
Lexicographically Fair Learning: Algorithms and
Generalization
Emily Diana !

University of Pennsylvania, Philadelphia, PA, USA

Wesley Gill !

University of Pennsylvania, Philadelphia, PA, USA

Ira Globus-Harris !

University of Pennsylvania, Philadelphia, PA, USA

Michael Kearns !

University of Pennsylvania, Philadelphia, PA, USA

Aaron Roth !

University of Pennsylvania, Philadelphia, PA, USA

Saeed Sharifi-Malvajerdi !

University of Pennsylvania, Philadelphia, PA, USA

Abstract
We extend the notion of minimax fairness in supervised learning problems to its natural conclusion:
lexicographic minimax fairness (or lexifairness for short). Informally, given a collection of demographic
groups of interest, minimax fairness asks that the error of the group with the highest error be
minimized. Lexifairness goes further and asks that amongst all minimax fair solutions, the error of
the group with the second highest error should be minimized, and amongst all of those solutions,
the error of the group with the third highest error should be minimized, and so on. Despite
its naturalness, correctly defining lexifairness is considerably more subtle than minimax fairness,
because of inherent sensitivity to approximation error. We give a notion of approximate lexifairness
that avoids this issue, and then derive oracle-efficient algorithms for finding approximately lexifair
solutions in a very general setting. When the underlying empirical risk minimization problem absent
fairness constraints is convex (as it is, for example, with linear and logistic regression), our algorithms
are provably efficient even in the worst case. Finally, we show generalization bounds – approximate
lexifairness on the training sample implies approximate lexifairness on the true distribution with
high probability. Our ability to prove generalization bounds depends on our choosing definitions
that avoid the instability of naive definitions.
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1 Introduction

Most notions of statistical group fairness ask that a model approximately equalize some
error statistic across demographic groups. Often this is motivated as a tradeoff: the goal is
to lower the error of the most disadvantaged group, and if doing so requires increasing the
error on some more advantaged group, so be it – this is a cost that we are willing to pay in
the name of equity. But solutions which equalize group errors do not in general mediate a
clean tradeoff in which losses in accuracy on more advantaged groups result in increases in
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6:2 Lexicographically Fair Learning

accuracy on less advantaged groups: instead, generically (i.e. except in the very special case
in which the Bayes optimal error is identical for all groups), a constraint of equalizing group
error rates may require artificially increasing the error on at least one group, without any
corresponding benefit to any other group.

A partial answer to this criticism of standard notions of group fairness is the classical
notion of minimax fairness, recently studied by [23, 9] in the context of supervised learning.
Minimax fairness asks for a model which minimizes the error of the group most disadvantaged
by the model – i.e. the group with maximum group error. In doing so, it realizes the promise
of equal error solutions in that it trades off higher error on populations more advantaged by
the model for lower error on populations less advantaged by the model when this is possible –
but without artificially increasing the error of any group when doing so. Indeed, it is not
hard to see that a minimax model necessarily weakly Pareto dominates an equal error rate
model, in the sense that group errors are only lower in the minimax solution simultaneously
for all groups.

This narrative is most sensible if there are only two demographic groups of interest. If
there are more than two groups, there may be many different minimax optimal models
that have very different error profiles for groups other than the max error group. How
should we choose amongst these? Prior work [9] has broken ties by optimizing for overall
classification accuracy. But why should we entirely give up on the goal of optimizing for the
most disadvantaged, partially enunciated in the motivation of minimax fairness, once we
have fixed the error of only one of many groups?

In this paper we propose the natural continuation of this idea, which we call lexicographic
minimax fairness. Informally speaking, this notion recurses on the idea that we wish to
minimize the cost of the least well off. A model that satisfies lexicographic fairness, which
we call a lexifair model, will minimize the maximum error γ1 on any group, amongst all
possible models (i.e. a lexifair model is a also a minimax model). Further, amongst the set
of all minimax models, a lexifair model must minimize the error of the group with the second
highest error γ2. Amongst all of these models, it further minimizes the error of the group
with the third highest error γ3, and so on.1

1.1 Our Contributions
Our first contribution is a definition of (approximate) lexicographic minimax fairness. Cor-
rectly defining an actionable notion of lexicographic minimax fairness is surprisingly subtle.
For standard computational and statistical reasons, it will not be possible to exactly match
the distributional lexicographically optimal error rates γ1, γ2, γ3, etc. But as we will observe,
these lexicographically optimal error rates can be arbitrarily unstable, in the sense that
amongst the set of models that have minimax error larger than γ1 by even an arbitrarily
small margin, the value of the optimal lexifair error on the third highest error group γ′

3 can
be arbitrarily larger than γ3 (See our example in Section 2.1.1). An implication of this is
that the vectors of errors γ, γ′ representing exact lexifair solutions in and out of sample
can be entirely incomparable and arbitrarily different from one another. Hence we need a
definition of approximate lexifairness that accounts for this instability, and allows for sensible
statements about approximation and generalization.

Another challenge arises in the interaction between our definitions and our (desired)
algorithms. A constraint on the highest error amongst all groups, which arises in defining
minimax error, is convex, and hence amenable to algorithmic optimization. However, naive

1 It is easy to see that there are cases in which a lexifair model may have arbitrarily smaller errors than a
minimax model on all but the worst-off group.
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specifications of lexifairness involve constraints on the second highest group errors, the third
highest group errors, and more generally kth highest errors. These are non-convex constraints
when taken in isolation. However, as it turns out, a constraint on the second highest error
becomes convex when we restrict attention to minimax optimal classifiers, and more generally,
a constraint on the kth highest error becomes convex once the values of the lower order group
errors are constrained to their lexifair values. We show this by giving a clearly convex variant
of our lexifair definition, specified by exponentially many linear constraints, which replace
constraints on the k’th highest error groups with constraints on the sums of all k-tuples of
group errors. We then show that our definition of “convex lexifairness” is equivalent to our
original notion of lexifairness, at least in the exact case (absent approximation). We give our
formal definitions in Section 2.1.2.

With our notion of approximate lexifairness in hand and our convexified constraints, we
give oracle-efficient algorithms for finding approximate lexifair models in both the regression
and classification case. This means that our algorithms are efficient reductions to the problem
of unconstrained (that is, standard non-fair) learning over the same model class. Despite the
worst-case intractability of most natural learning problems even absent fairness considerations,
a desirable feature of oracle-efficient algorithms is that they can be implemented using any
of the common and practical heursitics for non-fair learning, often with good empirical
success [20, 30, 16, 1].

Our algorithms are based on solving the corresponding constrained optimization problem
by recasting it as a (Lagrangian) minmax optimization problem, and using no-regret dynamics.
Because our “convexified” lexifairness constraints are exponentially numerous, the “constraint
player” in our formulation has exponentially many strategies – but as we show, we can
efficiently optimize over her strategy space using an efficient separation oracle. Hence the
constraint player can always play according to a “best response” strategy in our simulated
dynamics. When our base model class is continuous and our loss function convex (as it is
with e.g. linear regression), then the “learner” in our dynamics can play gradient descent over
parameter space. In this case, our oracle efficient-algorithms are in fact fully polynomial time
algorithms because our reduction to weighted learning problems involves only non-negative
weights, which preserves convexity. In the classification case, when our loss function is
non-convex, we can convexify it by considering the set of all probability distributions over
base models. Here the parameters we optimize over become the weights of the probability
distribution, and our loss function (i.e. the expected loss over the choice of a random
model) becomes linear in our (enormous) parameter space. In this case, we are effectively
solving a linear program that has both exponentially many variables and exponentially many
constraints – but we are nevertheless able to do so in an oracle-efficient manner by making
appropriate use of the Follow the Perturbed Leader algorithm [18] for no-regret learning.

Finally, we prove a generalization theorem, showing that if we have a dataset S (sampled
i.i.d. from an underlying distribution) that has sufficiently many samples from each group, and
if we have a model that is approximately lexifair for S, then the model is also approximately
lexifair on the underlying distribution. This is significantly more involved than just a standard
uniform convergence argument – which would simply state that our in and out of sample
errors on each group are close to one another – because approximate lexifairness additionally
depends on the precise relationship between these group errors. Nevertheless, we show that
uniform convergence is a sufficient condition to guarantee that in-sample lexifairness bounds
correspond to out of sample lexifairness bounds.

FORC 2021
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1.2 Related Work

There are many notions of group or statistical fairness that are studied in the fair machine
learning literature, which are generally concerned with equalizing various measures of error
across protected groups; see e.g. [4, 24] for surveys of many such metrics.

Minimax solutions are a classical approach to fairness that have been used in many
contexts including scheduling, fair division, and clustering (see e.g. [14, 3, 29, 5, 6]). A
number of these works employ techniques for solving two-player zero-sum games as part of
their algorithmic solution [6, 5]. This is the same general algorithmic framework that we
use. More recently, minimax group error has been proposed as a fairness solution concept for
classification problems in machine learning [23, 9, 22]. These works generally do not specify
how to choose between multiple minimax solutions, with the exception of [9], which gives
algorithms for choosing the solution with smallest overall classification error subject to the
minimax constraint.

Lexicographic minimax fairness has been studied in the fair division literature for tasks
such as quota allocation in mobile networks, load balancing, and network design [10, 7, 25,
33, 32, 28, 2, 27, 26]. As far as we know, we are the first to study lexicographic fairness in a
learning context in which the quantities of interest must be estimated, and hence the first to
identify the sensitivity issues that arise when defining approximate notions of lexicographic
fairness.

An alternative approach to learning one classifier for all groups is to learn decoupled
classifiers [11, 31], i.e. a separate classifier for each group. The decoupling of error rates
across all groups eliminates tradeoffs between groups, and hence results in classifiers that are
lexicographically fair (within the class of decoupled classifiers). But there are at least three
important reasons one might want to learn a single classifier (the approach we take) rather
than a separate classifier for each group. The first is that learning separate classifiers for each
group requires that the groups be disjoint, which is not needed in our approach. For example,
we could divide the population into groups according to race, gender, and age – despite
the fact that individuals will fall into multiple groups simultaneously. In other words, our
algorithms can be used to obtain subgroup or intersectional fairness [19, 20, 15, 21, 17, 13].
Second, learning separate classifiers for each group requires that protected group membership
be used explicitly at classification time, which can be undesirable or illegal in important
applications. Finally, learning a single classifier allows for the possibility of transfer learning,
whereby a small sample from some group can be partially made up for by larger quantities
of data from other (nevertheless related) groups.

2 Model and Definitions

Let Z = X × Y be an arbitrary data domain. Each data point in our setting is a pair
z = (x, y) where x ∈ X is the feature vector and y ∈ Y is the response variable (i.e. the
label). Let X consist of points belonging to K (not necessarily disjoint) groups G1, . . . , GK ,
so we can write X = ∪K

k=1Gk. We write P to denote an arbitrary distribution over Z, and Pk

to denote the marginal distribution induced by P on the kth group Gk × Y . Let S = {zi}n
i=1

be a data set of size n, which for the purposes of proving generalization bounds, we will take
to consist of n data points drawn i.i.d. from P . Denote the points in S that are contained in
Gk by Gk × Y, so we can write S = ∪K

k=1Gk.
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Let H ⊆ {h : X → Y} be the model class of interest, and let L : H × Z → R+ be a loss
function that takes a data point z and a model h as inputs, and outputs the loss of h on z.
For instance, in the case of classification and zero-one loss, we have L(h, z) = 1 [h(x) ̸= y].
We will abuse notation and write Lz(·) for L(·, z) for any data point z. Throughout the
paper, for any distribution P, we write the expected loss of a model h over P as:

LP(h) ≜ L(h, P) ≜ Ez∼P [Lz(h)] .

We slightly abuse notation and write LS(h) to denote the empirical loss on a dataset S.
Here and throughout the paper when S plays the role of a distribution, we interpret that as
the uniform distribution over the points in S, and accordingly, z ∼ S as a point sampled
uniformly at random from S.

Until Section 7, we will work exclusively with sample quantities, and so for simplicity
of notation, let us define Lk(h) ≜ LGk

(h) to denote the sample loss of a model h on the
k’th group. When necessary, we will write Lk (h, P) to denote LPk

(h), the corresponding
distributional loss of h on the k’th group. For any model h and any data set S = ∪k{Gk}, let
h̄S be the ordering induced on the groups {Gk}K

k=1 by the loss of h, breaking ties arbitrarily.
In other words, h̄S : [K] → [K] is any bijection such that the following condition holds:
Lh̄S(1)(h) ≥ Lh̄S(2)(h) ≥ . . . ≥ Lh̄S(K)(h). The corresponding distributional ordering of the
groups by any model h is defined similarly: for any model h and any distribution P over
Z, let h̄P : [K] → [K] be the ordering induced on the groups {Gk}K

k=1 by the expected loss
of h, breaking ties arbitrarily. In other words, h̄P is any bijection such that the following
condition holds: Lh̄P (1)(h, P) ≥ Lh̄P (2)(h, P) ≥ . . . ≥ Lh̄P (K)(h, P). When the distribution
(data set) is clear from context, we elide the dependence on the distribution (data set) and
simply write h̄ for h̄P (h̄S).

Our definition of lexifairness will be given recursively. At the base level, we define
H(0) = H to be the set of all models in our class. Then recursively for all 1 ≤ j ≤ K, we
define:

γj ≜ min
h∈H(j−1)

Lh̄(j)(h), H(j) ≜
{

h ∈ H(j−1) : Lh̄(j)(h) = γj

}
.

In words, γj is the smallest error that any model in H(j−1) obtains on the group that has
the jth highest error, and H(j) is the set of all models in H(j−1) that attain this minimum –
i.e. that have jth highest error equal to γj . Thus, γ1 is the minimax error – i.e. the highest
group error for the model that is chosen to minimize the maximum group error. Similarly, γ2
is the error of the second highest group for all minimax optimal models that further minimize
the error of the second highest group, and so on. With this notation in hand, we can define
exact lexifairness as follows:

▶ Definition 1 (Exact Lexicographic Fairness). Let 1 ≤ ℓ ≤ K. We say a model h ∈ H
satisfies level-ℓ (exact) lexicographic fairness (lexifairness) if for all j ≤ ℓ, Lh̄(j)(h) ≤ γj.

Minimax fairness corresponds to level-1 lexifairness. This is a definition of exact lexifair-
ness, in that it permits no approximation to the error rates – i.e. we require Lh̄(j)(h) ≤ γj for
all j, and hence Lh̄(j)(h) = γj for all j. For a variety of reasons, we will need definitions that
tolerate approximation. For example, because we inevitably have to train on a fixed dataset,
but want our guarantees to generalize to new datasets drawn from the same distribution, we
will need to accommodate statistical approximation. The optimization techniques we will
bring to bear will also only be able to approximate lexifairness, even in sample. But it turns
out that defining a sensible approximate notion of lexifairness is more subtle than it first
appears.

FORC 2021
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2.1 Approximate Lexifairness: Stability and Convexity
We begin with the “obvious” but ultimately flawed definition of approximate lexifairness
(Definition 2), and then explain why it is lacking in stability. This will lead us to the
definitions we finally adopt: Definition 3 and its convexified version (Definition 5), which we
show is equivalent (Claim 7), and for which we can develop efficient algorithms.

2.1.1 The Challenge of Stability
The most natural seeming definition of approximate lexifairness begins with our notion of
exact lexifairness (Definition 1), and adds slack to all of the inequalities contained within.
In other words, we attempt to find a model that has sorted group errors γ′

1, γ′
2, . . . , γ′

K that
pointwise approximate the optimal lexifair vector of sorted group errors γ1, . . . , γK .

▶ Definition 2 (A Flawed Definition). Let 1 ≤ ℓ ≤ K and α ≥ 0. We say a model h ∈ H
satisfies (ℓ, α)-lexicographic fairness if for all j ≤ ℓ, Lh̄(j)(h) ≤ γj + α.

To see the problem with the above definition, consider a setting with three groups, and
a model class H that contains all distributions (or randomized classifiers) over two pure
classifiers {h1, h2}. Imagine that h1 induces the (unsorted) vector of group error rates
⟨0.5, 0.5, 0⟩, and h2 induces the (unsorted) vector of group error rates ⟨0.5 + 2α, 0, 0.5⟩, for
some arbitrarily small α > 0. Note that it is easy to construct distributions over labeled
instances with exactly these group error vectors by simply arranging each classifier to disagree
with the labels on the specified fraction of a group. So, for simplicity we abstract away the
data and directly discuss the error vectors.

The minimax group error for this model class is γ1 = 0.5, and is achieved only by h1
which has error 0.5 on the first and second groups. Since the largest group error of h2 is
also on the first group with value 0.5 + 2α > 0.5, any distribution over {h1, h2} that places a
non-zero probability on h2 will therefore violate the (exact) minimax constraint. This in turn
implies that H(1) = {h1}. Therefore, the only exact lexifair model is h1 and thus γ1 = 0.5,
γ2 = 0.5, γ3 = 0.

However, imagine that because of estimation error (as is inevitable if we are learning
based on a finite sample) or optimization error (since we generally don’t have access to exact
optimization oracles in learning settings), we slightly misestimate the minimax group error
γ1 to be γ′

1 = 0.5 + α. If we now optimize, allowing the largest group error to be as much
as γ′

1 = 0.5 + α, we may now find randomized classifiers which put weight as large as 0.5
on h2. The uniform distribution over {h1, h2} induces the unsorted vector of group errors
⟨0.5 + α, 0.25, 0.25⟩. The induced error on the second group (which is now also the group
with second largest error) of 0.25 is considerably smaller than γ2 = 0.5. So far this appears
to be all right, since γ′

2 < γ2. But if we now attempt to optimize the error of the third
highest error γ′

3, subject to the constraint that the largest group error is (close to) γ′
1 and

the second largest group error is (close to) γ′
2, we now find that we are forced to settle for

third highest group error γ′
3 ≈ 0.25, which is considerably larger than the value of the third

highest group’s error of γ3 = 0 in the exact lexifair solution.
This example highlights a fundamental instability of our first (flawed) attempt at defining

approximate lexifairness: even arbitrarily small estimation (or optimization) error introduced
to the minimax error rate γ1 can result in large, non-monotonic effects for later group errors
– enforcing even a valid upper bound on γ1 can cause γ3 to increase substantially, and these
effects compound even further if we have more than three groups.
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2.1.2 A Stable and Convex Definition
With the proceeding example of the instability inherent in our (flawed) Definition 2, we now
give the definition of approximate lexifairness that we begin with:

▶ Definition 3 (Approximate Lexicographic Fairness). Fix a distribution P. Let 1 ≤ ℓ ≤ K and
α ≥ 0. For any sequence of mappings ϵ⃗ = (ϵ1, ϵ2, . . . , ϵℓ) where ϵj ∈ RH, define Hϵ⃗

(0)(P) ≜ H,
and recursively for all 1 ≤ j ≤ ℓ define:

Hϵ⃗
(j)(P) ≜

{
h ∈ Hϵ⃗

(j−1)(P) : Lh̄(j)(h, P) ≤ min
g∈Hϵ⃗

(j−1)(P)
Lḡ(j)(g, P) + ϵj(h)

}

and let ∥ϵ⃗∥∞ = max1≤j≤ℓ maxh∈H ϵj(h). We say a model h ∈ H satisfies (ℓ, α)-lexicographic
fairness (“lexifairness”) with respect to P if there exists ϵ⃗ with ∥ϵ⃗∥∞ ≤ α such that for all
j ≤ ℓ:

Lh̄(j)(h, P) ≤ min
g∈Hϵ⃗

(j−1)(P)
Lḡ(j)(g, P) + ϵj(h) + α.

When we prove bounds on empirical lexifairness, we simply take the distribution to be the
uniform distribution over the data set S. When the distribution is clear from context, we will
write Hϵ⃗

(j) and elide the dependence on the distribution.

Note that there are two distinctions between Definition 3 and Definition 2. First, the
recursively defined sets Hϵ⃗

(j) now incorporate some ϵj(·) slack in their parameterization which
will help capture statistical (or optimization) error. Second (and crucially), we now call a
solution (ℓ, α)-approximately lexifair if it satisfies our requirements for some sequence of
relaxations ϵ⃗ that is component-wise less than α for all models h. It is this second point that
avoids the instability and non-monotonicity that arises from Definition 2. We observe that
Definition 3 is a strict weakening of Definition 2:

▶ Claim 4. Definition 3 is a relaxation of Definition 2: if a model satisfies (ℓ, α)-lexicographic
fairness according to Definition 2, then it also satisfies (ℓ, α)-lexicographic fairness according
to Definition 3.

Proof. If a model satisfies (ℓ, α)-lexicographic fairness according to Definition 2, then by
taking ϵ⃗ = 0⃗, it also meets the conditions of Definition 3. ◀

We now face another definitional challenge. A priori, Definition 3 appears to be highly
non-convex, because it constrains the second highest group error, the the third highest
group error, etc.2 This is in contrast to standard equal-error notions of fairness, or minimax
fairness (which constrains only the highest group error) that are convex in the sense that a
distribution over fair models remains fair. Without convexity of this sort, the algorithmic
problem of finding a fair model becomes much more challenging. But in fact (at least
for α = 0), Definition 3 does give a convex constraint. To see this, we first introduce an
alternative notion of convex lexifairness, and then show that it actually represents the exact
same constraint as lexifairness when the approximation parameter α = 0.

2 E.g., if we have two groups and two models which induce group errors (0.5, 0) and (0, 0.5) respectively,
both solutions have a second-highest error of 0 – but convex combinations have a second highest error
strictly greater than 0. So absent other structure, upper bounding the second highest group error
of a model corresponds to a non-convex constraint. But note that in this two-group example, the
non-convexity dissapears if we restrict attention to minimax optimal models. This is what we will take
advantage of more generally.

FORC 2021
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▶ Definition 5 (Convex Lexicographic Fairness). Fix a distribution P. Let 1 ≤ ℓ ≤ K and
α ≥ 0. For any sequence of mappings ϵ⃗ = (ϵ1, ϵ2, . . . , ϵℓ) where ϵj ∈ RH, define F ϵ⃗

(0)(P) ≜ H,
and recursively for all 1 ≤ j ≤ ℓ define:

F ϵ⃗
(j)(P) ≜{
h ∈ F ϵ⃗

(j−1)(P) : max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h, P) ≤ min

g∈F ϵ⃗
(j−1)(P)

max
{i1,...,ij}

j∑
r=1

Lir
(g, P) + ϵj(h)

}

and let ∥ϵ⃗∥∞ = max1≤j≤ℓ maxh∈H ϵj(h). We say a model h ∈ H satisfies (ℓ, α)-convex
lexicographic fairness with respect to P if there exists ϵ⃗ with ∥ϵ⃗∥∞ ≤ α such that for all j ≤ ℓ:

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h, P) ≤ min

g∈F ϵ⃗
(j−1)(P)

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, P) + ϵj(h) + α.

When we prove bounds on empirical convex lexifairness, we simply take the distribution to be
the uniform distribution over the data set S. When the distribution is clear from context, we
will write F ϵ⃗

(j) and elide the dependence on the distribution.

Here, we have replaced constraints on the j’th highest group error with constraints on
the sum of group errors over all ≈ Kj subsets of groups of size j. This has replaced a
single constraint with many constraints, but each is convex, and hence the resulting set of
constraints defined by F ϵ⃗

(j) is convex. We will formally prove this in the following claim.

▶ Claim 6 (Convexity of F ϵ⃗
(j)). Let Lz : H → R≥0 be a convex loss function. If the initial

model class H is convex, then for all j and all ϵ⃗ such that the mappings ϵj ∈ RH are concave,
the set F ϵ⃗

(j) is convex.

The proof can be found in the full version of the paper ([8]), and proceeds by straightfor-
ward induction. We note that while some classes of models naturally satisfy the convexity
conditions of the above claim with respect to their corresponding parameters (e.g. linear
and logistic regression), this claim will apply to arbitrary classification models with zero-one
loss as well. In these settings, we will convexify the class of models by considering the set
of all probability distributions over deterministic models. The loss of a distribution (i.e. a
randomized model) is then defined as the expected loss, when the model is sampled from
the corresponding distribution. Hence, by linearity of expectation, our loss functions will be
convex (linear) in the parameters – i.e. the weights – of these distributions.

It turns out that our notion of convex lexifairness is identical to our notion of lexifairness
(and so our original definition in fact specified a convex set of constraints), at least when the
approximation parameter α = 0. We prove this in the following claim:

▶ Claim 7 (Relationship between F ϵ⃗
(j) and Hϵ⃗

(j) when ϵ⃗ = 0⃗). For all j, and ϵ⃗ = 0⃗, we have
F ϵ⃗

(j) = Hϵ⃗
(j).

The intuition for the claim is the following. The sets H(j) in Definition 3 constrain the
error of the group that has the j’th highest error. In contrast, the sets F(j) from Definition 5
constrain the sum of the errors for all possible j-tuples of groups. Amongst all of these
constraints, the binding one will be the constraint corresponding to the j groups that have
the largest errors. But because (inductively) the errors of the top j − 1 error groups have
already been appropriately constrained in F(j−1), this reduces to a constraint on the j’th
highest error group, as desired. These constraints are numerous, but each is convex, and so
the resulting set of constraints can be seen to be convex. See the full version of the paper
([8]) for the formal proof of Claim 7, which proceeds by induction.
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We emphasize that despite the complexity of our final Definition 5, what we have shown is
that it is in fact a relaxation of our initial, natural definition of exact lexifairness (Definition 1)
– and in particular Definitions 1, 3, and 5 coincide exactly when α = 0. We do not know
the precise relationship between our definitions of approximate lexifairness and approximate
convex lexifairness for α > 0 – but because both are smooth relaxations of the same base
definition, both should be viewed as capturing the same intuition as Definition 1 (exact
lexifairness) when α is small.

3 Game Theory and No-Regret Learning Preliminaries

3.1 No-Regret Dynamics
In this subsection, we briefly review the seminal result of Freund and Schapire [12]: Under
certain conditions, two-player zero-sum games can be (approximately) solved by having
access to a no-regret online learning algorithm for one of the players.

Suppose in this subsection that S1 and S2 are two vector spaces over the field of real
numbers. Consider a zero-sum game with two players: a player with strategies in S1 (the
minimization player) and another player with strategies in S2 (the maximization player). Let
U : S1 × S2 → R≥0 be the payoff function of this game. For every strategy s1 ∈ S1 of player
one and every strategy s2 ∈ S2 of player two, the first player gets utility −U(s1, s2) and the
second player gets utility U(s1, s2).

▶ Definition 8 (Approximate Equilibrium). A pair of strategies (s1, s2) ∈ S1 × S2 is said to be
a ν-approximate minimax equilibrium of the game if the following conditions hold:

U(s1, s2) − min
s′

1∈S1
U(s′

1, s2) ≤ ν, max
s′

2∈S2
U(s1, s′

2) − U(s1, s2) ≤ ν

In other words, (s1, s2) is a ν-approximate equilibrium of the game if neither player can
gain more than ν by deviating from their strategies.

Freund and Schapire [12] proposed an efficient framework for approximately solving the
game: In an iterative fashion, have one of the players play according to a no-regret learning
algorithm, and let the second player (approximately) best respond to the play of the first
player. The empirical average of each player’s actions over a sufficiently long sequence of
such play will form an approximate equilibrium of the game. The formal statement is given
in the following theorem.

▶ Theorem 9 (No-Regret Dynamics [12]). Let S1 and S2 be convex, and suppose the utility
function U is convex-concave: U(·, s2) : S1 → R≥0 is convex for all s2 ∈ S2, and U(s1, ·) :
S2 → R≥0 is concave for all s1 ∈ S1. Let (s1

1, s2
1, . . . , sT

1 ) be the sequence of play for the first
player, and let (s1

2, s2
2, . . . , sT

2 ) be the sequence of play for the second player. Suppose for
ν1, ν2 ≥ 0, the regret of the players jointly satisfies

T∑
t=1

U(st
1, st

2) − min
s1∈S1

T∑
t=1

U(s1, st
2) ≤ ν1T, max

s2∈S2

T∑
t=1

U(st
1, s2) −

T∑
t=1

U(st
1, st

2) ≤ ν2T

Let s̄1 = 1
T

∑T
t=1 st

1 ∈ S1 and s̄2 = 1
T

∑T
t=1 st

2 ∈ S2 be the empirical average play of the
players. We have that the pair (s̄1, s̄2) is a (ν1 + ν2)-approximate equilibrium of the game.

No regret online learning algorithms are algorithms that can guarantee the conditions of
Theorem 9 against arbitrary adversaries. We will use two no-regret online learning algorithms:
Online Projected Gradient Descent, which we will use in regression settings in which models
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6:10 Lexicographically Fair Learning

are represented by parameters in a Euclidean space, and Follow the Perturbed Leader (FTPL),
which we will use in binary classification settings ([8]). We will make use of these no-regret
learning algorithms in our proposed algorithm for learning a lexifair model; full explanations
and pseudocode are in Appendix C.

4 Finding Lexifair Models

In this section we focus on developing the tools required to prove the following (informally
stated) theorem. Formal claims appear in Theorems 13 (regression) and 14 (classification).

▶ Theorem 10 (Informal). Suppose the model class H is convex and compact, and that
the loss function Lz : H → R≥0 is convex for all data points z ∈ Z. There exists an
efficient algorithm that returns a model which is (ℓ, α)-convex lexicographic fair (according to
Definition 5), for any given ℓ and α.

We will propose algorithms for both classification and regression settings. The algorithms
we propose proceed inductively to solve the minimax problems defined recursively by our
convex lexifair definition. The first minimax problem is the one that minimizes the maximum
group error rate: minh∈H maxk∈[K] Lk(h). Let us denote the estimated value (computed
by the first phase of our algorithm) for this minimax problem by η1. The second minimax
problem is minimizing the maximum sum of any two group error rates subject to the
constraint that all group error rates are at most η1: the estimated value for this minimax
problem is called η2. The rest of the minimax problems are defined in a similar inductive
fashion: suppose at round j ≤ ℓ, we are given some estimates (η1, . . . , ηj−1) for the first j − 1
minimax values. Now using these estimates, the new minimax problem for the sum of any j

group error rates can be stated as follows.

min
h∈H:

∀r≤j−1, ∀{i1,...,ir}⊆[K]
Li1 (h)+...+Lir (h)≤ηr

{
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (h)
}

. (1)

We can reformulate this problem by calling the objective max{i1,...,ij}⊆[K]
∑j

r=1 Lir (h) := ηj

and introducing a new set of constraints which require that any sum of j group error rates
must be at most ηj . Note that this new formulation introduces a new variable, ηj , to the
optimization problem. We therefore have that the optimization problem (1) is equivalent to

min
h∈H,ηj ∈[0,j·LM ]:

∀r≤j, ∀{i1,...,ir}⊆[K]
Li1 (h)+...+Lir (h)≤ηr

ηj ≜ OPTj (η1, . . . , ηj−1) (2)

which is a constrained convex optimization problem given that the model class H and the loss
function L are convex. Here LM = maxz,h Lz(h) is an upper bound on the loss function which
identifies the range of feasible values for ηj : [0, j ·LM ]. Recall that in this round, (η1, . . . , ηj−1)
are given from the previous rounds, and ηj is a variable in the optimization problem. We
denote the optimal value of the optimization problem (2) by OPTj (η1, . . . , ηj−1).

4.1 Formulation as a Two-Player Zero-Sum Game
Optimization problem (2) is written as a constrained optimization problem, but we can
express it equally well as an unconstrained minimax problem via Lagrangian duality. The
corresponding Lagrangian can be written as:
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Lj ((h, ηj), λ) = ηj +
j∑

r=1

∑
{i1,...,ir}⊆[K]

λ{i1,i2,...,ir} · (Li1(h) + . . . + Lir
(h) − ηr) (3)

where we introduce one dual variable λ for every inequality constraint in the optimization
problem (2), and index the dual variables by their corresponding constraint. Therefore,
there are qj =

∑j
r=1

(
K
r

)
dual variables in this round. Solving optimization problem (2) is

equivalent to solving the following minimax problem:

min
h∈H,ηj∈[0,j·LM ]

max
λ∈R

qj
≥0

Lj ((h, ηj), λ) = max
λ∈R

qj
≥0

min
h∈H,ηj∈[0,j·LM ]

Lj ((h, ηj), λ) (4)

where the minimax theorem holds because 1) the range of the primal variables, i.e. H and
[0, j · LM ], is convex and compact, the range for the dual variable (Rq

≥0) is convex, and
2) Lj ((h, ηj), λ) is convex in its primal variables (h, ηj) and concave in the dual variable
λ. Therefore we focus on solving the minimax problem (4) which can be seen as solving a
two-player zero-sum game with payoff function Lj ((h, ηj), λ). Using the no-regret dynamics
of [12] (see Section 3.1), we will have the primal player (or Learner) with strategies (h, ηj) ∈
H × [0, j · LM ] play a no-regret learning algorithm and let the dual player (or Auditor) with
strategies λ ∈ Λj = {λ ∈ Rqj

≥0 : ∥λ∥1 ≤ B} best respond. Here we place an upper bound
B on the ℓ1-norm of the dual variable to guarantee convergence of our algorithms. This
nuisance parameter will be set optimally in our algorithms, and we note that the minimax
theorem continues to hold in the presence of this upper bound on λ. We will first analyze
the best response problem for both players – i.e. the problem of optimizing the Lagrangian
for one of the players fixing the strategy of the other player.

4.2 The Auditor’s Best Response
Fixing the (h, ηj) variables of the Learner and the estimated values (η1, . . . , ηj−1) from
previous rounds, the Auditor can best respond by solving

argmax
λ∈Λj

Lj ((h, ηj), λ) ≡ argmax
λ∈Λj

j∑
r=1

∑
{i1,...,ir}⊆[K]

λ{i1,i2,...,ir} · (Li1(h) + . . . + Lir (h) − ηr) .

Since the objective is linear in the dual variables λ, the Auditor can without loss of generality
best respond by putting all its mass B on the variable λ{i1,i2,...,ir} corresponding to the most
violated constraint, if one exists. In particular, given any model h ∈ H and any ordering h̄

induced by h on the groups, we have that the Auditor’s best response λbest(h, ηj) is

λbest(h, ηj) =
{

0 ∈ Rqj if ∀r ≤ j : Lh̄(1)(h) + . . . + Lh̄(r)(h) ≤ ηr

λ⋆ ∈ Rqj if ∃r ≤ j : Lh̄(1)(h) + . . . + Lh̄(r)(h) > ηr

where the entries of λ⋆ are defined as follows.

λ⋆
{i1,i2,...,ir} =

{
B if {i1, i2, . . . , ir} = {h̄(1), h̄(2), . . . , h̄(r⋆)}
0 Otherwise

(5)

where r⋆ ∈ argmaxr≤j

(
Lh̄(1)(h) + . . . + Lh̄(r)(h) − ηr

)
.

Note that the Auditor’s best response can be computed efficiently because it only requires
sorting the vector of error rates across K groups. We summarize the best response algorithm
for the Auditor in Algorithm 1.
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6:12 Lexicographically Fair Learning

Algorithm 1 The Auditor’s Best Response (λbest): jth round.

Input: Learner’s play (h, ηj), previous estimates (η1, . . . , ηj−1)
Compute Lk(h) for all groups k ∈ [K];
Find the top j elements of vector (L1(h), . . . , LK(h)) and call them:
Lh̄(1)(h) ≥ . . . ≥ Lh̄(j)(h);

if ∀r ≤ j : Lh̄(1)(h) + . . . + Lh̄(r)(h) ≤ ηr then λout = 0;
else Let r⋆ ∈ argmaxr≤j

(
Lh̄(1)(h) + . . . + Lh̄(r)(h) − ηr

)
, λout = λ⋆ as in

Equation (5) ;
Output: λout ∈ Λj

4.3 The Learner’s Best Response
Given dual weights λ ∈ Λj chosen by the Auditor, the Learner can best respond by solving

argmin
h∈H,ηj∈[0,j·LM ]

Lj ((h, ηj), λ) .

We note that the objective function Lj ((h, ηj), λ) can be decomposed into three terms: one
that depends only on the model h, another that depends only on ηj , and finally one that is
constant (with respect to (h, ηj)). Therefore, this optimization problem is separable for the
Learner – the decomposition is formally described below.

Lj ((h, ηj), λ) = L1
j (h, λ) + L2

j (ηj , λ) + Cj (λ) (6)

where

L1
j (h, λ) ≜

K∑
r=1

wr(λ)Lr(h), where wr(λ) ≜
j−1∑
s=0

∑
{i2,...,is}⊆[K]\{r}

λ{r,i2,...,is} (7)

L2
j (ηj , λ) ≜

1 −
∑

{i1,...,ij}⊆[K]

λ{i1,i2,...,ij}

 ηj (8)

Cj (λ) ≜ −
j−1∑
r=1

∑
{i1,...,ir}⊆[K]

λ{i1,i2,...,ir} · ηr (9)

Given this decomposition of the Lagrangian, the best response (h, ηj) of the Learner to the
variables λ of the Auditor is as follows:

(h, ηj) =
(

argmin
h∈H

L1
j (h, λ) , argmin

ηj∈[0,j·LM ]
L2

j (ηj , λ)
)

.

Note that the first optimization problem is a weighted minimization problem over the
class H, and the second one is a simple minimization of a linear function. Furthermore, even
though in general computing the sums in Equations (7) and (8) can be computationally
hard (because they are sums over exponentially many terms), when the Auditor is best
responding (which will be the case in our algorithms), these sums can be computed efficiently.
We formally state this claim in Fact 11.
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▶ Fact 11. When the Auditor is using its best response algorithm (Algorithm 1) to respond
to the Learner, the Auditor will either output zero or identify a single subset C of groups
(|C| ≤ j) on which the constraints are violated maximally. In the former case, wr(λ) = 0 for
all r and 1 −

∑
{i1,...,ij}⊆[K] λ{i1,i2,...,ij} = 1. In the latter case, we have

wr(λ) = B · 1 [r ∈ C] , 1 −
∑

{i1,...,ij}⊆[K]

λ{i1,i2,...,ij} = 1 − B · 1 [|C| = j] .

4.4 Solving the Game with No-Regret Dynamics
Having analyzed the best response problem for both players, we now focus on developing
efficient algorithms to approximately solve the two-player zero-sum game defined above, which
corresponds to finding an approximate convex lexifair model. The algorithms we propose
use no-regret dynamics (see Section 3.1) in which the Learner plays a no-regret learning
algorithm and the Auditor best responds according to Algorithm 1. As a consequence, we
get that the empirical average of the played strategies ((ĥ, η̂j), λ̂) of the players over the
course of the iterative algorithms will form a ν-approximate equilibrium of the game for
some small value of ν ≥ 0 (according to Definition 8). Then, by the following theorem, we
can turn these equilibrium guarantees into the fairness guarantees of the output model ĥ. Its
proof can be found in [8].

We remark that what we mean by the empirical average will depend on the setting. If we
are in a setting in which the loss function is convex in the model parameters (e.g. logistic
or linear regression), then we can actually average the model parameters, and output a
single deterministic model. Alternately, if we are in a classification setting in which the loss
function (e.g. zero-one loss) is non-convex in the model parameters, then by averaging, we
mean using the randomized model that corresponds to the uniform distribution over the
empirical play history.

▶ Theorem 12. At round j, let (η̂1, . . . , η̂j−1) be any given estimated minimax values from
the previous rounds and let the strategies ((ĥ, η̂j), λ̂) form a ν-approximate equilibrium of the
game for this round, i.e.,

Lj

(
(ĥ, η̂j), λ̂

)
≤ min

h∈H,ηj ∈[0,j·LM ]
Lj

(
(h, ηj), λ̂

)
+ ν, Lj

(
(ĥ, η̂j), λ̂

)
≥ max

λ∈Λj

Lj

(
(ĥ, η̂j), λ

)
− ν.

We have that η̂j ≤ OPTj (η̂1, . . . , η̂j−1) + 2ν, and for all r ≤ j,

max
{i1,...,ir}⊆[K]

r∑
s=1

Lir
(ĥ) ≤ η̂r + jLM + 2ν

B
.

We will next instantiate this general result to give concrete algorithms for learning convex
lexifair models in the regression and classification settings respectively.

5 Finding Lexifair Regression Models

Suppose in this section that Y ⊆ R and H is a class of models in which each model is
parametrized by some d-dimensional vector in Rd: H = {hθ : θ ∈ Θ} where Θ ⊆ Rd. In this
parametric setting we can think of each parameter θ ∈ Θ as a model and write the loss
function as a function of θ. Suppose the loss function Lz : Θ → R≥0 is differentiable for
all z.3 We will have the Learner play according to the Online Projected Gradient Descent

3 If it is not differentiable we can use sub-gradients instead of gradients.
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Algorithm 2 LexiFairReg: Finding a Lexifair Regression Model.

Input: S = ∪K
k=1Gk data set consisting of K groups, (ℓ, α) desired fairness

parameters, loss function parameters LM and G, diameter D of the model
class Θ

for j = 1, 2, . . . , ℓ do
Set Tj = 4j2(GD+LM )2(2α+jLM )2

α4 ;
Set Bj = α+jLM

α ;
(θ̂j , η̂j) = RegNR(Tj , Bj ; η̂1, . . . , η̂j−1) (Calling Algorithm 3)

end
Output: (ℓ, α)-convex lexifair model θ̂ℓ

algorithm (see Appendix C.1) where the gradients of the corresponding loss function of the
game for the Learner (i.e. Lj ((θ, ηj), λ)) can be computed using Equations (7) and (8), and
the decomposition given in (6):

∇θLj ((θ, ηj), λ) = ∇θL1
j (θ, λ) =

K∑
r=1

wr(λ)∇θLr(θ), (10)

∇ηj
Lj ((θ, ηj), λ) = ∇ηj

L2
j (ηj , λ) = 1 −

∑
{i1,...,ij}⊆[K]

λ{i1,i2,...,ij}. (11)

The algorithm for this setting is given as Algorithm 2, which makes calls to a subroutine
(Algorithm 3) that solves the two-player zero-sum games defined above by having the Learner
play Online Projected Gradient Descent (see Appendix C) and the Auditor best respond
using Algorithm 1. Note that since the Auditor is best responding, computing the sums in
Equations (10) and (11) can be done efficiently per Fact 11.

▶ Theorem 13 (Lexifairness for Regression). Suppose Θ ⊆ Rd is convex, compact, and bounded
with diameter D: supθ,θ′∈Θ ∥θ − θ′∥2 ≤ D. Suppose the loss function Lz : Θ → R≥0 is convex
and that there exists constants LM and G such that Lz(·) ≤ LM and ∥∇θLz(·)∥2 ≤ G, for
all data points z ∈ Z. We have that for any ℓ ≤ K and any α ≥ 0, the model θ̂ℓ ∈ Θ output
by Algorithm 2 is (ℓ, α)-convex lexicographic fair.

The proof of this theorem (which can be found in Appendix A) involves bounding the
regret of each player, and then appealing to Theorem 12.

6 Finding Lexifair Classification Models

In this section we briefly discuss how we can find lexifair models in a classification setting. All
details including our algorithm for this setting and its analysis can be found in [8]. Suppose
in this section that Y = {0, 1} and our model class H is the probability simplex over a class of
deterministic binary classifiers. We slightly abuse notation and write H for the given class of
deterministic classifiers and write ∆H ≜ {p : p is a distribution over H} for the probability
simplex, and work with ∆H as our model class. Let the loss function be zero-one loss: for
any h ∈ H: Lz(h) = 1 {h(x) ̸= y}. The loss of any randomized model p on data point z is
defined as the expected loss of h on z when h is sampled from H according to the distribution
p. In other words,

Lz(p) ≜ Eh∼p [Lz(h)]
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Algorithm 3 RegNR: jth round.
Input: Number of rounds T , dual variable upper bound B, previous estimates

(η1, . . . , ηj−1)
Set learning rates η = D

jBG
√

T
and η′ = jLM

(1+B)
√

T
;

Initialize the Learner: θ1 ∈ Θ, η1
j ∈ [0, j · LM ];

for t = 1, 2, . . . , T do
Learner plays (θt, ηt

j);
Auditor best responds: λt = λbest(θt, ηt

j ; (η1, . . . , ηj−1)) using Algorithm 1;
Learner updates its actions using Projected Gradient Descent:

θt+1 = ProjΘ
(
θt − η · ∇θLj(θt, ηt

j , λt)
)

ηt+1
j = Proj[0,j·LM ]

(
ηt

j − η′ · ∇ηj
Lj(θt, ηt

j , λt)
)

where the gradients are given in Equations (10) and (11).
end
Output: the average play θ̂ = 1

T

∑T
t=1 θt ∈ Θ, and η̂j = 1

T

∑T
t=1 ηt

j ∈ [0, j · LM ].

which is convex (linear) in the model p (weights of the distribution). We will also assume
that the model class H has finite VC dimension. Sauer’s Lemma will then imply that for
any finite dataset, H induces only finitely many labelings. This will serve two purposes.
First, it allows us to write the optimization problem as a linear program with finitely many
variables (probability weights over the set of all possible induced labelings), and therefore
appeal to strong duality. Second, it allows us to pose the Learner’s best response problem as
an n-dimensional linear optimization problem, over the only exponentially many labelings
of the n data points. This is what will allow us to apply Follow the Perturbed Leader and
obtain oracle-efficient no-regret learning guarantees for the Learner. Here we are following
an approach similar to that of [19]. The final algorithm will then have the Learner play
according to Follow the Perturbed Leader (given access to a Cost Sensitive Classification
Oracle for the function class H), and have the Auditor best respond.

▶ Theorem 14 (Lexifairness for Classification). Let H be any class of binary classifiers with
finite VC dimension, and let Lz(p) = Eh∼p [Lz(h)] for any randomized model p ∈ ∆H where
Lz(h) = 1 {h(x) ̸= y} is the zero-one loss. Fix any ℓ ≤ K and any α ≥ 0. There exists an
oracle-efficient algorithm (see [8]) such that for any δ > 0, with probability at least 1 − δ, its
output model is (ℓ, α)-convex lexicographic fair.

7 Generalization

In this section, we turn our attention to out of sample bounds. Standard uniform convergence
statements would tell us that if we have enough samples from every group, then our in-sample
group errors are good estimates of our out of sample group errors. However, this alone does
not directly imply that we satisfy approximate lexifairness out of sample. We prove this is
the case below. Our ability to prove out of sample bounds crucially relies on our definitional
choices that removed the instability of the naive Definition 2. Specifically, we show that if:
1. Our base class H satisfies a standard uniform convergence bound across every group (so

that we can control the maximum gap between in and out of sample error across every
h ∈ H, within each group k), and
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2. We have a model that is approximately convex lexifair on our dataset S ∼ Pn, then
then our model is also appropriately convex lexifair on the underlying distribution (with
some loss in the approximation parameter).

▶ Theorem 15 (Generalization for Convex Lexifairness). Fix any distribution P. Suppose for
every δ > 0, there exists β(δ) such that the following uniform convergence bound holds.

Pr
S

[
max

h∈H,k∈[K]
|Lk (h, S) − Lk (h, P)| > β(δ)

]
< δ

where S is a data set sampled i.i.d. from P. We have that for every data set S sampled i.i.d.

from P, if a model h satisfies (ℓ, α)-convex lexicographic fairness with respect to S, then with
probability at least 1 − δ it also satisfies (ℓ, α′)-convex lexicographic fairness with respect to
P for α′ = α + 2ℓβ(δ).

The proof of the theorem is given in Appendix B. We can now instantiate the above
theorem in a classification setting in which we have VC-type convergence bounds. A corollary
that we get by applying standard uniform convergence bounds for finite VC classes is the
following:

▶ Corollary 16 (Generalization for Convex Lexifairness: Classification Setting). Suppose H is
a class of binary classifiers with VC dimension dH and let Lz(p) = Eh∼p [Lz(h)] for any
randomized model p ∈ ∆H where Lz(h) = 1 {h(x) ̸= y} is the zero-one loss. We have that
for every P, every data set S ≡ {Gk}k of size n sampled i.i.d. from P, if a model p ∈ ∆H
satisfies (ℓ, α)-convex lexicographic fairness with respect to S, then with probability at least
1 − δ it also satisfies (ℓ, 2α)-convex lexicographic fairness with respect to P provided that

min
1≤k≤K

|Gk| = Ω
(

l2 (dH log (n) + log (K/δ))
α2

)
.

We have here proven a generalization theorem for convex lexifairness (Definition 5) which
is the definition that our algorithms satisfy. We also prove a generalization theorem for
lexifairness (Definition 3) which can be found in [8].
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A Proofs from Section 5

▶ Theorem 13 (Lexifairness for Regression). Suppose Θ ⊆ Rd is convex, compact, and bounded
with diameter D: supθ,θ′∈Θ ∥θ − θ′∥2 ≤ D. Suppose the loss function Lz : Θ → R≥0 is convex
and that there exists constants LM and G such that Lz(·) ≤ LM and ∥∇θLz(·)∥2 ≤ G, for
all data points z ∈ Z. We have that for any ℓ ≤ K and any α ≥ 0, the model θ̂ℓ ∈ Θ output
by Algorithm 2 is (ℓ, α)-convex lexicographic fair.

Proof. We will show that for every round j, the model θ̂j computed by our algorithm is
(j, α)-convex lexicographic fair, and as a consequence, the very last model (θ̂ℓ) is (ℓ, α)-convex
lexicographic fair. Fix any round j ≤ ℓ. Let (θt, ηt

j , λt)T
t=1 be the sequence of plays in the

no-regret dynamics of Algorithm 3 in this round. First, note that by the decomposition given
in Equation (6), we have
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T∑
t=1

Lj

(
(θt, ηt

j), λt
)

− min
θ∈Θ,ηj ∈[0,j·LM ]

T∑
t=1

Lj

(
(θ, ηj), λt

)
=

{
T∑

t=1

L1
j

(
θt, λt

)
− min

θ∈Θ

T∑
t=1

L1
j

(
θ, λt

)}
+

{
T∑

t=1

L2
j

(
ηt

j , λt
)

− min
ηj ∈[0,j·LM ]

T∑
t=1

L2
j

(
ηj , λt

)}
.

In other words, we can decompose the regret of the Learner into two terms: one is the regret
of gradient descent plays corresponding to θ, and the other one is the corresponding regret
of gradient descent plays for ηj . Note that by Equations (10) and (11) we have the following
bounds on the norm of gradients for the Learner. We also use the fact that when the Auditor
is best responding, wr(λt) can be simplified as in Fact 11.

∥∥∇θLj

(
(θ, ηj), λt

)∥∥
2 ≤

K∑
r=1

∣∣wr(λt)
∣∣ · ∥∇θLr(θ)∥2 ≤ jBG

∥∥∇ηj
Lj

(
(θ, ηj), λt

)∥∥
2 =

∣∣∣∣∣∣1 −
∑

{i1,...,ij}⊆[K]

λt
{i1,i2,...,ij}

∣∣∣∣∣∣ ≤ 1 + B

Now letting η = D
jBG

√
T

and η′ = jLM

(1+B)
√

T
in Algorithm 3 and using the regret bound of

Online Projected Gradient Desccent (Theorem 18), we have

T∑
t=1

L1
j

(
θt, λt

)
− min

θ∈Θ

T∑
t=1

L1
j

(
θ, λt

)
≤ jBGD

√
T

T∑
t=1

L2
j

(
ηt

j , λt
)

− min
ηj∈[0,j·LM ]

T∑
t=1

L2
j

(
ηj , λt

)
≤ j(B + 1)LM

√
T

and therefore the regret of the Learner can be bounded by

T∑
t=1

Lj

(
(θt, ηt

j), λt
)

− min
θ∈Θ,ηj∈[0,j·LM ]

T∑
t=1

Lj

(
(θ, ηj), λt

)
≤ j(GD + LM )(B + 1)

√
T := νjT.

Let νj ≜ j(GD + LM )(B + 1)/
√

T . Now using the guarantees of the no-regret dynamics
(Theorem 9), the average play of the players (θ̂, η̂j , λ̂) forms a νj-approximate equilibrium of
the game in the sense that

Lj

(
(θ̂, η̂j), λ̂

)
≤ min

θ∈Θ,ηj ∈[0,j·LM ]
Lj

(
(θ, ηj), λ̂

)
+ νj , Lj

(
(θ̂, η̂j), λ̂

)
≥ max

λ∈Λj

Lj

(
(θ̂, η̂j), λ

)
− νj .

Finally, using Theorem 12 we can turn these into the following guarantees. First,

η̂j ≤ OPTj (η̂1, . . . , η̂j−1) + 2νj (12)

and second, for all r ≤ j,

max
{i1,...,ir}⊆[K]

r∑
s=1

Lir (θ̂j) ≤ η̂r + jLM + 2νj

B
. (13)

Define ϵr ≜ η̂r −OPTr (η̂1, . . . , η̂r−1) for all r ≤ j (ϵ’s here are basically constant mappings
in RH). We immediately have from Equation (12) that: ϵr ≤ 2νr, for all r ≤ j. Now let
ϵ⃗ = (ϵ1, . . . , ϵj), and let F ϵ⃗

(0) = Θ be the initial model class. Note that according to
Definition 5 and given the defined ϵ⃗, we have for every r ≤ j,
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min
θ∈F ϵ⃗

(r−1)

max
{i1,...,ir}⊆[K]

r∑
s=1

Lir
(θ) ≡ OPTr (η̂1, . . . , η̂r−1) .

And therefore, by Equation (13), for all r ≤ j:

max
{i1,...,ir}⊆[K]

r∑
s=1

Lir (θ̂j) ≤ η̂r + jLM + 2νr

B

= OPTr (η̂1, . . . , η̂r−1) + ϵr + jLM + 2νr

B

= min
g∈F ϵ⃗

(r−1)

max
{i1,...,ir}⊆[k]

r∑
s=1

Lir (g) + ϵr + jLM + 2νr

B

which completes the proof by the choice of νr = α
2 for all r ≤ j (to guarantee that

∥ϵ⃗∥∞ ≤ α), and B = α+jLM

α . Note that this setting of parameters, together with νj =
j(GD + LM )(B + 1)/

√
T , implies that

T = 4j2(GD + LM )2(2α + jLM )2

α4 . ◀

B Proofs from Section 7

▶ Theorem 15 (Generalization for Convex Lexifairness). Fix any distribution P. Suppose for
every δ > 0, there exists β(δ) such that the following uniform convergence bound holds.

Pr
S

[
max

h∈H,k∈[K]
|Lk (h, S) − Lk (h, P)| > β(δ)

]
< δ

where S is a data set sampled i.i.d. from P. We have that for every data set S sampled i.i.d.

from P, if a model h satisfies (ℓ, α)-convex lexicographic fairness with respect to S, then with
probability at least 1 − δ it also satisfies (ℓ, α′)-convex lexicographic fairness with respect to
P for α′ = α + 2ℓβ(δ).

Proof. Fix a distribution P and a data set S sampled i.i.d. from P. Suppose h satisfies
(ℓ, α)-convex lexicographic fairness with respect to S. Therefore, according to our convex
lexifairness definition, there exists a sequence of mappings ϵ⃗ = (ϵ1, . . . , ϵℓ) where ϵj ∈ RH,
and a sequence of function classes {F ϵ⃗

(j)(S)}j such that

max
1≤j≤ℓ

{
max
h′∈H

ϵj(h′)
}

≤ α

and that for all j ≤ ℓ:

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h, S) ≤ min

g∈F ϵ⃗
(j−1)(S)

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, S) + ϵj(h) + α (14)

where recall that F ϵ⃗
(0)(S) = H and that for all j ∈ [ℓ],

F ϵ⃗
(j)(S) ={
h′ ∈ F ϵ⃗

(j−1)(S) : max
{i1,...,ij}⊆[K]

j∑
r=1

Lir (h′, S) ≤ min
g∈F ϵ⃗

(j−1)(S)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, S) + ϵj(h′)

}
.
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Let us define a mapping ν1
j : H → R such that for every h′ ∈ H,

ν1
j (h′) ≜ max

{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h′, P) − max

{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h′, S)

and let

ν2
j ≜ min

g∈F ϵ⃗
(j−1)(S)

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, S) − min
g∈F ϵ⃗

(j−1)(S)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, P)

Now define for every h′ ∈ H, τj(h′) ≜ ϵj(h′)+ν1
j (h′)+ν2

j and let F τ⃗
(j)(P) be defined according

to our convex lexifairness definition with the sequence of mappings defined by τ⃗ = (τ1, . . . , τℓ).
In other words, F τ⃗

(0)(P) = H, and for all j ∈ [ℓ],

F τ⃗
(j)(P) ={
h′ ∈ F τ⃗

(j−1)(P) : max
{i1,...,ij}⊆[K]

j∑
r=1

Lir (h′, P) ≤ min
g∈F τ⃗

(j−1)(P)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, P) + τj(h′)

}
.

▶ Claim 17. For all j, F τ⃗
(j)(P) = F ϵ⃗

(j)(S).

Proof. We use induction on j. For j = 0, we have F τ⃗
(0)(P) = F ϵ⃗

(0)(S) = H. For j ≥ 1, we
have

h′ ∈ F τ⃗
(j)(P)

⇐⇒ h′ ∈ F τ⃗
(j−1)(P),

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h′, P) ≤ min

g∈F τ⃗
(j−1)(P)

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, P) + τj(h′)

⇐⇒ h′ ∈ F ϵ⃗
(j−1)(S),

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir (h′, P) ≤ min
g∈F ϵ⃗

(j−1)(S)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, P) + τj(h′)

⇐⇒ h′ ∈ F ϵ⃗
(j−1)(S),

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h′, S) ≤ min

g∈F ϵ⃗
(j−1)(S)

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, S) + ϵj(h′)

⇐⇒ h′ ∈ F ϵ⃗
(j)(S)

where the second line follows from the induction assumption (F τ⃗
(j−1)(P) = F⃗⃗ϵ

(j−1)(S)) and
the third line follows from the definition of τj . This establishes our claim. ◀

We have that for all j ≤ ℓ, the model h satisfies

max
{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h, P) = max

{i1,...,ij}⊆[K]

j∑
r=1

Lir
(h, S) + ν1

j (h) ≤ . . .
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. . . ≤ min
g∈F ϵ⃗

(j−1)(S)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir (g, S) + ϵj(h) + α + ν1
j (h)

= min
g∈F ϵ⃗

(j−1)(S)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, P) + ν2

j + ϵj(h) + α + ν1
j (h)

= min
g∈F τ⃗

(j−1)(P)
max

{i1,...,ij}⊆[K]

j∑
r=1

Lir
(g, P) + τj(h) + α

where the first inequality follows from Equation (14). The third line follows from the definition
of ν2

j . The last equality follows from Claim 17 and the fact that τj(h) = ϵj(h)+ν1
j (h)+ν2

j . The
proof is complete by the uniform convergence bound provided in the theorem statement. With
probability at least 1−δ over the random draws of the data set S, we have maxh′∈H |ν1

j (h′)| ≤
jβ(δ) and |ν2

j | ≤ jβ(δ), and hence for all j ≤ ℓ,

∥τ∥∞ = max
1≤j≤ℓ

{
max
h′∈H

τj(h′)
}

≤ max
1≤j≤ℓ

{
max
h′∈H

ϵj(h′)
}

+ max
1≤j≤ℓ

{
max
h′∈H

|ν1
j (h′)| + |ν2

j |
}

≤ α + 2lβ(δ). ◀

C No-Regret Learning Algorithms

C.1 Online Projected Gradient Descent
Consider an online setting where a learner is playing against an adversary. The learner’s
action space is some Euclidean subspace Θ ⊆ Rd which is equipped with the ℓ2 norm denoted
by ∥·∥2. At every round t of the interaction between the learner and the adversary, the
learner picks an action θt ∈ Θ and the adversary chooses a loss function ℓt : Θ → R≥0. The
learner then incurs a loss of ℓt(θt) at that round. Suppose the learner is using some algorithm
A to update its actions from round to round. The goal for the learner is that the regret of A
defined as

RA(T ) ≜
T∑

t=1
ℓt(θt) − min

θ∈Θ

T∑
t=1

ℓt(θ)

grows sublinearly in T . When Θ and the loss functions played by the adversary are convex,
a standard choice of algorithm to use for the learner is Online Projected Gradient Descent
(Algorithm 4), where in each round, the algorithm updates its action θt+1 for the next round
by taking a step in the opposite direction of the gradient of the loss function evaluated at the
action of that round: ∇ℓt(θt). The updated action is then projected onto the feasible action
space Θ: ProjΘ(θ) ≜ argminθ′∈Θ ∥θ − θ′∥2. Note if the loss functions are not differentiable,
we can use subgradients (which are defined given the convexity of the loss functions) instead
of gradients and the guarantees will remain.

▶ Theorem 18 (Regret for Online Projected Gradient Descent [34]). Suppose Θ ⊆ Rd is convex,
compact and has bounded diameter D: supθ,θ′∈Θ ∥θ − θ′∥2 ≤ D. Suppose for all t, the loss
functions ℓt are convex and that there exists some G such that ∥∇ℓt(·)∥2 ≤ G. Let A be
Algorithm 4 run with learning rate η = D/(G

√
T ). We have that for every sequence of loss

functions (ℓ1, ℓ2, . . . , ℓT ) played by the adversary, RA(T ) ≤ GD
√

T .
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Algorithm 4 Online Projected Gradient Descent.
Input: learning rate η

Initialize the learner θ1 ∈ Θ;
for t = 1, 2, . . . do

Learner plays action θt;
Adversary plays loss function ℓt;
Learner incurs loss of ℓt(θt);
Learner updates its action:

θt+1 = ProjΘ
(
θt − η∇ℓt(θt)

)
end

Algorithm 5 Follow the Perturbed Leader (FTPL).

Input: learning rate η

Initialize the learner a1 ∈ A;
for t = 1,2, . . . do

Learner plays action at;
Adversary plays loss vector ℓt;
Learner incurs loss of ⟨ℓt, at⟩. Learner updates its action:

at+1 = argmin
a∈A


〈∑

s≤t

ℓs, a

〉
+ 1

η

〈
ξt, a

〉
where ξt ∼ Uniform

(
[0, 1]d

)
, independent of every other randomness.

end

C.2 Follow the Perturbed Leader
Here assume the learner’s action space is A ⊆ {0, 1}d. At every round t, the learner chooses
an action at ∈ A and then the adversary plays a loss vector ℓt ∈ Rd. The learner then incurs
a loss of ⟨ℓt, at⟩ which is the inner product if at and ℓt. Suppose the learner is using some
algorithm A to pick its actions in every round. The goal for the learner is to ensure that the
regret of A defined as RA(T ) ≜

∑T
t=1⟨ℓt, at⟩ − mina∈A

∑T
t=1⟨ℓt, a⟩ grows sublinearly in T .

Follow the Perturbed Leader (FTPL) ([18]), which is described in Algorithm 5, can provide
guarantees in this setting.

▶ Theorem 19 (Regret of FTPL [18]). Suppose for all t, ℓt ∈ [−M, M ]d. Let A be Algorithm 5
run with learning rate η = 1/(M

√
dT ). We have that for every sequence of loss vectors

(ℓ1, ℓ2, . . . , ℓT ) played by the adversary, E [RA(T )] ≤ 2Md3/2
√

T , where expectation is taken
with respect to the randomness in A.
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