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Abstract
Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal
number of vertices of such triangulations. First, we show that every hyperbolic surface of genus
g has a simplicial Delaunay triangulation with O(g) vertices, where edges are given by distance
paths. Then, we construct a class of hyperbolic surfaces for which the order of this bound is optimal.
Finally, to give a general lower bound, we show that the Ω(√g) lower bound for the number of
vertices of a simplicial triangulation of a topological surface of genus g is tight for hyperbolic surfaces
as well.
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1 Introduction

The classical topic of Delaunay triangulations has recently been studied in the context
of hyperbolic surfaces. Bowyer’s incremental algorithm for computing simplicial Delaunay
triangulations in the Euclidean plane [5] has been generalized to orientable hyperbolic surfaces
and implemented for some specific cases [4, 11]. Moreover, it has been shown that the flip
graph of geometric (but not necessarily simplicial) Delaunay triangulations on a hyperbolic
surface is connected [7].

In this work, we consider the minimal number of vertices of a simplicial Delaunay trian-
gulation of a closed hyperbolic surface of genus g. Motivated by the interest in embeddings
where edges are shortest paths between their endpoints [8, 10], which have applications
in for example the field of graph drawing [17], we restrict ourselves to distance Delaunay
triangulations, where edges are distance paths.
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31:2 Minimal Delaunay Triangulations

Our main result is the upper bound on the number of vertices with sharp order of growth:

▶ Theorem 1. An orientable closed hyperbolic surface of genus g ≥ 2 has a distance Delaunay
triangulation with at most O(g) vertices. There exists a family of surfaces, Xg, g ≥ 2, such
that the number of vertices of any distance Delaunay triangulation of them grows like Ω(g).

The above result is a compilation of Theorems 4 and 18 where explicit upper and lower
bounds are given.

Another reason to study triangulations whose edges are distance paths, comes from the
study of moduli spaces Mg, which we can think of as a space of all hyperbolic surfaces of
genus g ≥ 2 up to isometry. These spaces admit natural coordinates associated to pants
decompositions (the so-called Fenchel-Nielsen coordinates, see Section 2 for details). It is a
classical theorem of Bers [2] that any surface admits a short pants decomposition, meaning
that the length of each of its simple closed geodesics is bounded by a function that only
depends on the topology of the surface (but not its geometry). As these curves provide a local
description of the surface, one might hope that they are also geodesically convex, meaning
that the shortest distance path between any two points of a given curve is contained in the
curve. It is perhaps surprising that most surfaces admit no short pants decompositions with
geodesically convex curves. Indeed it is known that any pants decomposition of a random
surface (chosen with respect to a natural probability measure on Mg) has at least one curve
of length on the order of g

1
6 −ε as g grows (for any fixed ε > 0) [9]. And it is a theorem of

Mirzakhani that these same random surfaces are also of diameter on the order of log(g) [13].
Hence the longest curve of any pants decomposition of a random surface is not convex.

The lengths of edges in a given triangulation are another parameter set for Mg. By the
theorem above, such a parameter set can be chosen with a reasonable number of vertices
such that the edges are all convex. Using the moduli space point of view, one has a function
ω : Mg → N which associates to a surface the minimal number of vertices of any of its
distance Delaunay triangulations. The above result implies that

lim sup
g→∞

max
X∈Mg

ω(X)
g

is finite and strictly positive, but for instance we do not know whether the actual limit exists.
The examples we exhibit are geometrically quite simple, as they are made by gluing

hyperbolic pants, with bounded cuff lengths, in something that resembles a line as the genus
grows. One might wonder whether all surfaces have this property, but we show this is not the
case by exploring the quantity minX∈Mg

ω(X). This quantity has a precise lower bound on
the order of Θ(√g) because we ask that our triangulations be simplicial [12]. We show how
to use the celebrated Ringel-Youngs construction [15] to construct a family of hyperbolic
surfaces that attain this bound for infinitely many genera (Theorem 26), showing that one
cannot hope for better than the simplicial lower bound in general.

This paper is structured as follows. In Section 2, we introduce our notation and give some
preliminaries on hyperbolic surface theory and triangulations. In Section 3, we prove our
linear upper bound for the number of vertices of a minimal distance Delaunay triangulation.
In Section 4, we construct classes of hyperbolic surfaces attaining the order of this linear
upper bound. Finally, in Section 5, we construct a family of hyperbolic surfaces attaining
the general Θ(√g) lower bound.
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2 Preliminaries

We will start by recalling some hyperbolic geometry. There are several models for the
hyperbolic plane [1]. In the Poincaré disk model, the hyperbolic plane is represented by the
unit disk D in the complex plane equipped with a specific Riemannian metric of constant
Gaussian curvature −1. With respect to this metric, hyperbolic lines, i.e., geodesics are given
by diameters of D or circle segments intersecting ∂D orthogonally. A hyperbolic circle is a
Euclidean circle contained in D. However, in general the centre and radius of a hyperbolic
circle are different from the Euclidean centre and radius.

A hyperbolic surface is a 2-dimensional Riemannian manifold that is locally isometric to
an open subset of the hyperbolic plane [6, 16], thus of constant curvature −1. Our surfaces
are assumed throughout to be closed and orientable, and because they are hyperbolic, via
Gauss-Bonnet, their genus g satisfies g ≥ 2 and their area is 4π(g − 1). Note that we will
frequently be interested in subsurfaces of a closed surface which we think of as compact
surfaces with boundary consisting of a collection of simple closed geodesics. The signature of
such a subsurface is (g′, k) where g′ is its genus and k is the number of boundary geodesics.

Via the uniformization theorem, any hyperbolic surface X can be written as a quotient
space X = D/Γ of the hyperbolic plane under the action of a Fuchsian group Γ (a discrete
subgroup of the group of orientation-preserving isometries of D). The hyperbolic plane D is
the universal cover of X and is equipped with a projection π : D → D/Γ.

In the free homotopy class of any non-contractible closed curve on a hyperbolic surface
lies a unique closed geodesic. If the curve is simple, then the corresponding geodesic is simple,
and hence it is a straightforward topological exercise to decompose a hyperbolic surface into
2g − 2 pairs of pants by cutting along 3g − 3 disjoint simple closed geodesics (Figure 1). A
pair of pants is a surface homeomorphic to a three times punctured sphere but we generally
think of its closure, and thus of a hyperbolic pair of pants as being a surface of genus 0 with
three simple closed geodesics as boundary, i.e., a surface of signature (0, 3).

It is a short but useful exercise in hyperbolic trigonometry to show that a hyperbolic
pair of pants is determined by its three boundary lengths. Hence, the lengths of the 3g − 3
geodesics determine the geometry of each of the 2g − 2 pairs of pants, but to determine X,
one needs to add twist parameters that control how the pants are pasted together. How
one computes the twist coordinate is at least partially a matter of taste, and although we
will not make much use of it, for completeness we follow [6], where the twist is the signed
distance between marked points on the boundary curves.

The length and twist parameters determine X and are called Fenchel-Nielsen coordinates.
These parameters can be chosen freely in the set (R>0)3g−3 × R3g−3. What they determine
is more than just an isometry class of a surface: they determine a marked hyperbolic surface,
homeomorphic to a base topological surface Σ. As the lengths and twists change, the marked
surface changes, and the Fenchel-Nielsen coordinates provide a parameter set for the space of
marked hyperbolic surfaces of genus g, called Teichmüller space Tg. The underlying moduli
space Mg can be thought of as the space of hyperbolic surfaces up to isometry, obtained
from Tg by “forgetting” the marking.

Throughout the paper, lengths of closed geodesics will play an important role. As
mentioned above, in the free homotopy class of a non-contractible closed curve lies a unique
geodesic representative, and as the metric changes, the length of the geodesic changes, but
the free homotopy class does not. Generally we will be dealing with a fixed surface X ∈ Tg,
and the length of a geodesic γ will be denoted by ℓ(γ). Nonetheless, it is sometimes useful
to think of the length of the corresponding homotopy class as a function over Tg which
associates to X the length of the geodesic corresponding to γ.

SoCG 2021



31:4 Minimal Delaunay Triangulations

To a pair of pants decomposition, we associate a 3-regular graph, where each pair of
pants is represented by a vertex and two vertices share an edge if the corresponding pairs of
pants share a boundary geodesic (see Figure 2). As our parametrization of Tg depends on a
choice of pair of pants decomposition, one can think of the Fenchel-Nielsen coordinates as
associating a length and a twist to each edge.

Figure 1 Decomposition of a genus 3 surface into 4 pair of pants using 6 disjoint simple closed
geodesics.

Figure 2 3-regular graph corresponding to the pair of pants decomposition shown in Figure 1.

Around a simple closed geodesic γ, the local geometry of a surface is given by its so-called
collar. Roughly speaking, for small enough r, the set Cγ(r) = {x ∈ X | d(x, γ) ≤ r} is an
embedded cylinder. A bound on how large one can take the r to be while retaining the
cylinder topology is given by the Collar Lemma:

▶ Lemma 2 ([6, Theorem 4.1.1]). Let γ by a simple closed geodesic on a closed hyperbolic
surface X. The collar Cγ(w(γ)) of width w(γ) given by

w(γ) = arcsinh
(

1
sinh( 1

2 ℓ(γ))

)
(1)

is an embedded hyperbolic cylinder isometric to [−w(γ), w(γ)] × S1 with the Riemannian
metric ds2 = dρ2 + ℓ2(γ) cosh2(ρ)dt2 at (ρ, t). Furthermore, if two simple closed geodesics γ

and γ′ are disjoint, then the collars Cγ(w(γ)) and Cγ′(w(γ′)) are disjoint as well.

This paper is about distance Delaunay triangulations on closed hyperbolic surfaces.

▶ Definition 3. A distance Delaunay triangulation is a triangulation satisfying the following
three properties:
1. it is a simplicial complex,
2. it is a Delaunay triangulation,
3. its edges are distance paths.

The set of all distance Delaunay triangulations of a closed hyperbolic surface X is denoted by
D(X).

We will describe each of these three properties in more detail below.
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Simplicial complexes. We will use the standard definition of a simplicial complex. In our
case, an embedding of a graph into a surface is a simplicial complex if and only if it does
not contain any 1- or 2-cycles. In particular, a geodesic triangulation of a point set in the
Euclidean or hyperbolic planes is always a simplicial complex. This is because there are no
geodesic monogons or bigons.

Delaunay triangulations. Given a set of vertices in the Euclidean plane, a triangle is called
a Delaunay triangle if its circumscribed disk does not contain any vertex in its interior. A
triangulation of a set of vertices in the Euclidean plane is a Delaunay triangulation if all
triangles are Delaunay triangles. Using the correspondence between hyperbolic and Euclidean
circles, we define Delaunay triangulations in the hyperbolic plane similarly.

Delaunay triangulations on hyperbolic surfaces can be defined by lifting vertices on a
hyperbolic surface X to the universal cover D [3, 7]. More specifically, let P be a set of
vertices on X and let π : D → D/Γ be the projection of the hyperbolic plane D to the
hyperbolic surface X = D/Γ. A triangle (v1, v2, v3) with vi ∈ P is called a Delaunay triangle
if there exist pre-images v′

i ∈ π−1({vi}) such that the circumscribed disk of the triangle
(v′

1, v′
2, v′

3) in the hyperbolic plane does not contain any point of π−1(P) in its interior. A
triangulation of P on X is a Delaunay triangulation if all triangles are Delaunay triangles.

A Delaunay triangulation of a point set on a hyperbolic surface X is related to a Delaunay
triangulation in D as follows [3]. Given a point set P on X, we consider a Delaunay
triangulation T ′ of the infinite point set π−1(P). Then, we let T = π(T ′). By definition,
T is a Delaunay triangulation. Moreover, because every triangulation in D is a simplicial
complex, T ′ is a simplicial complex. However, T is not necessarily a simplicial complex,
because projecting T ′ to X might introduce 1- or 2-cycles. We will use the correspondence
between Delaunay triangulations in D and in X in Definition 11 and the proof of Theorem 4
and show explicitly that in these cases the result after projecting to X is simplicial.

To make sure that T = π(T ′) is a well-defined triangulation, we will assume without loss
of generality that T ′ is Γ-invariant, i.e., the image of any Delaunay triangle in T ′ under an
element of Γ is a Delaunay triangle. Otherwise, it is possible that in so-called degenerate
cases T contains edges that intersect in a point that is not a vertex [4]. Namely, suppose
that T ′ contains a polygon P = {p1, p2, . . . , pk} consisting of k ≥ 4 concircular vertices and
let TP be the Delaunay triangulation of P in T ′. Because the Delaunay triangulation of a set
of at least four concircular vertices is not uniquely defined, assume that there exists A ∈ Γ
such that the Delaunay triangulation TA(P ) of A(P ) in T ′ is not equal to A(TP ). Because
π(P ) = π(A(P )), there exists an edge of π(TA(P )) and an edge of π(A(TP )) that intersect in
a point that is not a vertex.

Distance paths. Suppose we are given an edge (u, v) in a triangulation of a hyperbolic
surface X. Because (u, v) is embedded in X, there exists a geodesic γ : [0, 1] → X with
γ(0) = u and γ(1) = v. We say that (u, v) is a distance path if ℓ(γ) = d(u, v), where d(u, v)
is the infimum of the lengths of all curves joining u to v.

3 Linear upper bound for the number of vertices of a minimal distance
Delaunay triangulation

As our first result, we prove that for every hyperbolic surface there exists a distance Delaunay
triangulation with O(g) vertices. Note that the constant 151 is certainly not optimal.

SoCG 2021



31:6 Minimal Delaunay Triangulations

▶ Theorem 4. For every closed hyperbolic surface X of genus g there exists a distance
Delaunay triangulation T ∈ D(X) with at most 151g vertices.

The idea of the proof is the following. Given a hyperbolic surface X, we construct a vertex
set P on X consisting of at most 151g vertices such that the projection T of a Delaunay
triangulation of π−1(P) in D to X is a distance Delaunay triangulation of X.

It is known that T is a simplicial complex if P is sufficiently dense and well-distributed [3].
More precisely, there are no 1- or 2-cycles in T if the diameter of the largest disk in D not
containing any points of π−1(P) is less than 1

2 sys(X), where sys(X) is the systole of X, i.e.
the length of the shortest homotopically non-trivial closed curve. However, the systole of
a hyperbolic surface can be arbitrarily close to zero, which means that we would need an
arbitrarily dense set P to satisfy this condition.

Instead, for a constant ε > 0 we subdivide X into its ε-thick part Xε
thick = {x ∈

X | injrad(x) > ε} and its ε-thin part Xε
thin = X \ Xε

thick, where injrad(x) is the injectivity
radius at x, i.e., the radius of the largest embedded open disk centered at x. Note that the
minimum of injrad(x) over all x ∈ X is given by 1

2 sys(X). We will see in Section 3.1 that,
for sufficiently small ε, Xε

thin is a collection of hyperbolic cylinders (see Figure 3). In these
hyperbolic cylinders we want to construct a set of vertices the cardinality of which does not
depend on sys(X). To do this, we put three vertices on the “waist” and each of the two
boundary components of the cylinders that are “long and narrow” (for definitions of “waist”
and “long and narrow”, see Section 3.1). In the cylinders that are not “long and narrow” it
suffices to place three vertices on its waist only. Because injrad(x) > ε for all x ∈ Xε

thick, we
can construct a sufficiently dense and well-distributed point set in Xε

thick whose cardinality
does not depend on sys(X) but only on ε. In Section 3.2 we will describe how we combine
the vertices placed in the hyperbolic cylinders with the dense and well-distributed set of
vertices in Xε

thick. Finally, the proof of Theorem 4 is given in Section 3.3.

Figure 3 Decomposition of a hyperbolic surface into a thick part consisting of two connected
components and two narrow hyperbolic cylinders (in red).

3.1 Distance Delaunay triangulations of hyperbolic cylinders
We now describe our construction of a set of vertices for the ε-thin part Xε

thin of the hyperbolic
surface X. The following lemma describes Xε

thin in more detail.

▶ Lemma 5 ([6, Theorem 4.1.6]). If ε < arcsinh(1) then Xε
thin is a collection of at most

3g − 3 pairwise disjoint hyperbolic cylinders.
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Following the description of the geometry of the hyperbolic cylinders in [14], each
hyperbolic cylinder C in Xε

thin consists of points with injectivity radius at most ε and the
boundary curves γ+ and γ− consist of all points with injectivity radius equal to ε. Every
point on the boundary curves is the base point of an embedded geodesic loop of length
2ε (Figure 4), which is completely contained in the hyperbolic cylinder. All points on the
boundary curves have the same distance KC to a closed geodesic γ (called the waist of
C), where KC only depends on ε and the length ℓ(γ) of γ. To see this, fix a point p on
γ+ and consider a distance path ξ from p to γ (Figure 4). Cutting along γ, ξ and the loop
of length 2ε with base point p yields a hyperbolic quadrilateral. The common orthogonal
of γ and the geodesic loop subdivides this quadrilateral into two congruent quadrilaterals,
each with three right angles. Applying a standard result from hyperbolic trigonometry
yields sinh(ε) = sinh( 1

2 ℓ(γ)) cosh(ℓ(ξ)) (see, e.g., [6, Formula Glossary 2.3.1(v)]). Because
KC = ℓ(ξ), it follows that

KC = arccosh
(

sinh(ε)
sinh( 1

2 ℓ(γ))

)
. (2)

Figure 4 Computing KC .

We see that γ+ and, by symmetry, γ− consist of points that are equidistant to γ with
distance KC . Moreover, γ+ and γ− are smooth.

Recall the notion of a collar from Section 2. In particular, each hyperbolic cylinder
C in Xε

thin is a collar of width KC , i.e., C = Cγ(KC). Comparing equation (2) for KC

with equation (1) in the statement of the Collar Lemma, we see that w(γ) > KC , because
sinh ε < 1. This inequality will be used in the proof of Lemma 7 to give a lower bound for
the distance between distinct hyperbolic cylinders in Xε

thin.
We distinguish between two kinds of hyperbolic cylinders in Xε

thin, namely ε′-thin cylinders
and ε′-thick cylinders, where ε′ = 0.99ε. An ε′-thick cylinder with waist γ satisfies 2ε′ ≤
ℓ(γ) ≤ 2ε, since γ is contained in the ε-thin part. An ε′-thin cylinder satisfies ℓ(γ) < 2ε′.

Lemma 14 in Section 3.2 states that the triangulation depicted in Figure 5 is a Delaunay
triangulation for ε′-thin cylinders. We call this triangulation a standard triangulation and
describe it in more detail in the following definition. For ε′-thick cylinders we use a different
construction defined in Definition 10.

SoCG 2021
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▶ Definition 6. Let X be a closed hyperbolic surface. Let C be an ε′-thin hyperbolic
cylinder in Xε

thin with waist γ and boundary curves γ+, γ−. Place three equally-spaced points
xi, i = 1, 2, 3 on γ (see Figure 5). Then, place three points x+

i , i = 1, 2, 3 on γ+ and three
points x−

i , i = 1, 2, 3 on γ− such that the projection of x±
i on γ is equal to xi for i = 1, 2, 3.

Let V be the set consisting of xi, x−
i and x+

i for i = 1, 2, 3. Let E be the set of edges of
one of the forms (x−

i , x−
i+1), (x−

i , xi), (x−
i , xi+1), (xi, xi+1), (xi, x+

i ), (xi, x+
i+1), (x+

i , x+
i+1) for

i = 1, 2, 3 (counting modulo 3), where the embedding of an edge in C is as shown in Figure 5.
We call (V, E) a standard triangulation of C.

Figure 5 Standard triangulation of an ε′-thin cylinder.

We not only have to prove that a standard triangulation of an ε′-thin cylinder is a
Delaunay triangulation, we also have to show that its edges are distance paths. Corollary 9
states that all edges in a standard triangulation are distance paths if ε ≤ 0.72. Before we
can prove Corollary 9, we first need the following lemma.

▶ Lemma 7. Let X be a closed hyperbolic surface and let ε ≤ 0.72. For each pair of
distinct closed geodesics γ1 and γ2 in Xε

thin the collars Cγ1(KC1 + 1
3 ε) and Cγ2(KC2 + 1

3 ε)
are embedded and disjoint.

▶ Remark 8. The value 0.72 was found experimentally and is optimal up to two decimal
digits, i.e., the statement is not true for ε = 0.73. More specifically, if ε ≥ 0.73 then there
exists a closed hyperbolic surface X with disjoint closed geodesics γ1 and γ2 in Xε

thin such
that Cγ1(KC1 + 1

3 ε) and Cγ2(KC2 + 1
3 ε) are not disjoint.

Proof. See Figure 6. We will show that w(γi) − KCi ≥ 1
3 ε for i = 1, 2. Namely, this implies

that Cγi
(KCi

+ 1
3 ε) ⊆ Cγi

(w(γi)). Because Cγ1(w(γ1)) and Cγ2(w(γ2)) are embedded and
disjoint by the Collar Lemma, it follows that Cγ1(KC1 + 1

3 ε) and Cγ2(KC2 + 1
3 ε) are embedded

and disjoint as well. Comparing expression (2) for KCi
and expression (1) for w(γi), we see

that w(γi) − KCi
is a positive number, with infimum when ℓ(γi) → 0 [14]. A straightforward

computation shows that for ε = 0.72 this infimum is equal to 0.24 . . . > 1
3 ε. Since w(γi)−KCi

is decreasing as a function of ε, it follows that w(γi) − KCi
≥ 1

3 ε for all ε ≤ 0.72. ◀
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Figure 6 Illustration of the collars Cγi (KCi ) ⊂ Cγi (KCi + 1
3 ε) ⊆ Cγi (w(γi)).

▶ Corollary 9 (Proof in full version). Let X be a closed hyperbolic surface and let ε ≤ 0.72.
All edges in a standard triangulation of an ε′-thin cylinder in Xε

thin are distance paths.

For ε′-thick cylinders, we see from Equation (2) for KC that the width KC is close to
zero. It turns out that we only need to place three points on its waist.

▶ Definition 10. Let X be a closed hyperbolic surface. Let C be a ε′-thick hyperbolic
cylinder in Xε

thin with waist γ. Place three equally-spaced points xi, i = 1, 2, 3 on γ. Let
V = {xi | i = 1, 2, 3} and E = {(x1, x2), (x2, x3), (x3, x1)}. We call (V, E) a standard cycle
of C.

3.2 Constructing a distance Delaunay triangulation of X with few
vertices

After placing points in Xε
thin, we construct a sufficiently dense and well-distributed set of

vertices in the remainder of the surface. The following definition shows more precisely how
we construct a set of vertices in Xε

thick and a corresponding Delaunay triangulation.

▶ Definition 11. Set ε = 0.72 and ε′ = 0.99ε. Let X be a closed hyperbolic surface. Let
P1 be the set consisting of the vertices of a standard triangulation of every ε′-thin cylinder
in Xε

thin together with the vertices of a standard cycle for every ε′-thick cylinder in Xε
thin.

Let Tj be the union of triangles in a standard triangulation (Vj , Ej) of an ε′-thin cylinder
Cj. For every ε′-thick cylinder Cj, set Tj = ∅. Define P2 to be a maximal set in X \ ∪jTj

such that d(p, q) ≥ 1
2 ε for all distinct p ∈ P1 ∪ P2, q ∈ P2. Denote the union P1 ∪ P2 by P

and let T be the Delaunay triangulation of P on X obtained after projecting a Delaunay
triangulation of π−1(P) in D to X. We call T a thick-thin Delaunay triangulation of X.
The vertices in P1 and P2 are called the cylinder vertices and non-cylinder vertices of T ,
respectively.

▶ Remark 12. Because by Corollary 9 all edges in a standard triangulation of any ε′-thin
cylinder are distance paths if we choose ε ≤ 0.72, we have chosen ε = 0.72 in Definition 11.
Namely, we will see in the proof of Theorem 4 that the larger we choose ε, the smaller the
constant (in our case 151) in the upper bound for the number of vertices. As in Section 3.1
we will fix ε = 0.72 and ε′ = 0.99ε throughout this subsection.

SoCG 2021
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The edges between vertices on the same boundary curve of Cj are not equal to the
boundary curves of Cj (because the latter are not geodesics), so Tj is strictly contained in
Cj . We define P2 as a point set in X \ ∪jTj instead of in X \ ∪jCj to simplify our proof
of Lemma 16, where we show that a thick-thin Delaunay triangulation of X is a simplicial
complex. The definition of P does not explicitly forbid placing vertices of P2 in ε′-thick
cylinders. However, we will see in the next lemma that there are no vertices of P2 in ε′-thick
cylinders, because then they would be too close to the vertices of a standard cycle.

▶ Lemma 13 (Proof in full version). Let X be a closed hyperbolic surface and let T be a
thick-thin Delaunay triangulation of X. Every vertex of T contained in an ε′-thick cylinder
in Xε

thin is a cylinder vertex.

Even though the set of vertices of a thick-thin Delaunay triangulation of X contains the
vertices of a standard triangulation (Vj , Ej) for every ε′-thin cylinder Cj , a priori it is not
clear that the edges in Ej are edges in T as well. In the next lemma, we will show that
for every ε′-thin cylinder the triangles in a standard triangulation are Delaunay triangles
with respect to the set of vertices of any thick-thin Delaunay triangulation of X. Namely,
if this holds, then there exists a Delaunay triangulation of P on X containing a standard
triangulation of every ε′-thin cylinder in Xε

thin.

▶ Lemma 14 (Proof in full version). Let X be a closed hyperbolic surface. Let T be a thick-thin
Delaunay triangulation of X with vertex set P and let C be an ε′-thin cylinder in Xε

thin with
waist γ. Let (V, E) be a standard triangulation of C such that V ⊂ P. Then all triangles of
(V, E) are Delaunay triangles with respect to the point set P.

Henceforth, we will assume that for each ε′-thin cylinder the vertices and edges of a
standard triangulation are contained in a thick-thin Delaunay triangulation of X. To show
that T ∈ D(X), we must show that T is a simplicial complex, i.e. it does not contain any 1-
or 2-cycles, and that its edges are distance paths. This is stated in Lemma 16, for which we
need the following preliminary lemma.

▶ Lemma 15 (Proof in full version). Let X be a closed hyperbolic surface and let T be a
thick-thin Delaunay triangulation of X. Any edge of T that intersects Xε

thick has length
smaller than ε and is a distance path. Moreover, there are no 1- or 2-cycles that intersect
Xε

thick and consist of edges of length smaller than ε.

▶ Lemma 16 (Proof in full version). Every thick-thin Delaunay triangulation of a closed
hyperbolic surface is a distance Delaunay triangulation.

3.3 Proof of Theorem 4
Proof (Theorem 4). Let X be an arbitrary hyperbolic surface of genus g and let T be a
thick-thin Delaunay triangulation of X. By definition, T is a Delaunay triangulation. By
Lemma 16, T is a simplicial complex and all edges of T are distance paths. Hence, T ∈ D(X).

We will show here that the number of vertices of T is smaller than 151g. By Lemma 5,
Xε

thin consists of at most 3g −3 cylinders and each of these cylinders contains either 9 vertices
(if it is ε′-thin) or 3 vertices (if it is ε′-thick). Therefore, |P1| ≤ 27g − 27.

To find an upper bound for the cardinality of P2, observe that for distinct p, q ∈ P2
the disks Bp( 1

4 ε) and Bq( 1
4 ε) of radius 1

4 ε centered at p and q, respectively, are embedded
and disjoint. Therefore, the cardinality of P2 is bounded above by the number of disjoint,
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embedded disks of radius 1
4 ε that we can fit in X. Because the area of a hyperbolic disk of

radius 1
4 ε is 2π(cosh( 1

4 ε) − 1) [1] and because the area of X is 4π(g − 1) [16], we obtain

|P2| ≤ 2(g − 1)
cosh( 1

4 ε) − 1
.

Combining the upper bounds for |P1| and |P2| and plugging in ε = 0.72 yields the result. ◀

▶ Remark 17. The constant 151 is not optimal. We can obtain the stronger upper bound
|P| ≤ 124g by looking more precisely at the upper bounds of |P1| and |P2| but because we
are mainly interested in the the order of growth, we will not provide any details.

4 Classes of hyperbolic surfaces attaining the order of the upper
bound

As our second result, we show that there exists a class of hyperbolic surfaces which attains
the order of the upper bound presented in Theorem 4. We will first introduce this class of
hyperbolic surfaces and then state the precise result in Theorem 18.

Using the idea of a trivalent graph associated to a pair of pants decomposition discussed
in Section 2, define Lg as the trivalent graph depicted in Figure 7. Here, every vertex vi

corresponds to a pair of pants Yi. There is one edge from v1 to itself and similarly from
v2g−2 to itself. Moreover, for 1 ≤ i ≤ 2g − 3 there is one edge between vi and vi+1 if i is odd
and there are two edges if i is even.

v1

v2

v3 v2g−2

v2g−3

v2g−4

Y1 Y2 Y3 Y2g−4 Y2g−3 Y2g−2

Figure 7 Trivalent graph Lg (top) with corresponding pair of pants decomposition (bottom).

Now, fix some interval [a, b] ⊂ R with 0 < a < b. Let Sg(a, b) be the subset of Tg with
underlying graph Lg such that all length parameters are contained in [a, b]. In particular,
Sg(a, b) contains an open subset of Tg. The following result thus shows that having a linear
number of vertices in terms of the genus is relatively stable in this part of Teichmüller space.

▶ Theorem 18. There exists a constant B > 0 depending only on a, b such that a minimal
distance Delaunay triangulation of any hyperbolic surface in Sg(a, b) has at least Bg vertices.

The idea of the proof is the following. Let a hyperbolic surface X ∈ Sg(a, b) and a
triangulation T ∈ D(X) be given. Euler’s formula implies v − 1

3 e = 2 − 2g for triangulations
of a surface of genus g, where v and e are the number of vertices and edges of the triangulation.
We prove that e ≤ B′v for some constant B′ > 3 only depending on a, b, which implies that

v ≥ 6g − 6
B′ − 3 .

This implies the result of Theorem 18. Hence, the argument consists mostly in finding an
upper bound for the number of edges in terms of the number of vertices.

SoCG 2021
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Before we continue with the proof of Theorem 18, we will look at our construction of
Sg(a, b) in more detail. By definition, every boundary geodesic of a pair of pants in the pair
of pants decomposition of X ∈ Sg(a, b) with respect to Lg has length in [a, b]. As explained
in Section 2, the geometry of a pair of pants depends continuously on the lengths of its three
boundary geodesics. In particular, the diameter diam(Y ) of a pair of pants Y as well as the
minimal distance mindist(Y ) between any two of its boundary geodesics depend continuously
on the lengths of its boundary geodesics. Because [a, b] is a compact set, we obtain as an
immediate consequence the following lemma.

▶ Lemma 19. There exist positive numbers m(a, b) and M(a, b) depending on a and b such
that m(a, b) ≤ mindist(Y ) < diam(Y ) ≤ M(a, b) for every pair of pants Y whose boundary
geodesics have length in [a, b].

▶ Remark 20. It is not too difficult to compute bounds for mindist(Y ) and diam(Y ) in terms
of the lengths of the boundary geodesics of Y . This would give explicit expressions for m(a, b)
and M(a, b) in terms of a and b. As we are only interested in the order of growth, to avoid
further technical details, we do not provide details.

From now on, the numbers m = m(a, b) and M = M(a, b) will be fixed. Furthermore, a
cluster in a hyperbolic surface X is a subset of X consisting of a number of consecutive pairs
of pants, where consecutive is with respect to the ordering of Lg. Consider T ∈ D(X). A
k-gap is a cluster consisting of k consecutive empty pairs of pants, where empty means that
the pairs of pants do not contain any vertices of T . If a vertex of T is contained in two pairs
of pants, i.e., if the vertex lies on a boundary geodesic, then we only count it as a vertex of
the pair of pants with the lowest index in Lg. We say that an edge of T crosses a cluster if
the pairs of pants containing its endpoints are separated by the cluster. Note that the cluster
need not contain all pairs of pants which separate the two endpoints.

The next lemma states that if an edge of a distance Delaunay triangulation crosses many
pairs of pants, then “many” of these pairs of pants are empty.

▶ Lemma 21 (Proof in full version). Let X ∈ Sg(a, b) and define N = N(a, b) as

N(a, b) :=
⌈

M(a, b)
m(a, b)

⌉
+ 1.

Then, for every T ∈ D(X) the following statements hold:
1. If an edge of T crosses a cluster consisting of at least 3N pairs of pants, this cluster

contains an N -gap.
2. If an edge of T crosses a cluster in which the first N and the last N pairs of pants are

empty, then all pairs of pants in the cluster are empty.

The following lemma states that we can construct a set of clusters which has as one of its
properties that every edge of the distance Delaunay triangulation has its endpoints in the
same cluster, or in two consecutive clusters.

▶ Lemma 22 (Proof in full version). Let X ∈ Sg(a, b) be a hyperbolic surface and let
N = N(a, b) be as defined in Lemma 21. Let T ∈ D(X). There are interior-disjoint clusters
with the following properties:
1. Each cluster consists of at most 6N consecutive pairs of pants;
2. Every cluster contains at least one vertex of T , and every vertex of T belongs to exactly

one cluster;
3. Every edge of T has its endpoints in the same cluster, or in two consecutive clusters.
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In the following corollary, we denote the number of vertices of T ∈ D(X) contained in a
subset U of X by v(U). Likewise, let e(U, W ) be the number of edges of T with one endpoint
in U ⊂ X and one endpoint in W ⊂ X.

▶ Corollary 23. Let X ∈ Sg(a, b) be a hyperbolic surface and let T ∈ D(X). Let {Γi | i =
1, . . . , n} be a collection of clusters satisfying the properties of Lemma 22 for some n ∈ N. If
v and e are the number of vertices and edges of T , respectively, then

n ≤ v,

v =
n∑

i=1
v(Γi),

e =
n∑

i=1
e(Γi, Γi) +

n−1∑
i=1

e(Γi, Γi+1).

Proof. Because every cluster contains at least one vertex, the number of clusters is at most
the number of vertices, which proves the first equation. The second equation follows from
the property that every vertex is contained in a cluster. Because every edge has its endpoints
in the same cluster, or in two consecutive clusters, the third equation holds. ◀

Recall that we want to find a linear upper bound for the number of edges of a distance
Delaunay triangulation in terms of the number of vertices. By Corollary 23, it suffices to
find upper bounds for e(Γi, Γi) and e(Γi, Γi+1) for clusters Γi satisfying the properties of
Lemma 22. We will do this in the next lemma.

▶ Lemma 24 (Proof in full version). With notation as in Corollary 23, the following upper
bounds hold:
1. e(Γi, Γi) ≤ 3v(Γi) + 18N(N + 1) for all i = 1, . . . , n,
2. e(Γi, Γi+1) ≤ 18v(Γi ∪ Γi+1) + 216N(N + 1) for all i = 1, . . . , i − 1.

We can now commence with the proof of Theorem 18.

Proof (Theorem 18). Take X ∈ Sg(a, b) arbitrary and let T ∈ D(X) be arbitrary. Let
{Γi | i = 1, . . . , n} be a collection of clusters satisfying the properties of Lemma 22. By
Corollary 23,

e =
n∑

i=1
e(Γi, Γi) +

n−1∑
i=1

e(Γi, Γi+1).

Substituting the upper bounds for e(Γi, Γi) and e(Γi, Γi+1) from Lemma 24, we obtain

e ≤ 39
n∑

i=1

(
v(Γi) + 6N(N + 1)

)
.

From Corollary 23, we know that
∑n

i=1 v(Γi) = v and n ≤ v. Hence, e ≤ 39(1 + 6N(N + 1))v.
Euler’s formula for triangulations v − 1

3 e = 2 − 2g implies that

39(1 + 6N(N + 1))v ≥ e = 3v + 6g − 6,

v ≥ g − 1
6 + 39N(N + 1) ,

which finishes the proof. ◀

SoCG 2021



31:14 Minimal Delaunay Triangulations

5 Lower bound

In this section, we will look at a general lower bound for the minimal number of vertices of a
distance Delaunay triangulation of a hyperbolic surface of genus g.

In the more general situation of a simplicial triangulation of a topological surface of genus
g, one has an immediate lower bound on the minimal number of vertices. The fact that this
lower bound is sharp is the following classical theorem of Jungerman and Ringel:

▶ Theorem 25 ([12, Theorem 1.1]). The minimal number of vertices of a simplicial triangu-
lation of a topological surface of genus g is⌈

7 +
√

1 + 48g

2

⌉
.

We show that the same result holds for the minimal number of vertices of a distance
Delaunay triangulation of a hyperbolic surface of genus g for infinitely many values of g.

▶ Theorem 26. For any g ≥ 2 of the form g = 1
12 (n − 3)(n − 4) for some n ≡ 0 mod 12,

the minimal number of vertices of a distance Delaunay triangulation of a hyperbolic surface
of genus g is

n = 7 +
√

1 + 48g

2 .

Proof. Because there are no distance Delaunay triangulations with fewer than the stated
number of vertices by Theorem 25, it is sufficient to construct for a given hyperbolic surface
a distance Delaunay triangulation with the stated number of vertices.

Our construction is inspired by a similar construction in the context of the chromatic
number of hyperbolic surfaces [14]. Let n ≡ 0 mod 12 and assume that n ̸= 0. The
complete graph Kn on n vertices can be embedded in a topological surface Sg of genus
g = 1

12 (n − 3)(n − 4) which is the smallest possible genus [15]. Because we have assumed
that n ≡ 0 mod 12, we know that the embedding of Kn into Sg is a triangulation T [18].
To turn T into a distance Delaunay triangulation, we will add a hyperbolic metric to the
topological surface as follows. Every triangle in T is replaced by the unique equilateral
hyperbolic triangle with all three angles equal to 2π

n−1 . In the complete graph Kn every
vertex has n − 1 neighbouring vertices. This means that in every vertex n − 1 equilateral
triangles meet, so the total angle at each vertex is 2π. Therefore, the result after replacing
all triangles in T by hyperbolic triangles is a smooth hyperbolic surface Zg.

It remains to be shown that T ∈ D(Z). By construction, T is a simplicial complex. It
has also been shown that all edges are distance paths [14]. We will show here that T is a
Delaunay triangulation of Zg. Consider an arbitrary triangle (u, v, w) in T with circumcenter
c and let p ̸∈ {u, v, w} be an arbitrary vertex of T (Figure 8). Consider a distance path γ

from c to p. We can regard γ as the concatenation of simple segments that each pass through
an individual triangle.

The first of these simple segments starts from c and leaves the triangle (u, v, w), so its
length is at least the distance between c and a side of (u, v, w). Therefore, denoting by x the
projection of c on one of the edges as shown in Figure 8, the length of the first segment is at
least d(c, x). The last of the simple segments passes through a triangle, say ∆, before arriving
at p, so it has to pass through the side of ∆ opposite to p. Therefore, its length is at least
the distance between p and the opposite side of ∆. It is known that the distance between
a vertex and the opposite side of an equilateral triangle is at least 1

2 ℓ, where ℓ denotes the
length of the sides of the equilateral triangle [14]. Hence, d(c, p) = ℓ(γ) ≥ d(c, x)+ 1

2 ℓ. By the
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u

v w

p
c γ

` x

∆

Figure 8 Schematic overview of the proof of T being a Delaunay triangulation.

triangle inequality in triangle (c, w, x) we see that d(c, w) ≤ d(c, x) + d(x, w) = d(c, x) + 1
2 ℓ,

so we conclude that d(c, p) ≥ d(c, w). This means that p is not contained in the interior of
the circumcircle of (u, v, w), which shows that (u, v, w) is a Delaunay triangle. By symmetry,
it follows that all triangles are Delaunay triangles, which finishes the proof. ◀
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