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Abstract

We consider the problem of computing shortest paths in weighted unit-disk graphs in constant
dimension d. Although the single-source and all-pairs variants of this problem are well-studied in
the plane case, no non-trivial exact distance oracles for unit-disk graphs have been known to date,
even for d = 2.

The classical result of Sedgewick and Vitter [Algorithmica ’86] shows that for weighted unit-disk
graphs in the plane the A∗ search has average-case performance superior to that of a standard
shortest path algorithm, e.g., Dijkstra’s algorithm. Specifically, if the n corresponding points of a
weighted unit-disk graph G are picked from a unit square uniformly at random, and the connectivity
radius is r ∈ (0, 1), A∗ finds a shortest path in G in O(n) expected time when r = Ω(

√
log n/n),

even though G has Θ((nr)2) edges in expectation. In other words, the work done by the algorithm
is in expectation proportional to the number of vertices and not the number of edges.

In this paper, we break this natural barrier and show even stronger sublinear time results. We
propose a new heuristic approach to computing point-to-point exact shortest paths in unit-disk
graphs. We analyze the average-case behavior of our heuristic using the same random graph model
as used by Sedgewick and Vitter and prove it superior to A∗. Specifically, we show that, if we
are able to report the set of all k points of G from an arbitrary rectangular region of the plane in
O(k + t(n)) time, then a shortest path between arbitrary two points of such a random graph on
the plane can be found in O(1/r2 + t(n)) expected time. In particular, the state-of-the-art range
reporting data structures imply a sublinear expected bound for all r = Ω(

√
log n/n) and O(

√
n)

expected bound for r = Ω(n−1/4) after only near-linear preprocessing of the point set.

Our approach naturally generalizes to higher dimensions d ≥ 3 and yields sublinear expected
bounds for all d = O(1) and sufficiently large r.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases unit-disk graphs, shortest paths, distance oracles

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.46

Related Version The full version of this paper also describes a slightly different query algorithm
whose running time has a better dependence on n for higher dimensions d > 2.
Full Version: https://arxiv.org/abs/2103.09684

Funding Adam Karczmarz: supported by ERC Consolidator Grant 772346 TUgbOAT and by the
Foundation for Polish Science (FNP) via the START programme.
Jakub Pawlewicz: supported by ERC Consolidator Grant 772346 TUgbOAT.
Piotr Sankowski: supported by ERC Consolidator Grant 772346 TUgbOAT.

© Adam Karczmarz, Jakub Pawlewicz, and Piotr Sankowski;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 46; pp. 46:1–46:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/429962109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:pan@mimuw.edu.pl
https://orcid.org/0000-0003-4670-9106
mailto:sank@mimuw.edu.pl
https://orcid.org/0000-0002-0907-3754
https://doi.org/10.4230/LIPIcs.SoCG.2021.46
https://arxiv.org/abs/2103.09684
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs

1 Introduction

Computing shortest paths is certainly one of the most fundamental graph problems and has
numerous theoretical and practical applications. The two classical variants of the shortest
paths problem are single-source shortest paths (SSSP) and all-pairs shortest path (APSP).
A common generalization of these variants is the distance oracle problem, where we are
allowed to preprocess a given network into a (possibly small) data structure that is later
used to answer arbitrary point-to-point shortest paths queries. Clearly, SSSP and APSP
algorithms can be viewed as extreme solutions to the distance oracle problem: the former
can be used without any preprocessing to query a distance in near-linear time, whereas the
latter precomputes the answers to all the n2 possible queries and thus can answer queries
in constant time. Hence, when constructing distance oracles we seek a tradeoff between
these two extremes. Unfortunately, it is not known how to obtain a non-trivial (with both
subquadratic space and sublinear query time) exact distance oracle for general graphs.
Subquadratic space and constant query time oracle is only known for undirected weighted
graphs if approximation factor of at least 3 is allowed [19].

Due to this theoretical inefficiency of distance oracles, researchers either focus on special
graph classes, or study approximate approaches. On one hand, near-optimal (in terms of space
and query time) exact distance oracles have been recently described for planar graphs [8]. On
the other hand, for many important graph classes near-optimal (1 + ϵ)-approximate distance
oracles are known [15, 2].

Nevertheless, in practice heuristic approaches are usually preferable – for an overview
of used techniques see [3]. However, the term “heuristic” in this domain usually refers to
ways of speeding up exact algorithms. There are some examples of heuristics that have been
analyzed theoretically and proved to yield speedups in meaningful settings, see e.g., [1].

Perhaps the most well-known heuristic approach to speeding up a shortest path
computation is a variant of Dijkstra’s algorithm called the A∗ search [13]. This algo-
rithm incorporates a heuristic function that lower-bounds the distance to the target and
uses it to decide which search paths to follow first. The algorithm is still guaranteed to
find the shortest path to the target vertex, but the number of vertices explored can be
much smaller compared to the standard Dijkstra’s algorithm. For example, if vertices of the
network correspond to points in the plane, the Euclidean distance to the target is a valid and
well-working heuristic function. The natural question arises when such algorithms perform
provably better than in the worst-case.

1.1 Shortest paths in weighted unit-disk graphs
The seminal result that answers this question is by Sedgewick and Vitter [18], who studied
the performance of A∗ search on various random geometric graph models. Perhaps the most
interesting of their results concerns the weighted unit-disk graphs. In a weighted unit-disk
graph with connectivity radius r, vertices correspond to points on the plane. An edge between
two distinct vertices (points) u, v exists in such a graph if ||u − v||2 ≤ r and has weight
||u − v||2. This class of geometric graphs has been widely studied from the algorithmic
perspective since such graphs can model e.g., ad-hoc communication networks. A random
weighted unit-disk graph G, given n and radius r ∈ (0, 1), is obtained from a set of n random
points of a unit square [0, 1]2. Note that such a random G has Θ((nr)2) edges in expectation.
However, Sedgewick and Vitter [18] show that, assuming that the neighbors of each vertex
in G are stored explicitly, one can compute a point-to-point shortest path in G using A∗
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search in O(n) expected time, i.e., independent of r and sublinear in the size of the edge set
of G. In other words, they have given an exact distance oracle for random weighted unit-disk
graphs that in expectation requires O((nr)2) space and O(n) query time.

Sedgewick and Vitter’s result [18] can be also interpreted as follows: for weighted unit-
disk graphs G = (V, E), just storing the graph explicitly allows O(n)-time queries for an
average-case graph G. Whereas such a query time is sublinear in the graph size, the Θ((nr)2)
space used might be superlinear in the graph’s description – observe that a weighted unit-disk
graph can be described using O(n) space solely with n point locations and the connectivity
radius r. In recent years efficient single-source shortest paths algorithm for weighted unit-disk
graphs have been proposed [4, 14, 20], culminating in the O(n log2 n) algorithm of Wang and
Xue [20]. Note that their worst-case bound is near-optimal and almost matches the bound
of [18] which holds only on average. All-pairs shortest paths in weighted unit-disk graphs
can be computed slightly faster that running single-source computations n times [6]. To the
best of our knowledge, no exact distance oracle with non-obvious space and query bounds
for this graph class is known. On the contrary, a very efficient (1 + ϵ)-approximate distance
oracle with near-optimal space, preprocessing, and query bounds was given by Chan and
Skrepetos [7].

The notion of a weighted unit-disk graph naturally generalizes to three- and higher
dimensions: an edge between two vertices appears if the d-dimensional balls of radius r at
these points intersect. We are not aware of any non-trivial results on computing shortest
paths in such graphs for d ≥ 3.

1.2 Our results
Observe that all of the above algorithms in order to answer distance queries require work
essentially proportional to the number of vertices and not the number of edges. In this paper,
we break this natural barrier and show an even stronger sublinear time results.

We propose a natural heuristic approach to computing exact shortest paths in weighted
unit-disk graphs. Following Sedgewick and Vitter, we analyze its average-case query time by
studying its performance on a random n-vertex graph with connectivity radius r in the unit
square [0, 1]2, where r = Ω

(√
log(n)/n

)
.1 In this setting, we prove that after near-linear

preprocessing, the query procedure of our average-case distance oracle has O(1/r2 +
√

n)
expected running time. Formally, we prove:

▶ Theorem 1. Let r ∈ (0, 1) be such that r = Ω
(√

log(n)/n
)

. Let G be a weighted unit-disk
graph with connectivity radius r on a set P of n points picked uniformly at random from
the unit square [0, 1]2. Let D be a data structure that, after preprocessing P in O(p(n))
time, supports reporting all k points in P lying in an arbitrary (not necessarily orthogonal)
rectangular subregion in O(k + t(n)) time. Then, there exists an exact distance oracle on G

with O(p(n)) preprocessing time and O(1/r2 + t(n)) expected query time.

The state-of-the-art range searching data structures [5] imply that t(n) = O(
√

n) using
O(n) space and O(n log n) preprocessing. Consequently, for r = Ω(1/n1/4) the expected
query time is O(

√
n) and it remains truly sublinear for all r = Ω(

√
log(n)/n) – improving

the running time of Sedgewick and Vitter in the full range of parameters r they consider.

1 This simplifying assumption has also been made by Sedgewick and Vitter [18] and excludes only
very sparse graphs with m = O(n log n) from our consideration. Moreover, it is known that if
r = o(

√
log(n)/n), then the random unit-disk graph is disconnected with high probability [12].

SoCG 2021



46:4 Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs

The general idea behind our heuristic algorithm for computing a shortest s − t path is
fairly intuitive: we run the single-source shortest paths algorithm limited to increasingly “fat”
rectangular subregions of G surrounding the segment s − t. The subregions of interest are
computed using a range reporting data structure which constitutes the only preprocessed
information of our oracle. Since dynamic variants of such range searching data structures
are known [16] (with query and space bound matched up to polylogarithmic factors, and
polylogarithmic update bounds), our heuristic distance oracle can be trivially dynamized as
well (see Remark 12).

Another advantage of our algorithm is that it easily generalizes to higher dimensions.
Using new ideas we prove that for random weighted unit-disk graphs2 in [0, 1]d, the expected
query time is O(min(1/r2d−1, n) + td(n)), assuming one can report the points from an
arbitrary (not necessarily orthogonally aligned) d-dimensional hyperrectangle in O(td(n) + k)
time. It is known [5] that td(n) = O(n1−1/d) so this expected time is sublinear in n unless
r = Ω

(
n− 1

2d−1

)
. It is worth noting that for d = 2, the expected query time has a “better”

dependence, i.e., O(1/rd), on r than for d ≥ 3 where the dependence is O(1/r2d−1). This is
justified by the fact that whereas single-source shortest paths in weighted unit-disk graphs
for d = 2 can be computed nearly-optimally [20], no non-trivial algorithm like this is known
for d ≥ 3 and we have to resort to running the standard Dijkstra’s algorithm.

Undoubtedly, the technical difficulty of our result lies in the probabilistic analysis. We
use similar approach to the one used by Sedgewick and Vitter [18] to bound the probability
that the sought path exist in ellipsoidal grid-like regions called channels. However, in order
to avoid looking at all the edges incident to a vertex we need to use a new heuristic that
allows us to consider only edges induced within an rectangular region.

Interestingly, we also identify a shortcoming in their original analysis for the two-
dimensional case and give a more delicate argument inspired by the techniques from so-called
oriented percolation theory (see e.g., [10]). The original result of Sedgewick and Vitter [18]
wrongly limited the sets of directed paths going through the channel grid. Thus the resulting
probability that a path exists was overestimated. The more detailed description of the
shortcoming of the original proof can be found in the full version of this paper.

We note that for d = 2 the graph model considered here has been widely studied in
the context of wireless networks [12]. For example, Gupta and Kumar [11] studied the
connectivity of such networks, and have shown a critical r above which the graph is connected
with high probability. This result was generalized by Penrose [17] to k-connectivity. Our
result gives the first known sublinear shortest path routing oracle for such networks. In a
sense, our results call for further work on exact distance oracles for weighted unit disk graphs.
In particular it might suggest that near-linear space and sublinear query time exact distance
oracles in the worst-case exist, as proving such result over random graphs can be a seen as a
proof-of-concept for such a possibility.

2 Preliminaries

A weighted unit-disk graph G = (V, E) with connectivity radius r is an undirected geometric
graph whose vertices are identified with some n points in Rd, where d ≥ 2 is a constant. The
edge set of G contains an edge {u, v} for all u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ V such that
||u − v||2 =

√∑d
i=1(ui − vi)2 ≤ r. For brevity, in the following we omit the subscript and

write ||x − y|| instead of ||x − y||2.

2 Since a disk is a subset of a plane, in higher dimensions d > 2, it would be perhaps more appropriate
to call such graphs weighted unit-ball graphs. However, anyway, we stick to the well-established term
weighted unit-disk graph since our main result concerns the plane case d = 2.
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For u, v ∈ V , by distG(u, v) we denote the length of a shortest u → v path in G.
We consider exact distance oracles for weighted unit-disk graphs G, i.e., data structures

that preprocess G (ideally into a near-linear space data structure using near-linear time)
and then accept point-to-point distance queries, i.e., given query vertices u, v ∈ V , compute
distG(u, v). The algorithms we propose can be straightforwardly extended to also report
actual shortest paths within the same asymptotic time bound. Hence, we focus only on
computing distances.

In order to perform a meaningful average-case analysis of a distance oracle’s query
algorithm on weighted unit-disk graphs for a given r, we need to limit the space of possible
graphs. To this end, following Sedgewick and Vitter [18], for r ∈ (0, 1) we limit our attention
to graphs with all n points in [0, 1]d. In order to compute the average running time of a
shortest path query, we would like to compute it over all possible such graphs. Equivalently,
we study the expected running time of a query algorithm on a random graph G, where each
of n points is picked uniformly at random from [0, 1]d. Note that in such a case, each vertex
w has Θ(nrd) neighbors in expectation: the probability that another vertex z is connected
with w with an edge equals the probability that z is picked in the d-dimensional ball of
radius r around v which clearly has volume Θ(rd).

We also assume r ≥
(

β log n
n

)1/d

for a sufficiently large constant β > 1. Then, the random

graph G has Ω(n log n) edges in expectation. For d = 2, the bound r = Ω
((

log n
n

)1/d
)

has also been assumed by Sedgewick and Vitter [18], as it greatly simplifies calculations.

Moreover, for r = o

((
log n

n

)1/d
)

, with high probability G is not connected [11].

3 The distance oracle

3.1 Preprocessing
Let the coordinates of the n points of an input weighted unit-disk graph G be given. In the
preprocessing phase, in O(n log n) time we build a simplex range searching data structure
on V [5]. This data structure requires only linear space and allows O(n1−1/d + k) worst-case
time queries reporting all of the k input points in an arbitrary hyperrectangle (with sides
not necessarily parallel to the axes) of Rd.

3.2 Query algorithm
Suppose the query is to compute distG(s, t) for s, t ∈ V . Let

w = ||t − s||.

Clearly, we have distG(s, t) ≥ w. Moreover, in the following we assume w > r, since otherwise
we trivially have distG(s, t) = w.

Let us first move and rotate the coordinate system so that the origin is now in s and the
direction of the first axis is the same as −→

st , thus we have s = (0, 0, . . . , 0) and t = (w, 0, . . . , 0)
in the new coordinate system.

▶ Observation 2. Let W ≥ w denote an upper bound on dist(s, t). If a s–t shortest path
in G contains a vertex x ∈ V then

||x − s|| + ||x − t|| ≤ W. (1)

SoCG 2021



46:6 Sublinear Average-Case Shortest Paths in Weighted Unit-Disk Graphs

Inequality (1) describes a set of points contained in a d-dimensional ellipsoid. The first axis
of that ellipsoid has length W/2, whereas all other d− 1 axes have length R, where R satisfies
(w/2)2 + R2 = (W/2)2. Hence:

R = 1
2
√

W 2 − w2.

Note that the ellipsoid is contained in a d-dimensional bounding box[
−W − w

2 ,
W + w

2

]
× [−R, R] × . . . × [−R, R] (2)

with first side length equal to W and the other d − 1 side lengths equal to 2R.
We will later pick an unbounded increasing function Wub : Z+ → R+ with values

depending on n, d, r, with the goal of defining increasingly large bounding boxes, as follows.

▶ Definition 3. For a given integer i ≥ 1, by BE(i) we denote the set of points satisfying
inequality (1) for W = Wub(i). Similarly, by BB(i) we denote the bounding box as in
formula (2) for W = Wub(i).

Our entire algorithm will be to run a single-source shortest paths algorithm on the graphs

G(i) = (Vi, Ei) = G ∩ BB(i),

subsequently for i = 1, 2, . . . , imax (where imax is to be set later) until an s → t path of length
no more than Wub(i) is found. If we are successful with that for some i, the found path is
returned as the shortest s → t path. Otherwise, we simply run Dijkstra’s algorithm from s

on the entire G and either return the found shortest s → t path, or return ∞ if no path is
found.

▶ Lemma 4. The above algorithm is correct.

Proof. The algorithm clearly stops. Moreover, the final Dijkstra step ensures that an s → t

path is found if and only if a s → t path in G exists.
To prove correctness suppose that distG(s, t) < ∞. Let i∗ be the first i for which

distG(i∗)(s, t) ≤ Wub(i∗), if such i∗ exists. Since G(i∗) ⊆ G, distG(s, t) ≤ distG(i∗)(s, t)
and hence distG(s, t) ≤ Wub(i∗). So, by Observation 2, a path of length distG(s, t) has
all its vertices in BE(i∗) ⊆ BB(i∗). This proves distG(s, t) ≥ distG(i∗)(s, t), so in fact
distG(s, t) = distG(i∗)(s, t).

If i∗ does not exists, we run Dijkstra’s algorithm on the entire graph G, so clearly a
shortest s → t path is returned. ◀

Let TV
gen(i) and TE

gen(i) be the times required to find sets Vi and Ei, respectively. Since
Vi is defined as a subset of V inside a d-dimensional bounding box BB(i), it can be clearly
computed using a single query to the preprocessed range searching data structure. Hence,

TV
gen(i) = O(n1−1/d + |Vi|).

Denote by Td(i) the worst-case running time of step i. The cost Td(i) might differ depending
on the algorithm that we use to find a shortest path in G(i). Note that G(i) is a weighted
unit-disk graph, so if d = 2, and we employ the recent nearly-linear (in the number of
vertices), albeit difficult to implement, algorithm of Wang and Xue [20], so we have:3

T2(i) = O
(

|Vi| log2(|Vi| + 2) + TV
gen(i)

)
= O

(
|Vi| log2(|Vi| + 2) +

√
n
)

. (3)

3 We use log (|Vi| + 2) instead of just log |Vi| to make sure this term is at least a positive constant.
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On the other hand, if d > 2, we need to use the simple-minded Dijkstra’s algorithm to
find a shortest path in G(i), so we have

Td(i) = O
(

|Vi| log(|Vi| + 2) + |Ei| + TE
gen(i)

)
. (4)

Let P̄ (i) be the probability that we fail to find a path of length at most Wub(i) in the
graph Gi. The expected running time of the algorithm is then

O

(
imax∑
i=1

P̄ (i − 1) · E[Td(i)] + P̄ (imax) · n2

)
. (5)

We will prove that by choosing

imax = Θ(nrd), (6)

and

Wub(i) = Θ

w ·

√
1 +

(
i

nrd

) 2
d−1

 = O(w), (7)

as described precisely in Section 5, we can obtain the following key bound. The proof of this
bound is covered in Sections 4 and 5.

▶ Lemma 5. For i = 1, . . . , imax, P̄ (i) ≤ e−i.

We now derive bounds on the expected sizes of sets Vi and Ei.

▶ Lemma 6. For i = 1, . . . , imax, E[|Vi|] = Θ
(
(w/r)di

)
.

Proof. Clearly, E[|Vi|] equals the volume of BB(i) times n. For W = Wub(i) we have

R = 1
2
√

W 2 − w2 = Θ
(

w ·
(

i

nrd

) 1
d−1
)

. (8)

Since BB(i) has size W × 2R × . . . × 2R, its volume is

W · (2R)d−1 = Θ(w) · Θ(Rd−1) = Θ(w) · Θ
(

wd−1i

nrd

)
= Θ

(
1
n

·
(w

r

)d

· i

)
. ◀

In order to analyse the running time we will need the following technical lemma whose
proof can be found in the full version.

▶ Lemma 7. Let X be a random variable from a binomial distribution with n variables and
mean E[X] = µ = Ω(1). Then for any constant integer α ≥ 1:

E[X · logα(X + 2)] = O(E[X] · logα(E[X] + 2))) = O(µ · logα(µ + 2))).

▶ Corollary 8. For any integer α ≥ 1 we have

E[|Vi| logα(|Vi| + 2)] = O(E[|Vi|] · logα(E[|Vi|] + 2)).

Proof. We can apply Lemma 7 since E[|Vi|] = Ω(1) by Lemma 6. ◀

SoCG 2021
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▶ Lemma 9. Let

fE(i) = min{nrd, (w/r)d−1i} =
{

(w/r)d−1i for r ≥ 2d−1
√

wd−1i/n

nrd otherwise.

Then for i = 1, . . . , imax, E[|Ei|] = E[|Vi|] · O(fE(i)).

Proof. Take a vertex v ∈ Vi. All neighbours of v in G(i) belong to the intersection of the
d-dimensional ball of radius r centered at v, and the bounding box BB(i). This intersection,
on one hand, is contained in a box of size 2r × 2R × · · · × 2R, where R = 1

2
√

(Wub(i))2 − w2

(see (8)). On the other hand, it is trivially inside a ball of radius r. In the former case the
volume of the box with v’s neighbours is

O(rRd−1) = O

(
1
n

(w/r)d−1 · i

)
In the latter case the volume is O(rd). Therefore, the expected number of neighbours of v is

O

(
n · min

{
1
n

(w/r)d−1 · i, rd

})
= O(min{(w/r)d−1 · i, nrd}). (9)

By linearity of expectation we get the desired bound on E[|Ei|]. ◀

The following lemma describes how to efficiently generate the edges Ei when we use
Dijkstra’s algorithm (for d ≥ 3).

▶ Lemma 10. Let fE be as in Lemma 9. Given Vi, the edge set Ei can be computed in
TE

gen(i) = O(E[|Vi|] · fE(i)) expected time.

Proof. We divide [0, 1]d into cubes of size r × r × · · · × r. With each non-empty cube we will
keep a list of vertices from Vi that belongs to that cube. We build these lists by iterating
over all v ∈ Vi and assign v to the appropriate cube’s list. Technically speaking, the lists
are stored in a hash table with expected O(1) insertion and access time (see e.g., [9]): note
that the cubes can be mapped to integers [1, (⌈1/r⌉)d] and we have (⌈1/r⌉)d = O(n) by
r = Ω

(
(log(n)/n)1/d

)
. To find the edges, for each v we iterate over all vertices w belonging

to the same cube as v or a neighbouring cube and check whether ||v − w|| ≤ r. There are at
most 3d such cubes and each neighbor of v necessarily lies in these neighboring cubes.

Each cube contains O(n min{rRd−1, rd}) vertices in expectation, where we again set R =
1
2
√

(Wub(i))2 − w2 (see (8)). Recall from (9) in Lemma 9 that this quantity is O(fE(i)). This
is because if 2R < r then the cube’s intersection with BB(i) has size at most r×(2R)×· · ·×(2R)
and only in that part of the cube the vertices from Vi can appear. Therefore, the expected
total work for each vertex will be O(3d · fE(i)) = O(fE(i)). Thus, by linearity of expectation,
the expected running time is indeed O(E[|Vi|] · fE(i)). ◀

We are now ready to prove the following theorem bounding the expected running time of
the query algorithm.

▶ Theorem 11. The expected running time of the query algorithm on an n-vertex random
weighted unit-disk graph in [0, 1]d with connectivity radius r is
(a) O

(
(w/r)2 log2(1 + w/r) +

√
n
)

for d = 2,
(b) O

(
(w/r)2d−1 + n1−1/d

)
for d ≥ 3 and r ≥ 2d−1

√
wd−1/n,

(c) O(nwd + n1−1/d) otherwise.
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Proof. In all cases we will bound the expected query time as given in sum (5):

O

(
imax∑
i=1

P̄ (i − 1) · E[Td(i)] + P̄ (imax) · n2

)
.

First of all, note that by Equation 6, Lemma 5 and the assumption r ≥ (β log(n)/n)1/d

where β > 1 is a large enough constant, for some constant γ > 0 we have:

imax ≥ γ · nrd ≥ γ · β log n

So, picking β = 2/γ gives us

P̄ (imax) · n2 = O
(
e−imax · n2) = O

(
e−2 log n · n2) = O(1).

Hence, we can focus on the below sum. By Lemma 5, we have:

O

(
imax∑
i=1

P̄ (i − 1) · E[Td(i)]
)

= O

( ∞∑
i=1

E[Td(i)]e−(i−1)

)
= O

( ∞∑
i=1

E[Td(i)]e−i

)
.

In the following, we will use the asymptotic formula
∑∞

i=1 f(i)e−i = O(1) that holds for any
function f(i) = poly(i). Recall that w > r.

Let us first prove item (a). By (3) and Lemma 6, we have:

O

( ∞∑
i=1

E[T2(i)]e−i

)

= O

( ∞∑
i=1

(w/r)2 · i · log2((w/r)2i + 2
)

· e−i +
∞∑

i=1

√
ne−i

)

= O

(
(w/r)2 log2(w/r + 1)

∞∑
i=1

i log2(i) · e−i +
√

n

∞∑
i=1

e−i

)
= O

(
(w/r)2 log2(1 + w/r) +

√
n
)

.

Above we silently used Corollary 8 for X = |Vi| and α = 2. Now let us prove items (b) and (c).
Let us first argue that the term E[|Vi| log |Vi|] is, by Corollary 8, asymptotically dominated
by the bound E[|Vi|] · O(fE(i)) on E[|Ei|] from Lemma 9. This follows by Lemmas 6 and 9 –
if r is sufficiently large. Thus by plugging that bound into (4) we get

O

( ∞∑
i=1

E[Td(i)]e−i

)

=
∞∑

i=1
(w/r)di · min{nrd, (w/r)d−1i}e−i +

∞∑
i=1

n1−1/de−i

= O

min

nwd
∑
i≥1

ie−i, (w/r)2d−1
∞∑

i=1
i2e−i

+ n1−1/d
∞∑

i=1
e−i


= O

(
min

{
nwd, (w/r)2d−1}+ n1−1/d

)
. ◀

▶ Remark 12. The described distance oracle can be very easily made dynamic with only
polylogarithmic overhead. That is, we can support insertions and deletions of vertices of the
weighted unit-disk graph G, in amortized O(polylog n) time. To this end we simply replace
the simplex range query data structure of Chan [5] that we build in the preprocessing with
that of Matousek [16] which allows for polylogarithmic amortized updates to the point set
and has only polylogarithmically slower preprocessing and query times.
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4 Channels

The remaining part of the paper is devoted to proving the very convenient bound on P̄ (i)
from Lemma 5.

We start by introducing a notion of a channel, which is a parameterized grid-like object
whose goal is to “discretize” the space of possible shortest s → t paths in BB(i). The next
step is to upper-bound the probability that we fail to find reasonably short s → t path in
the channel. Afterwards, we are ready to give explicit formulas for imax and Wub(i) so that
the asymptotic bounds (6) and (7), as well as the bound P̄ (i) ≤ e−i hold.

Roughly speaking, a channel is a subset of vertices V restricted to some subspace. We
generalize the channels defined in [18, page 41] to d-dimensional space and arbitrary start/end
vertices s and t.

Recall that w = ||t − s|| and w > r. Let K ≥ 1 be the smallest integer such that
l = w/(4K + 1) ≤ r/4. We also have

l = w

4(K − 1) + 1 · 4(K − 1) + 1
4K + 1 > r/4 · 4K − 3

4K + 1 ≥ r/20. (10)

We are going to work in the coordinate system introduced in Section 3.2. Let us denote the
first axis by x0 and the remaining axes by x1, . . . , xd−1.

▶ Definition 13 (Box R(z0, z1, . . . , zd−1)). Let h > 0 be fixed. Let us cut the space using
planes x0 = lz and xi = (1/2 + z)h for all integers z and i = 1, . . . , d − 1.

For z0, z1, . . . , zd−1 ∈ Z, the box R(z0, z1, . . . , zd−1) contains all points (xi)d−1
i=0 satisfying:

lz0 ≤ x0 ≤ l(z0 + 1),
(−1/2 + zi)h ≤ xi ≤ (1/2 + zi)h for all i = 1, . . . , d − 1.

Each box, defined as above, has size l × h × · · · × h. Note that s ∈ R(0, 0, . . . , 0) and
t ∈ R(4K, 0, . . . , 0). Now suppose we want to travel from the box containing s to the box
containing t using jumps, defined below.

▶ Definition 14 (Jumping between boxes). We say that we can jump from box
R(z0, z1, . . . , zd−1) to box R(z′

0, z′
1, . . . , z′

d−1) iff
z′

0 = z0 + 2,
|z′

i − zi| = 1 for all i = 1, . . . , d − 1.

Consider a jumping trip from R(0, 0, . . . , 0) to R(4K, 0, . . . , 0).

▶ Observation 15 (Reachable boxes). Let B = R(z0, z1, . . . , zd−1) be an arbitrary box.
Suppose a sequence of jumps (as defined above) from R(0, 0, . . . , 0) to R(4K, 0, . . . , 0) goes
through the box B. Then, the following conditions hold:

z0 = 2k for some integer k, 0 ≤ k ≤ 2K,
|zi| ≤ min(k, 2K − k) for all i = 1, . . . , d − 1,
zi ≡ k (mod 2).

Now we are ready to define the channel parameterized by h.

▶ Definition 16 (Channel). A channel ch(h) is a subset of [0, 1]d defined as the union of all
boxes B satisfying the conditions of Observation 15.

In other words, a channel ch(h) consists of all boxes that can appear in a sequence of
jumps from the box containing s to the box containing t. Boxes, jumps, and channels are
depicted in Figure 1.

In the following, we say that a box B is empty if it does not contain any vertex of G.
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0 l 2l 3l 4K · l

0
h

−h

3h

−3h

R(0, 0)

R(2,-1)

R(2, 1)

R(4K, 0)

R(1, 3)

Figure 1 The rectangles represent boxes from Definition 13 for d = 2. The red arrows represent
possible jumps from a single box. The channel ch(h) for K = 3 (see Definition 16) is represented by
rectangles with thick black border.

4.1 Paths in a channel
Not all channels ch(h) are of our interest. We need a condition on h guaranteeing that if
we can jump from a non-empty box B to another non-empty box B′ then there exists an
appropriate edge in the graph, namely if there is u ∈ B ∩ V and v ∈ B′ ∩ V then ||u − v|| ≤ r.
Then, a sequence of jumps between non-empty boxes will certify the existence of a path in G.

Observe that the distance between two opposite corners of B and B′ (recall that B and
B′ have to satisfy Definition 14) is√

(3l)2 + (d − 1)(2h)2.

We need this to be smaller than r. Taking into account that l ≤ r/4, it is sufficient that(3
4r
)2

+ (d − 1)(2h)2 ≤ r2,

which gives

h ≤ 1
8

√
7

d − 1 · r. (11)

▶ Definition 17 (Path in ch(h)). A path in ch(h) with h satisfying (11) is a sequence of
non-empty boxes B0, . . . , B2K such that B0 = R(0, 0, . . . , 0), B2K = R(4K, 0, . . . , 0), and we
can jump from Bj to Bj+1 for all j = 0, . . . , 2K − 1.

Now we show that a path in ch(h) certifies the existence of an s − t path in G which is
not too long. Specifically, we show the following bound.

▶ Lemma 18 (Channel induced path length). Suppose there is a path in ch(h). Then, there
exists an s − t path in G of length no more than

w
√

1 + 402(d − 1)(h/r)2. (12)
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Proof. Let uj = (uj
0, . . . , uj

d−1) be a vertex of G in Bj ∩ V . Additionally, set u0 = s and
u2K = t. Recall that uj exists since each box in a path in ch(h) is non-empty. Consider
subsequent vertices uj and uj+1. Note that

||uj+1 − uj || =

√√√√d−1∑
i=0

(uj+1
i − uj

i )2 = (uj+1
0 − uj

0)

√√√√1 +
d−1∑
i=1

(
uj+1

i − uj
i

uj+1
0 − uj

0

)2

.

Recall that we have uj+1
0 − uj

0 ≥ l and uj+1
i − uj

i ≤ 2h for i ≥ 1. Hence,

||uj+1 − uj || ≤ (uj+1
0 − uj

0)
√

1 + (d − 1)(2h)2

l2 .

Since u0 → u1 → . . . u2K is a path in G, the length of a shortest s − t path in G can be
bounded by:

2K−1∑
j=0

||uj+1 − uj || ≤
√

1 + (d − 1)(2h)2

l2 ·
2K−1∑
j=0

(uj+1
0 − uj

0)

=

√
1 + (d − 1)

(
2h

l

)2
· w.

The claimed bound is obtained by l ≥ r/20. ◀

4.2 Probability
Denote by q the probability that a single box is empty. We have:

q = (1 − lhd−1)n ≤ exp(−nlhd−1). (13)

Denote by P̂ (h) the probability that no path exists in ch(h). We are going to prove the
following lemma.

▶ Lemma 19. There exists constants q0 ∈ (0, 1) and c > 0 such that if q < q0 then we have

P̂ (h) ≤ (cq)2d−3
. (14)

Proof. The proof will proceed by induction on d. We will thus use the notation P̂d(h) and
chd(h) to underline which dimension d we are currently referring to.

The crux of the proof is to prove the induction base d = 2, i.e., the bound

P̂2(h) ≤ √
cq

that holds for all q < q0 for some constants c, q0. Due to space constraints, the proof of this
bound can be found in the full version. The general idea behind that proof is to reformulate
it in terms of directed reachability in n × n grids: we want to bound the probability that
no path between the corners of the grid exist when each vertex of the grid can fail with
probability q. Then next step is to adapt the so-called contour argument from oriented
percolation theory (see e.g., [10]) to work with finite grids.

For larger d it is enough to prove that the bound

P̂d(h) ≤
(
P̂d−1(h)

)2
.

holds. Let s ∈ {−1, 1}. Consider a subchannel chs
d(h) of the channel chd(h) that is composed

of the reachable boxes B = R(z0, z1, . . . , zd−1) fulfilling the following conditions:



A. Karczmarz, J. Pawlewicz, and P. Sankowski 46:13

z0 = 2k for some integer k, 0 ≤ k ≤ 2K,
|zi| ≤ min(k, 2K − k) for all i = 1, . . . , d − 2,
zd−1 = s · min(k, 2K − k),
zi ≡ k (mod 2).

Observe that the above conditions say that B is a reachable box in chd(h) with additional
constraint zd−1 = s·min(k, 2K−k), which can also be written as zd−1 = s·min(z0, 4K−z0)/2.

Now one can see that chs
d(h) has exactly the same structure as chd−1(h): we can jump

between boxes R(z0, . . . , zd−2) and R(z′
0, . . . , z′

d−2) in channel chd−1(h) if and only if we can
jump between boxes

R(z0, . . . , zd−2, s · min(z0, 4K − z0)/2)

and

R(z′
0, . . . , z′

d−2, s · min(z′
0, 4K − z′

0)/2)

in channel chs
d(h). Therefore the probability that no path exists in chs

d(h) is bounded by
P̂d−1(h).

Observe that ch−1
d (h) and ch1

d(h) share only the corner boxes R(0, 0, . . . , 0) and
R(4K, 0, . . . , 0). Thus if no path exists in chd(h), there must be no paths in ch−1

d (h)
and ch1

d(h) independently. This clearly happens with probability at most
(
P̂d−1(h)

)2. ◀

5 Choosing the size of i-th bounding box

In this section we show how we derive the bound of Lemma 5 from Lemma 19. We will also
be able to explicitly define the value imax and the function Wub(i) so that the asymptotic
bounds (6) and (7) hold.

Suppose that for a fixed i we pick such hi that Wub(i) = w
√

1 + 402(d − 1)(hi/r)2. Then,
by Lemma 18, a path in ch(hi) certifies the existence of a s → t path in G of length at most
Wub(i). Such a path is clearly contained in BE(i), and thus also in BB(i). As a result, we
conclude

P̄ (i) ≤ P̂ (hi).

Given this, and since we want the probability P̄ (i) to decay exponentially with i, we would
like to choose hi in a such way that P̂ (hi) ≤ e−i, which will imply P̄ (i) ≤ e−i.

Suppose exp(−nlhd−1) < q0, where q0 is the constant of Lemma 19. By combining
inequality (13) and the bound of Lemma 19, we have

P̂ (h) ≤ exp
(
2d−3(log c − nlhd−1)

)
.

In order to guarantee P̂ (hi) ≤ e−i, it is thus enough to have

2d−3(log c − nlhd−1
i ) ≤ −i

log c + i

2d−3 ≤ nlhd−1
i , (15)

and

log 2
q0

≤ nlhd−1
i .
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Let c′ be such a positive constant that for i ≥ 1 we have

max
(

log 2
q0

, log c + i

2d−3

)
≤ c′ · i. (16)

Now let h0 be such that hd−1
0 = c′

nl , and let

hi = h0 · i
1

d−1 . (17)

Then we have

max
(

log 2
q0

, log c + i

2d−3

)
≤ c′ · i = c′ ·

(
hi

h0

)d−1
= c′ · hd−1

i · nl

c′ = nlhd−1
i .

So indeed, if hi is defined as in (17), we have P̂ (hi) ≤ e−i. So the explicit formula for
Wub(i) is:

Wub(i) = w

√
1 + 402(d − 1)

(
c′i

nlrd−1

) 2
d−1

,

where c′ is a constant defined in (16) and l = Θ(r) is as defined in (10). It is now verified
that Wub(i) indeed satisfies the asymptotic formula (7) from Section 3.

The above proof derivation of P̄ (i) ≤ e−i is only correct if hi is not too large. Namely,
recall that the bound (11) requires that

hi ≤ 1
8

√
7

d − 1 · r. (18)

Since hi is an increasing function of i, this imposes a constraint on maximum possible i = imax
allowed. Hence, we need to have

(
c′ · imax

nl

) 1
d−1

≤ 1
8

√
7

d − 1 · r.

imax =

 1
c′ ·

(
1
8

√
7

d − 1 · r

)d−1

· nl

 = Θ(nrd).

Observe that the above definition of imax agrees with the bound (6) from Section 3.
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