0.03; P= 0.0150), Clostridium sensu stricto 1 (SMD=-0.19, 95%
CI: -0.33 to -0.05; P= 0.0091), and Coprococcus 2 (SMD=0.18, 95%
CI 0.04 to 0.32; P= 0.014). Holdemanella (SMD=0.22, 95% CI 0.08
to 0.36; P = 0.0025) contributed only to the AdaBoost classifier. And
five genera were ranked as highly important in both AdaBoost and
random forest classifiers: the genera Dorea (SMD=-0.21, 95% CI: -
0.35 to -0.06; P= 0.0050), Prevotella 9 (SMD=-0.15, 95% CI: -0.30 to
-0.01; P= 0.0399), Lachnoclostridium (SMD=-0.25, 95% CI: -0.40 to
-0.11; P= 0.0006), Ruminococcaceae UCG-005 (SMD=0.18, 95% CI
FIGURE 1 | The top frames represent the three main steps, and the rectangular frame shows the data process. DADA2, divisive amplicon denoising algorithm 2;
ASV, amplicon sequence variants; LEfSe, linear discriminant analysis effect size; RF, random forest; IBS, irritable bowel syndrome.
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0.04 to 0.32; P= 0.0140), and Eubacterium coprostanoligenes group
(SMD=0.23, 95% CI: 0.09 to 0.38; P= 0.0013).

The results of the overall analysis provide robust evidence for a
quantitative genus distribution of microorganisms associated with
IBS, such as the nine microbiome biomarkers. The genera
Erysipelatoclostridium, Clostridium sensu stricto 1, Dorea,
Prevotella 9, and Lachnoclostridium were significantly elevated in
IBS patients relative to controls, while Coprococcus 2,
Holdemanella, Ruminococcaceae UCG-005, and Eubacterium
coprostanoligenes group had a richer abundant in the controls
compared to the IBS group. The variation trend for three genera,
Dorea (Saulnier et al., 2011), Lachnoclostridium, and Clostridium
sensu stricto 1 (Zhu et al., 2019), were largely consistent with the
initially reported results. The other statistically significant genera
have hardly been highlighted in previous IBS microbiome studies
or meta-analyses, and their biological functions related to IBS have
not been reported so far. In despite of the inevitable heterogeneity,
the nine genera signatures were important in classification.
Therefore, our findings on repeatable microbial signatures for
IBS might be helpful to design non-invasive diagnostic tools.
DISCUSSION

Previous studies on dysbiosis of the gut microbiome in IBS
have been reported (Zhuang et al., 2017; Pittayanon et al., 2019;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Wang et al., 2020). However, our research is the first meta-analysis
based on raw sequencing data with the aid of two ML procedures.
By collecting data from stool samples across studies, and analyzing
them in a unified pipeline, we reassessed the role of the
microbiome in IBS, and investigated several novel microbiota
bacteria at the genus level that have been barely highlighted in
previous studies. Importantly, our findings consolidate and extend
previous reports that the gut microbiota was significantly
associated with IBS and may provide a potential tool for non-
invasive diagnosis. The development of non-invasive microbial
biomarkers will make it possible for the diagnosis and guidance of
drug use (Yu et al., 2017; Liang et al., 2020). For example, patients
who are characterized by depletion of health-associated microbes
could take treatments of probiotics or other interventions to
enrich these taxa. Studies committed to colorectal cancer have
taken a step further towards non-invasive microbial biomarkers in
fecal samples. Therefore, it will be beneficial to excavate IBS-
related microbial non-invasive tools.

The disease tends to have an alterated microbiome profile.
However, we observed inconsistent results of community diversity
analysis between previous studies. Some studies report no
significant difference in Shannon diversity (Labus et al., 2017;
Tap et al., 2017; Jeffery et al., 2020), and others show reduced
microbiota richness in the IBS group (Durban et al., 2012; Lo
Presti et al., 2019). A recent meta-analysis from Lin also had an
uncertain result for changes in a-diversity (Wang et al., 2020),
TABLE 1 | Size and characteristics of the IBS 16S rRNA datasets included in this study.

Dataset Groups (n) Age (average ± sd.) BMI (average ± sd.) Sex F/M Country Data storage
(NCBI SRA)

Amplification
region

Sequencing
method

Zhuang_2018 (Zhuang
et al., 2018)

HC (13) 30.54 ± 6.75 20.84 ± 1.46 20.61 8/5 21/9 China SRP150089 V3–V4 Illumina-MiSeq
IBS-D (30) 32.1 ± 8.11 ± 3.26

Presti_2019 (Lo Presti
et al., 2019)

HC (47), IBS
(44)

54, 48 23, 24 20/27,
30/14

IBS-D (16)
IBS-C (18) NA NA NA Italy SRP110018 V1-V3 454 GS Junior
IBS- A (10)

Pozuelo_2015 (Pozuelo
et al., 2015)

HC (66), IBS
(113)

37.6 ± 13,
42.6 ± 13

23.7 ± 3.4, 23.7 ± 4 40/26,
80/33

IBS-D (54) 41.9 ± 13 25 ± 4.6 29/25
IBS-C (32) 39.4 ± 10.8 23.3 ± 3.8 31/2 Spain SRP050404 V4 Illumina-MiSeq
IBS-M (27) 48.2 ± 16.4 23.9 ± 3.6 32/8

Zhu_2019 (Zhu et al.,
2019)

HC (15) 28.27 ± 1.56 NA 7/8 China SRP222428 V4 Illumina-HiSeq
IBS(15) 47.67 ± 14.24 1/2

Saulnier_2011 (Saulnier
et al., 2011)

HC (22), IBS
(22)

9.32 ± 1.52,
9.41 ± 1.04

NA 11/11, 8/
14

US SRP002457 454 GS FLX

IBS-D (1) 9.38 ± 1.19 5/8
IBS-C (13) 10 0/1 V1-V3
IBS-U (7) 9.26 ± 1.89 3/4 V3-v5
other (1) 9 0/1

Labus_2017 (Labus et al.,
2017)

HC (23), IBS
(29)

26.0 ± 6.48,
26.1 ± 5.72

14/9, 21/
8

IBS-D (10)
IBS-C (11)
IBS-M (5) NA NA NA US SRP099239 V3-V5 454 GS FLX
IBS-A (1)
IBS-U (2)
June 2
021 | Volume 11
NA, data not available; IBS, irritable bowel syndrome; HC, healthy controls; IBS-D, diarrhea-predominant IBS; IBS-C, constipation-predominant IBS; IBS-M, mixed IBS; IBS-A, alternating
IBS; IBS-U, unsubtyped IBS.
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because the included studies reported conflicting findings, or too
few studies were available. Fortunately, although our results also
showed that the significance of a-diversity or b-diversity
differences is not a universal phenomenon, the two ML
classifiers based on global genus-level data can comprehensibly
classify IBS disease from healthy status. It implies that the ML
algorithm might play a more significant role in the discovery of
microbial profile differences.

Actually, the approach based on the machine learning
algorithm has been involved in multiple medical fields, such as
some case-control and cohort studies (Koyner et al., 2018; Kanda
et al., 2019; Pasolli et al., 2019; Inaguma et al., 2020). Compared
to classic approaches, ML procedures allow researchers to reduce
the complexity of extensive data into specific classifications,
shorten the computational cost time, and improve accuracy. A
previous study reported no differences in fecal microbiota
abundance or composition between healthy and IBS groups
through classic ecologic approaches, but identified a microbial
signature for IBS severity while using ML (Tap et al., 2017).
Furthermore, although the results of the two algorithms differed,
the use of complementary variables for the analysis allowed us to
take full advantage of each analytical technique to provide more
comprehensive and accurate information (Miller and Moore,
2014; Stadler and Mukherjee, 2017). There are also some
inevitable limitations of ML models (Brynjolfsson and
Mitchell, 2017). For example, when they do make errors,
diagnosing and correcting them can be difficult because it will
require going through the underlying complexities of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
algorithms and associated processes; the bigger the data, the
longer it will take. However, ML has been evolving, and our
evidence confirms that this combined approach should be
credible and reliable in the research of microbial markers.

Our study suggested that biomarkers selected by LEfSE could
correctly classify IBS and healthy controls, and then nine key
signatures were screened by ML algorithm and meta-analysis.
The biological functions of the species belonging to them have
been previously indicated. For instance, the Prevotella strains are
known to be associated with chronic inflammatory conditions
(Ley, 2016; Larsen, 2017). The species Holdemanella biformis
acting as a histone deacetylaseinhibitor (HDACi) affects the
activation of calcineurin and nuclear factor of activated T cells
(NFAT)c3, which leads to the inhibition of tumor cell growth
(Zagato et al., 2020). Both the presence of inflammation and the
increased mast cell density play a critical role in the disease
process of IBS, and has clinical significance (Ng et al., 2018).
Besides, future studies should be designed to explore the exact
biological function of these taxa, and to understand any potential
role of these genera in the progression of IBS.

The genus Parabacteroides showed the largest contribution in
the two classifiers. Previous authors also argued that its
abundance correlated with 15Phe allele dosage in the sucrase–
isomaltase gene, which is strongly associated with increased risk
of IBS (Rangel et al., 2015). Nevertheless, there was no significant
difference between two groups by meta-analysis across six
studies. This finding should be viewed in the context of
considerable variations in clinical and individual characteristics
A B

FIGURE 2 | Most of the studies showed microbiome changes, and potential signatures were found at genus-level in each dataset. (A) Left: Area under the ROC
curve (AUC) is calculated by the AdaBoost algorithm. Right: Area under the ROC curve (AUC) is calculated by the random forest algorithm. X-axis starts at 0.5.
(B) The number of genera biomarkers with p < 0.05 were identified by linear discriminant analysis effect size (LEfSe) analysis.
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A

B

FIGURE 3 | The AdaBoost and random forest classifiers identified important feature genera in distinguishing IBS from healthy subjects. (A) The important features
selected by the AdaBoost classifier. a1. The top 23 genus biomarkers were ranked in descending order of the most relevant features to the model. a2. 10-fold
cross-validation score on the Y-axis and the number of features on the X-axis. (B) The important features contributed to random forest corresponding to AdaBoost.
b1. 25 important genera sorted in descending order based on mean decrease accuracy (MDA). b2. 10-fold cross-validation error on the Y-axis and the number of
features on the X-axis.
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of included studies. For example, the researchers found
differences between obese and lean individuals in this genus
(Wu et al., 2019). This again hints that the ML algorithm plays a
good role in disease-related microbiome analysis.

Another interesting discovery is that the genus Brachyspira (yet
not important for any classifiers) was only present in the pediatric
dataset included in our analysis. It was observed in patients with
IBS that Brachyspira attached to the colonocyte apical membrane
and linked with mast cell activation, mild mucosal inflammation,
and changes of molecular pathways related to bacterial uptake
(Jabbar et al., 2020). However, Brachyspira was not identified in
the original study (Saulnier et al., 2011), possibly due to the
different representative sequences or an outdated reference
database (Quast et al., 2013; Duvallet et al., 2017; Mancabelli
et al., 2017; Gibbons et al., 2018; Armour et al., 2019). In this meta-
analysis, the generation of representative sequences was based on
ASVs, rather than OTUs. In general, ASVs have inherent
biological significance to the DNA sequence, and provide more
comprehensive inference from large marker-gene datasets, relative
to de novo OTUs. Existing ASVs provide better sensitivity and
precision than the OTU methods (Callahan et al., 2017; Caruso
et al., 2019). Consequently, further applications of ASV methods
and database updates should be recommended.

We adhered to a uniform pipeline for conducting the meta-
analysis. However, heterogeneities are common and inevitable in
meta-analyses. This was also observed in three other meta-analyses
that including larger studies than ours. The inconsistency in the
microbial profiles in the stools may be due to complicated and
various factors among studies, for instance, individual experimental
design (Sample storage, DNA extraction technique, 16S rRNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
target region) (Lozupone et al., 2013; Mancabelli et al., 2017),
host-related covariates (diet, antibiotics, inflammation, age,
geography, temporal, culture, and race) (Wu et al., 2011;
Yatsunenko et al., 2012; Gorvitovskaia et al., 2016; Staudacher and
Whelan, 2016; Rej et al., 2018; Zhong et al., 2019), and disease
assessment. Erysipelatoclostridium has been reported to be positively
associated with dairy intake (Shen et al., 2019). Abundance of
Holdemanella has been observed to correlate with gender (Min
et al., 2019). Therefore, the availability of comprehensive metadata
might help to stratify the analysis and attenuate heterogeneity in
further meta-analyses. Unfortunately, we failed to assess how our
microbial findings were associated with the IBS subtype due to the
lack of sufficient metadata. To make better use of the data collected
in the original studies, data were unified and pooled to analyze
instead of being segregated by subgroup to gain greater power.
Meanwhile, numerous studies will need to be included to lessen
substantial heterogeneities for the meta-analysis. And we highlight
the significance of making raw data and associated patient metadata
publicly available to enable more comprehensive analyses in
the future.

Our meta-analysis with its deficiency adds new knowledge that
the nine genera play an important role in distinguishing healthy
individuals from the IBS group. Besides, we built ML classification
models using these nine biomarkers. The AUC value of RF was
0.77, but the AdaBoost classifier had an AUC value about 0.6. This
phenomenon might be caused by heterogeneity and other
confounding factors. For instance, IBS is a complex and
heterogeneous disease with many factors involved in its etiology
and pathogenesis. Despite the unfortunate performance of these
nine genera, our results provide new insight into the microbiome
FIGURE 4 | Forest plot reporting effect sizes calculated using a meta-analysis of standardized mean differences and a fixed-effects model on nine genera abundances
between carcinomas and controls. The SMD had a positive value confirming the higher number of genera in patients with IBS, and a negative value showing more
abundance of genera in healthy controls. The length of the error bar depicts the 95% CIs. The fixed model indicates the overall effect sizes SMD value of all studies.
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dysbiosis of IBS. Further studies require targeted functional
analysis of these nine signatures in IBS. Besides, we demonstrate
that meta-analysis combined with machine learning algorithms
may be a responsible approach in microbiome and disease
research. Furthermore, meta-analysis can allow for further
stratification of disease subtypes and microbiome disruption if
potential influencing factors such as unavailable raw sequencing
data or metadata, ambiguous and incomplete metadata can be
addressed. In summary, this work demonstrates the feasibility of
using a unified bioinformatics approach to pursue new findings in
the broader field of clinically relevant microbiome research and
enhances the value of separate analyses. As the field evolves,
researchers should utilize an increasing number of replicated
case-control studies to effectively translate putative microbiome
ideals into clinical practice.
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