
Escaping the Curse of Spatial Partitioning:
Matchings with Low Crossing Numbers and Their
Applications
Mónika Csikós !Ï

Université Gustave Eiffel, LIGM, Equipe A3SI, ESIEE Paris,
Cité Descartes 2 boulevard Blaise Pascal, 93162 Noisy-le-Grand Cedex, France

Nabil H. Mustafa ! Ï

Université Gustave Eiffel, LIGM, Equipe A3SI, ESIEE Paris,
Cité Descartes 2 boulevard Blaise Pascal, 93162 Noisy-le-Grand Cedex, France

Abstract
Given a set system (X, S), constructing a matching of X with low crossing number is a key tool in
combinatorics and algorithms. In this paper we present a new sampling-based algorithm which is
applicable to finite set systems. Let n = |X|, m = |S| and assume that X has a perfect matching M

such that any set in S crosses at most κ = Θ(nγ) edges of M . In the case γ = 1 − 1/d, our algorithm
computes a perfect matching of X with expected crossing number at most 10κ, in expected time
Õ
(
n2+2/d + mn

2/d
)
.

As an immediate consequence, we get improved bounds for constructing low-crossing matchings
for a slew of both abstract and geometric problems, including many basic geometric set systems
(e.g., balls in Rd). This further implies improved algorithms for many well-studied problems such as
construction of ϵ-approximations. Our work is related to two earlier themes: the work of Varadarajan
(STOC ’10) / Chan et al. (SODA ’12) that avoids spatial partitionings for constructing ϵ-nets, and
of Chan (DCG ’12) that gives an optimal algorithm for matchings with respect to hyperplanes in Rd.

Another major advantage of our method is its simplicity. An implementation of a variant of
our algorithm in C++ is available on Github; it is approximately 200 lines of basic code without any
non-trivial data-structure. Since the start of the study of matchings with low-crossing numbers with
respect to half-spaces in the 1980s, this is the first implementation made possible for dimensions
larger than 2.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Matchings, crossing numbers, approximations

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.28

Supplementary Material Software (Source Code):
https://github.com/csikosm/LowCrossingMatchings

archived at swh:1:dir:527290e997b57b959e879363b26dd9218906f3a8

Funding The work of the authors has been supported by the grants ANR ADDS (ANR-19-CE48-0005)
and ANR SAGA (JCJC-14-CE25-0016-01).

1 Introduction

Given a set system (X,S), we say that a set S ∈ S crosses a pair {x, y} ⊆ X iff |S∩{x, y}| = 1.
Define the crossing number of a perfect matching (resp. a spanning tree) G of X with respect
to S as the maximum number of edges of G crossed by any S ∈ S. The focus of this paper is
on constructing perfect matchings of X with low crossing numbers with respect to S.

Matchings with low crossing numbers were originally introduced by Welzl [31, 32] for the
special case where X is a set of points in Rd and S is induced on X by half-spaces. His result
was then generalized by Chazelle and Welzl [10] to a broader class of set systems, which
together with an improvement due to Haussler [20], gives the following general theorem.

© Mónika Csikós and Nabil H. Mustafa;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/429962091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:monika.csikos@esiee.fr
https://perso.esiee.fr/~csikosm/
mailto:mustafan@esiee.fr
https://perso.esiee.fr/~mustafan/
https://doi.org/10.4230/LIPIcs.SoCG.2021.28
https://github.com/csikosm/LowCrossingMatchings
https://github.com/csikosm/LowCrossingMatchings
https://archive.softwareheritage.org/swh:1:dir:527290e997b57b959e879363b26dd9218906f3a8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Matchings with Low Crossing Numbers and Their Applications

▶ Theorem A. Let (X,S) be a set system with n = |X|, and dual shatter function1 π∗
S(k) =

O(kd). Then there exists a perfect matching of X with crossing number O
(
n1−1/d

)
.

Previous constructions. Let (X,S) be a set system with n = |X|, m = |S|, and let κ denote
the smallest integer such that X has a perfect matching (resp. spanning tree) with crossing
number κ with respect to S. We review previous constructions in two separate settings.

Abstract set systems. The original method of Welzl [31, 32, 10] builds a perfect matching
using the multiplicative weight update (MWU) method. Briefly, the algorithm maintains
a weight function π on S, with initial weights set to 1. It selects edges iteratively, always
choosing an edge that is guaranteed to be crossed by sets of low total weight in π; it then
updates π based on the chosen edge. The algorithmic bottleneck is in finding such an
edge: for an abstract set system without additional structure, this takes O(n2m) time for
each of the n/2 iterations.
Another approach for the abstract case was proposed by Har-Peled [19] (see also [14]).
His result implies that if κ = Θ(nγ) for some γ ∈ [1/ log n, 1], then a spanning tree of
crossing number O(κ/γ) can be found by solving an LP on

(
n
2
)

variables and m + n

constraints. Combining this with an efficient approximate LP solver (e.g., [11]) leads
to a randomized Õ(mn2) time algorithm. The approximation factor can be further
improved using a general framework of rounding fractional solutions of minimax integer
programs with matroid constraints. This method gives a randomized algorithm that
constructs a spanning tree with expected crossing number at most κ + O(

√
κ log m) in

time Õ(mn4 + n8) [12].
Geometric set systems. Now we turn to the case where X is a set of n points in Rd and S

consists of subsets of X that are induced by geometric objects. In this setting, improved
bounds are made possible using spatial partitioning. The current-best algorithms for
geometric set systems induced by half-spaces recursively construct simplicial partitions,
stored in a hierarchical structure called the partition tree, which then at its base level
gives a matching with low crossing number. This approach is used in the breakthrough
result of Chan [8] who gave an O(n log n) time algorithm to build partition trees with
respect to half-spaces in Rd, which then implies the same for computing matchings with
crossing number O(n1−1/d).

While the use of cuttings – and more generally, spatial partitioning – gives o(mn2) running
times, progress remains blocked in several ways:
a) Simplicial partitions only exist in certain geometric settings. Indeed, as shown by Alon et

al.[6], they do not always exist in settings satisfying the requirements of Theorem A (e.g.,
the projective plane). Furthermore, spatial partitioning is not possible when dealing with
abstract set systems such as those arising in graph theory or learning theory.

b) Optimal bounds for constructing simplicial partitions are only known for the case of
half-spaces; this is one of the main problems left open by Chan [8]. Despite a series of
research for semi-algebraic set systems (using linearization, cuttings, and more recently,
polynomial partitioning [3]), the bounds are still sub-optimal for polynomials of degree
larger than 2, with exponential dependence on the dimension.

c) There are large constants in the asymptotic notation depending on the dimension d both
in the running time as well as the crossing number bounds, due to the use of cuttings
(see [13]). For instance, in Chan’s algorithm the constants are quite large – Theorem 3.2 [8]

1 The dual shatter function π∗
S of (X, S) is defined as follows. For any k ≤ |S|, π∗

S(k) is the maximum
number of equivalence classes on X defined by a k-element subfamily R ⊆ S, where x, y ∈ X are
equivalent with respect to R if x belongs to the same sets of R as y.

M. Csikós and N. H. Mustafa 28:3

requires δ ≤ 1
d2 , b = 22 (see [21]), which then implies that it constructs a spanning tree

with a guaranteed crossing number no better than 12 · 22 · d4n1−1/d; this is at least
20000 · n1−1/d even for d = 3. Furthermore, the actual construction running time is at
least 264 · d2n log n, not counting the typically large constants in the several complex
data structures that the algorithm needs (simplex range searching in Rd with dynamic
insertion; see [21] for a discussion of its practical aspects in R2).

d) Practical implementation of spatial partitioning in Rd, d > 2, even cuttings for hyperplanes,
remains an open problem in geometric computing. Cuttings have been implemented in
the planar case [18], which have then been used recently for computing ε-approximations
w.r.t. half-spaces in R2 [21]. In particular, for d > 2, we know of no implementations for
low-crossing matchings.

Recently there have been algorithms proposed for ε-nets and ε-approximations that avoid
spatial partitioning [29, 9, 27, 26]. Our work can be considered another step along this theme.

2 Our Results

We state our main result assuming that we have access to a membership Oracle of (X,S),
which for a given element x ∈ X and a set S ∈ S returns whether x ∈ S. Our main result is
the following.

▶ Theorem 1. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ n. Let a > 0,
b and γ ∈ [1/ log n, 1] be constants such that any Y ⊆ X has a perfect matching with
crossing number at most a|Y |γ +b. Then BuildMatching

(
(X,S), a, b, γ

)
computes a perfect

matching of X with expected crossing number at most 5a
γ nγ + (3b + 8 ln m) log n, and with an

expected O
(
min

{
n4−2γ ln n + mn2−2γ ln m ln n, n3 + mn

})
calls to the membership Oracle

of (X,S).

Remarks:
The algorithm BuildMatching is presented in Section 3.
Our method can easily be modified to construct a spanning tree or a spanning path with
the same guarantees up to a constant factor.

Now we give a list of consequences of Theorem 1, divided into three topics. All stated
crossing number and running time bounds are in expectation.

1. Low-crossing matchings. Our results improve upon several previous constructions, see
Table 1 (the precise guarantees and their proofs are presented in Section 4). For abstract
set systems with dual shatter function π∗

S(k) = O(kd), we improve the running time from
Õ
(
mn2) to Õ

(
mn

2/d+n2+2/d
)
. This further implies a sub-cubic time construction for

matchings with asymptotically-optimal crossing number with respect to balls in Rd for
d ≥ 3. For set systems induced by semialgebraic sets in Rd (each set defined by at most
s polynomial inequalities of degree at most ∆), we significantly improve the crossing
number guarantee by removing the exponential dependence on d. However in contrast to
the previous best algorithm for this setup [3], our running time depends on m.
Importantly, our method does not use spatial partitioning, which makes it possible to
handle abstract set-systems, and geometric set systems in Rd (not only in R2) without
additional complications.

2. Practical aspects. Our algorithm consists of n
2 iterations, where each iteration adjusts

the weight of a random subset of
(

X
2
)

and S and adds a randomly picked edge to the
matching. The only black-box needed is the membership Oracle that returns for a given

SoCG 2021

28:4 Matchings with Low Crossing Numbers and Their Applications

Table 1 Summary of our results for set systems (X, S) with n = |X|, m = |S|, n ≤ m, and d ≥ 2.
We use the notation π∗

S(·) for the dual shatter function of (X, S), Hd for half-spaces in Rd, Bd for
balls in Rd, and Γd,∆,s for semialgebraic ranges in Rd described by at most s equations of degree at
most ∆ (see Sec. 4).

Matchings / Spanning trees
Our method Previous-best

Set system Crossing number time Crossing number time

arbitrary
with π∗

S(k) ≤ ckd

(
5c

1/dd
d−1 + o(1)

)
n1−1/d

Õ
(
mn

2/d+n2+2/d
)

(Corollary 12) O
(
n1−1/d

) Õ(mn2)
[19, 11]

geometric
induced by Bd

(
6d2 + o(d2)

)
· n1−1/d

Õ
(
dn2+2/d

)
(Corollary 18) O

(
n1−1/d

) O
(
n3+1/d

)
[19, 11]

geometric
induced by Γd,∆,s

20e∆sd
d−1 n1−1/d + o

(
n1−1/d

) Õ
(
s∆d

(
mn

2/d+n2+2/d
))

(Corollary 14) O
(
10ds∆n1−1/d

) O
(

nO(d3)
)

[3]

O
(
∆sn1−1/d

) Õ(s∆dmn2)
[19, 11]

geometric
induced by Hd

(
6d2 + o(d2)

)
· n1−1/d

Õ
(
dn2+2/d

)
(Corollary 16) ≥ 264d4n1−1/d

Õ(d2n)
[8]

x ∈ X and S ∈ S, if x ∈ S. The time complexity of this operation depends on the precise
way (X,S) is given; typically this is independent of |X| and |S| (using indexing, hashing).
A preliminary multi-threaded implementation of a variant of our algorithm in C++ for set
systems induced on points by half-spaces in Rd is available on Github. It is approximately
200 lines of basic code without any non-trivial data-structures, being the first such
implementation for d > 2.
The figures below show the matchings with respect to half-planes returned by our algorithm
for 5, 000 points in R2 uniformly placed on a circle (in 17.39s), sine curve (in 17.17s), and
randomly perturbed in a uniform grid (in 17.41s), each with a zoomed-in region. We find
it surprising that our method, that is based only on random sampling, gives a matching
that adapts so well to each specific instance.

This makes progress towards the goals expressed at the end of the survey on range
searching and its applications [1]: “...an interesting open question is to develop simple
data structures that work well under some assumptions on input points and query ranges”.

3. Discrepancy and approximations. By plugging in various upper-bounds on crossing num-
bers given by Theorem 1 and using techniques in Matoušek et al.[25], we immediately get
improved construction bounds for discrepancy and ε-approximations. In particular, if d is
a constant such that (X,S) has dual shatter function π∗

S(k) = O(kd), then we improve the
running time of computing colorings with expected discrepancy O

(√
n1−1/d ln m

)
from

O(mn2) to Õ(mn2/d +n2+2/d). Moreover if in addition, (X,S) has VC dimension bounded
by a constant D ≥ 2, then our method can be used to compute an ε-approximations of

https://github.com/csikosm/LowCrossingMatchings

M. Csikós and N. H. Mustafa 28:5

expected size Õ
((

D
ε2

) d
d+1
)

in expected time Õ
(

n +
(

D
(

D
ε2

)D+2/d
))

, improving upon the

previous-best time O
(

n +
(

D
ε2

)D+2
)

. As these are standard applications of matchings
with low crossing number, the proofs are omitted (see the survey [28]).

Organization. In Section 3, we describe our algorithm and prove Theorem 1. In Section 4,
we show how Theorem 1 implies the bounds stated in Table 1. In Section 5, we present our
experiments. In Section 6, we give an application in learning theory.

3 Proof of Theorem 1

The proof rests on the following three key ideas:

1. We replace the bottleneck algorithmic step of finding a light edge in the multiplicative
weights update technique by simply sampling an edge according to a carefully maintained
distribution. In particular, we maintain weights not only on the sets in S, but also on(

X
2
)
. At each iteration we sample an edge e and a set S according to the current weights.

Then we add e to our matching and update the weights by doubling the weight of each
set that crosses e and halving the weight of each edge that is crossed by S. The idea of
maintaining “primal-dual” weights has been used earlier to approximately solve matrix
games [17] and in geometric optimization [4].

2. In our case, the process is more elaborate as we are constructing a matching M at the
same time as reweighing. Therefore, at the end of each iteration, as we add e to M , we
are forced to set the weights of e and all edges adjacent to e to 0. This breaks down the
reweighing scheme, as the removal of the edges amplifies the error introduced in later
iterations and thus our maintained weights degrade over time. However, we prove that
restarting the algorithm by “resetting” all the weights a logarithmic number of times
suffices to ensure the required low crossing numbers.

3. This still does not get us to our goal as updating the weights of all edges and sets
crossing the randomly picked set and edge would be too expensive. Instead, we show
that if γ ≥ 1/2, then updating the weights of a uniform sample of Õ

(
n3−2γ

)
edges and

Õ(mn1−2γ) sets at each iteration is sufficient for our purposes.
The main algorithm BuildMatching is given below, followed by the presentation of the
subroutine MatchHalf.

Algorithm 1 BuildMatching
(
(X, S), a, b, γ

)
.

M ← ∅
while |X| ≥ 4 do

M ′ ←MatchHalf ((X,S), a|X|γ + b) // M ′ covers |X|/2 elements
M ←M ∪M ′

X ← X \ vertices(M ′) // remove elements covered by M ′

M ←M ∪ {edge connecting the remaining two elements of X}
return M

SoCG 2021

28:6 Matchings with Low Crossing Numbers and Their Applications

Algorithm 2 MatchHalf
(
(X, S), κ)

)
.

ω1(e)← 1, π1(S)← 1 ∀e ∈ E, S ∈ S // E denotes
(

X
2
)

p← min{106 · |X|/κ2 · ln(|E| · |X|/4), 1}
q← min{39 · |X|/κ2 · ln(|S| · |X|/4), 1}

for i = 1, . . . , |X|/4 do
ωi(E)←

∑
e∈E ωi(e)

πi(S)←
∑

S∈S πi(S)
choose ei ∼ ωi // P[ei = e] = ωi(e)

ωi(E) ∀e ∈ E

choose Si ∼ πi // P[Si = S] = πi(S)
πi(S) ∀S ∈ S

Ei ← sample from E with probability p // P[e ∈ Ei] = p ∀e ∈ E

Si ← sample from S with probability q // P[S ∈ Si] = q ∀S ∈ S
// I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise

for e ∈ Ei do
ωi+1(e)← ωi(e)

(
1− 1

2 I (e, Si)
)

// halve weight if Si crosses e

for S ∈ Si do
πi+1(S)← πi(S)

(
1 + I (ei, S)

)
// double weight if S crosses ei

set the weight in ωi+1 of ei and of each edge adjacent to ei to zero
return {e1, . . . , e|X|/4}

Proof of Theorem 1. Later, we will prove the following statement for MatchHalf.

▶ Theorem 2. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ n, and let κ be such that
any Y ⊆ X of size |Y | = n/2 has a perfect matching of crossing number at most κ with respect
to S. Then MatchHalf

(
(X,S), κ

)
returns a matching of size n/4 with expected crossing

number at most 5κ/2+8 ln m, with expected O
(
min

{
n4 ln(n)/κ2+mn2 ln(m)/κ2, n3+mn

})
calls to the membership Oracle of (X,S).

The proof of Theorem 1 follows by applying Theorem 2 to each of the log n calls of Match-
Half. We get that the expected crossing number of the matching returned by BuildMatch-
ing
(
(X,S), a, b, γ

)
is at most

log n∑
i=1

[
5a

2

(n

2i

)γ

+ 5b

2 + 8 ln m

]
<

(
5b

2 + 8 ln m

)
log n + 5anγ

2

∞∑
i=1

(
1
2γ

)i

< (3b + 8 ln m) log n + 5a

γ
nγ .

If 1/2 < γ ≤ 1, then the overall expected number of calls to the membership Oracle is

log n∑
i=0

O

((
n
2i

)4 ln
(

n
2i

)(
a
(

n
2i

)γ + b
)2 +

m
(

n
2i

)2 ln m(
a
(

n
2i

)γ + b
)2

)
= O

(
n4−2γ ln n + mn2−2γ ln m log n

)
,

and if γ ≤ 1/2, the overall expected number of calls to the membership Oracle is

log n∑
i=0

O

((n

2i

)3
+ m

(n

2i

))
= O

(
n3 + mn

)
. ◀

M. Csikós and N. H. Mustafa 28:7

Proof of Theorem 2. The proof relies on the following technical lemma, whose proof is
presented later in this section. For an edge e and a set S, we define I (e, S) to be 1 if S

crosses e and 0 otherwise.

▶ Lemma 3 (Main Lemma). Let Ẽ denote the set of edges that have non-zero weight when
MatchHalf

(
(X,S), κ

)
terminates. Then

E

 max
S∈S

n/4∑
i=1

I (ei, S)

 ≤ 2 · E

 min
e∈Ẽ

n/4∑
i=1

I (e, Si)

+ κ

2 + 2 ln |E|+ ln |S|
ln 2 . (1)

The left-hand side of Equation (1) is precisely the expected crossing number of the edges
returned by MatchHalf. We use the following “short-edge” lemma.

▶ Lemma 4. Let (Y,R) be a set system and κ be such that Y has a perfect matching with
crossing number at most κ with respect to R. Then there is an edge spanned by the points of
Y that is crossed by at most 2|R|κ

|Y | sets of R.

Proof. Let M be a matching of Y such that any set of R crosses at most κ edges of M .
Then there are at most |R| · κ crossings between the edges of M and sets in R. By the
pigeonhole principle, there is an edge in M that is crossed by at most

|R| · κ
|M |

= |R| · κ
|Y |/2 = 2|R|κ

|Y |

sets of R. ◀

Let X̃ ⊂ X denote the set of points that are not covered by the edges {e1, . . . , en/4} returned
by MatchHalf

(
(X,S), κ

)
. Note that Ẽ =

(
X̃
2
)
. Applying Lemma 4 to Y = X̃ and

R = {S1, . . . , Sn/4}, we get that there is an edge e ∈ Ẽ that satisfies

n/4∑
i=1

I (e, Si) ≤
2 · |R| · κ
|X̃|

= 2 · n/4 · κ
n/2 = κ. (2)

Thus, by using the Main Lemma, the expected crossing number of the edges {e1, . . . , en/4}
with respect to S can be bounded as

E

 max
S∈S

n/4∑
i=1

I (ei, S)

 ≤ 2 · E

 min
e∈Ẽ

n/4∑
i=1

I (e, Si)

+ κ

2 + 2 ln n2 + ln m

ln 2 ≤ 5κ

2 + 8 ln m.

Finally, we bound the number of membership Oracle calls. At each iteration i = 1, . . . , n/4,
we update the weights of |Ei|+ |Si| = O

(
n2p + mq

)
elements in expectation, each requiring

one call to the membership Oracle. Thus in expectation, the total number of membership
Oracle calls is O

(
n
(
n2 ·min{n/κ2 ln n, 1}+ m ·min{n/κ2 ln m, 1}

))
. ◀

Proof of Main Lemma. The proof is subdivided into three lemmas. For brevity, we set
t = n/4. The first lemma is proved by examining the total weight of the sets of S in πt+1.

▶ Lemma 5.

E

[
max
S∈S

t∑
i=1

I (ei, S)
]
≤ 1

ln 2

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ κ

4 + ln |S|
ln 2 .

SoCG 2021

28:8 Matchings with Low Crossing Numbers and Their Applications

Proof. Let πt+1(S) denote the total weight of the sets of S in πt+1. We bound πt+1(S) in
two different ways. On the one hand, πt+1(S) is clearly lower-bounded by the weight of the
set of maximum weight in πt+1. Recall that the weight of a set S is doubled in iteration i if
and only if S crosses ei, therefore

πt+1(S) ≥ max
S∈S

πt+1(S) = 2
max
S∈S

t∑
i=1

I (ei,S)·1{S∈Si}

,

where 1A denotes the indicator whether an event A happens. On the other hand, we can
express πt+1(S) using the update rule of the algorithm

πt+1(S) =
∑
S∈S

πt+1(S) =
∑
S∈S

πt(S)
(
1 + I (et, S) · 1{S∈St}

)
=
∑
S∈S

πt(S) +
∑
S∈S

πt(S)I (et, S) · 1{S∈St}

= πt(S) + πt(S)
∑
S∈S

πt(S)
πt(S) I (et, S) · 1{S∈St}

= πt(S)
(

1 +
∑
S∈S

πt(S)
πt(S) I (et, S) · 1{S∈St}

)
.

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get

πt+1(S) = π1(S)
t∏

i=1

(
1 +

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)

≤ |S| · exp
(

t∑
i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)
.

Putting together the obtained upper and lower bounds on πt+1(S), we get

2
max
S∈S

t∑
i=1

I (ei,S)·1{S∈Si}

≤ |S| · exp
(

t∑
i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)
.

Taking the logarithm of each side yields

ln(2) ·max
S∈S

t∑
i=1

I (ei, S) · 1{S∈Si} ≤
t∑

i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si} + ln |S| . (3)

If q = 1, then 1{S∈Si} = 1 for all i and S ∈ S, thus taking total expectation we conclude

E

[
max
S∈S

t∑
i=1

I (ei, S)
]
≤ 1

ln 2

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ ln |S|

ln 2 .

Assume that q < 1. Since max f(x)−max g(x) ≤ max(f(x)− g(x)), Equation (3) implies

ln(2) · q ·max
S∈S

t∑
i=1

I (ei, S) ≤ ln(2) ·max
S∈S

t∑
i=1

I (ei, S) ·
(
q − 1{S∈Si}

)
+

t∑
i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si} + ln |S| .

M. Csikós and N. H. Mustafa 28:9

Taking total expectation of each side, we obtain

q ln(2) · E
[

max
S∈S

t∑
i=1

I (ei, S)
]
≤ ln(2) · E

[
max
S∈S

t∑
i=1

I (ei, S) ·
(
q − 1{S∈Si}

)]

+
t∑

i=1

∑
S∈S

E
[

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

]
+ ln |S| .

(4)

Since for each fixed i, the random variables {πi, ei} and Si are independent, we get that

t∑
i=1

∑
S∈S

E
[

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

]
= q ·

t∑
i=1

∑
S∈S

E
[

πi(S)
πi(S) I (ei, S)

]
.

To bound the expectation of max
S∈S

t∑
i=1

I (ei, S) ·
(
q − 1{S∈Si}

)
, we will need the following

concentration bound for martingales.

▶ Lemma 6 (Freedman’s inequality [15, 5]). Let Y0, . . . , Yn be a martingale adapted to the
filtration F0, . . . , Fn such that |Yi−Yi−1| < M for all i and

∑n
i=1 E

[
(Yi − Yi−1)2 | Fi−1

]
≤ s

almost surely for some s > 0. Then for any ε > 0,

P [Yn − Y0 ≥ ε] ≤ exp
(
− ε2

2(s + Mε)

)
.

▷ Claim 7.

P

[
max
S∈S

t∑
i=1

I (ei, S) ·
(
q − 1{S∈Si}

)
≥ 2
√

qt ln(|S|t)
]
≤ 1

t
.

Proof. For each i ∈ [1, t] and S ∈ S, consider the random variable Xi(S) = I (ei, S) ·(
q − 1{S∈Si}

)
, which is measurable with respect to ei and Si.

Let Fi = σ (e1, . . . , ei, S1, . . . , Si, E1, . . . , Ei,S1, . . .Si) . Observe that conditioned on Fi−1,
ei and Si are independent, and thus E [Xi(S) | Fi−1] = 0 for all i ∈ [1, t] and S ∈ S, as
E
[

q − 1{S∈Si}
]

= 0. Therefore, Y0(S) = 0, Yk(S) =
∑k

i=1 Xi(S) is a martingale adapted to
the filtration F0, . . . , Fk−1. Notice that for any S ∈ S,

∑t
i=1 E[(Yi(S)−Yi−1(S))2 | Fi−1] ≤ qt

and |Yi(S)− Yi−1(S)| ≤ 1.
Thus Lemma 6 combined with the union bound implies for any ε ≤ qt,

P
(

max
S∈S

Yt(S) ≥ ε

)
≤ |S| exp

(
− ε2

4qt

)
.

Setting ε = 2
√

qt ln(|S|t), we conclude the proof of Claim 7. ◁

Applying Claim 7 and using that
∑t

i=1 I (ei, S) ·
(
q − 1{S∈Si}

)
≤ t always holds, we get

E

[
max
S∈S

t∑
i=1

I (ei, S) ·
(
q − 1{S∈Si}

)]
≤ 2
√

qt ln(|S|t) + t · 1
t
≤ 2
√

qt ln(|S|t) + 1.

Hence Equation (4) implies

ln (2) · q · E
[

max
S∈S

t∑
i=1

I (ei, S)
]

SoCG 2021

28:10 Matchings with Low Crossing Numbers and Their Applications

≤ q ·
t∑

i=1
E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ 2
√

qt ln(|S|t) + 1 + ln |S|.

Dividing both sides by q ln 2 and substituting q = 39n log(|S|n/4)/κ2 = 156t log(|S|t)/κ2,

E

[
max
S∈S

t∑
i=1

I (ei, S)
]

≤ 1
ln 2 ·

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ 2

ln 2

√
t ln(|S|t)

q + 1 + ln |S|
q ln 2

≤ 1
ln 2 ·

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ 2κ√

156 ln 2
+ 1

ln 2 ·
1 + ln |S|

log(|S|n/4) ·
κ2

78(n/2)

≤ 1
ln 2 ·

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ κ

4 ,

where we used that κ ≤ n/2. This concludes the proof of Lemma 5. ◀

The next lemma is proven by applying analogous arguments for the total weight of edges in
ωt+1 with a small adjustment as in each iteration we set some edge weights to zero. Recall
that Ẽ denotes the set of edges that have non-zero weight in ωt+1.

▶ Lemma 8.
t∑

i=1
E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
< 2 ln(2) · E

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ ln 2
4 + 2 ln |E|.

Proof. Let ωt+1(E) denote the total weight of edges in ωt+1. Again, we lower-bound ωt+1(E)
by the largest edge-weight in ωt+1, which is now attained at some edge of Ẽ:

ωt+1(E) ≥ max
e∈E

ωt+1(e) = max
e∈Ẽ

ωt+1(e) =
(

1
2

)min
e∈Ẽ

t∑
i=1

I (e,Si)·1{e∈Ei}

.

The upper bound is obtained by using the algorithm’s weight update rule. Since et has
positive weight in ωt, but its weight in ωt+1 is set to 0, we have a strict inequality

ωt+1(E) =
∑
e∈E

ωt+1(e) <
∑
e∈E

ωt(e)
(

1− 1
2I (e, St) · 1{e∈Et}

)
=
∑
e∈E

ωt(e)− 1
2
∑
e∈E

ωt(e)I (e, St) · 1{e∈Et}

= ωt(E)
(

1− 1
2
∑
e∈E

ωt(e)
ωt(E) I (e, St) · 1{e∈Et}

)
.

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get

ωt+1(E) < |E| · exp
(
−1

2

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei}

)
.

Combining the obtained upper and the lower bounds on ωt+1(E) and taking the logarithm
of each side, we get

M. Csikós and N. H. Mustafa 28:11

ln
(

1
2

)
·min

e∈Ẽ

t∑
i=1

I (e, Si) · 1{e∈Ei} < −1
2

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei} + ln |E|,

which is equivalent to

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei} < 2 ln(2) ·min

e∈Ẽ

t∑
i=1

I (e, Si) · 1{e∈Ei} + 2 ln |E|. (5)

If p = 1, then 1{e∈Ei} = 1 for all i and e ∈ E, thus taking total expectation we conclude

t∑
i=1

E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
< 2 ln(2) · E

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 2 ln |E|.

Assume that p < 1. Since min f(x)−min g(x) ≤ max(f(x)− g(x)), Equation (5) implies

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei} < 2 ln(2) ·max

e∈Ẽ

t∑
i=1

I (e, Si) ·
(
1{e∈Ei} − p

)
+ 2 ln(2) ·min

e∈Ẽ

t∑
i=1

I (e, Si) · p + 2 ln |E| .

Taking total expectation of each side, and using that for each fixed i, the random variables
{ωi, Si} and Ei are independent, we get

p ·
t∑

i=1

∑
e∈E

E
[

ωi(e)
ωi(E) I (e, Si)

]
< 2 ln(2) · E

[
max
e∈Ẽ

t∑
i=1

I (e, Si) ·
(
1{e∈Ei} − p

)]

+ 2 ln(2)p · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 2 ln |E| .

(6)

We need the following claim whose proof uses Lemma 6 and is similar to Claim 7.

▷ Claim 9.

P

[
max
e∈Ẽ

t∑
i=1

I (e, Si) ·
(
1{e∈Ei}−p

)
≥ 2
√

pt ln(|E|t)
]
≤ 1

t
.

This, together with the fact that
t∑

i=1
I (e, Si) ·

(
1{e∈Ei} − p

)
≤ t always holds imply

E

[
max
e∈Ẽ

t∑
i=1

I (e, Si) ·
(
1{e∈Ei}

)
− p

]
≤ 2
√

pt ln(|E|t) + t · 1
t
≤ 2
√

pt ln(|E|t) + 1.

Hence Equation (6) yields

p ·
t∑

i=1

∑
e∈E

E
[

ωi(e)
ωi(E) I (e, Si)

]

< 2 ln(2)p · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 4 ln(2) ·
√

pt ln(|E|t) + 2 ln 2 + 2 ln |E|.

SoCG 2021

28:12 Matchings with Low Crossing Numbers and Their Applications

Dividing both sides by p = 106n log(|E|n/4)/κ2 = 424t log(|E|t)/κ2, we get

t∑
i=1

∑
e∈E

E
[

ωi(e)
ωi(E) I (e, Si)

]

< 2 ln(2) · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 4 ln(2) ·

√
t ln(|E|t)

p + 2 ln 2 + 2 ln |E|
p

= 2 ln(2) · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 4 ln(2) · κ√
424

+ 2 ln 2 + 2 ln |E|
2 log(|E|t) · κ2

n/2 ·
1

106

≤ 2 ln(2) · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ ln 2
4 ,

where we used that κ ≤ n/2. This concludes the proof of Lemma 8. ◀

We need one more lemma to tie the previous two together.

▶ Lemma 10. For any i ∈ [1, t], we have

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
= E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
.

Proof. Let Fi = σ (e1, . . . , ei, S1, . . . , Si, E1, . . . , Ei,S1, . . .Si) . We have

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
= E

[
E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

∣∣∣∣ Fi−1

]]
and

E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
= E

[
E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

∣∣∣∣ Fi−1

]]
.

Observe that ωi and πi are measurable with respect to Fi−1, thus

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

∣∣∣∣ Fi−1

]
=
∑
e∈E

ωi(e)
ωi(E) ·

(∑
S∈S

πi(S)
πi(S) I (e, S)

)

=
∑
e∈E

∑
S∈S

ωi(e)
ωi(E) ·

πi(S)
πi(S) I (e, S)

=
∑
S∈S

πi(S)
πi(S) ·

(∑
e∈E

ωi(e)
ωi(E) I (e, S)

)
= E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

∣∣∣∣ Fi−1

]
. ◀

Finally, we combine Lemmas 5, 8, and 10 in the following way

E

[
max
S∈S

t∑
i=1

I (ei, S)
]
≤ 1

ln 2

t∑
i=1

E

[∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ κ

4 + ln |S|
ln 2 (Lemma 5)

= 1
ln 2

t∑
i=1

E

[∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
+ κ

4 + ln |S|
ln 2 (Lemma 10)

<
1

ln 2

(
2 ln(2) · E

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ ln 2
4 + 2 ln |E|

)
+ κ

4 + ln |S|
ln 2 (Lemma 8)

M. Csikós and N. H. Mustafa 28:13

≤ 2 · E
[

min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ

2 + 2 ln |E|+ ln |S|
ln 2 .

This completes the proof of the Main Lemma and thus of Theorem 2. ◀

4 Corollaries of Theorem 1

Set systems with bounded dual shatter function. As before, let (X,S) be a set system,
n = |X| and m = |S|. We first recall the definition of the dual shatter function π∗

S of (X,S).
For any R ⊆ S, we say that the elements x, y ∈ X are equivalent with respect to R if x

belongs to the same sets of R as y. Then π∗
S(k) is defined as the maximum number of

equivalence classes on X defined by a k-element subfamily R ⊆ S. The following theorem
shows that set systems with polynomially bounded dual shatter function possess matchings
with sublinear crossing number [23, Chap. 5.4].

▶ Lemma 11. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for all

k ∈ [1, n]. Then there is a perfect matching of X such that any set S ∈ S crosses at most
c1/dn1−1/d + ln m edges of the matching.

Observe that by definition, the dual shatter function of (Y,S|Y) is upper-bounded by the
dual shatter function of (X,S) for any Y ⊆ X. Thus Lemma 11 implies that any Y ⊆ X

has a perfect matching with crossing number at most c1/d|Y |1−1/d + ln m with respect to S.
Applying Theorem 1, we get the following corollary.

▶ Corollary 12. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for

all k ∈ [1, n]. Then BuildMatching
(
(X,S), c1/d, ln m, 1− 1

d

)
returns a perfect matching

of X with expected crossing number at most 5c1/dd
d−1 · n

1−1/d + 11 ln m log n with an expected
Õ
(
mn2/d + n2+2/d

)
calls to the membership Oracle of (X,S).

Semialgebraic set systems. Let Γd,∆,s denote the collection of semialgebraic sets in Rd

that can be defined as the solution set of a Boolean combination of at most s polynomial
inequalities of degree at most ∆. First, we give a bound on its dual shatter function.

▶ Lemma 13. Let (X,S) be a set system such that X is a set of points in Rd and each
set in S is induced by an element Γd,∆,s. Then the dual shatter function of (X,S) can be
upper-bounded as π∗

S(k) ≤ (4e∆s)d · kd.

Proof. Let R ⊆ Γd,∆,s be a set of k ranges, defined by P = {pij : 1 ≤ i ≤ k, 1 ≤
j ≤ s}, where each element is a d-variate polynomial of degree at most ∆. Observe that if
sign [p(x)] = sign [p(y)] for all p ∈ P , then x, y are equivalent with respect to R. Therefore,
π∗

Γd,∆,s
(k) can be upper-bounded by the number of different sign patterns in {−1, 1}ks induced

by ks d-variate polynomials of degree at most ∆. This quantity is bounded by (4e∆s)d · kd,
see [30, Theorem 3]. ◀

Now we can apply Corollary 12 and obtain the following.

▶ Corollary 14. Let (X,S) be a set system such that X is a set of n points in Rd and
S consists of m subsets of X, each induced by an element of Γd,∆,s. Then BuildMatch-
ing
(
(X,S), 4e∆s, ln m, 1− 1

d

)
returns a perfect matching of X with expected crossing number

at most 20e∆sd
d−1 · n1−1/d + 11 ln m log n in expected time Õ

(
s∆d

(
mn2/d + n2+2/d

))
.

SoCG 2021

28:14 Matchings with Low Crossing Numbers and Their Applications

Half-spaces. Let Hd denote the set of all half-spaces in Rd and consider set systems induced
by Hd. For this setting, a typical pre-processing step is constructing a small-sized subfamily
of Hd – called a test-set – such that it suffices to construct a low-crossing matching with
respect to this subfamily. We use a result of Matoušek [22] on test-sets, with a small addition:

▶ Lemma 15 (Test set lemma [22]). Let X be a set of n points in Rd, Hd be the set of
all half-spaces in Rd, and t be a parameter. There exists a set T (t) of at most (d + 1)td

hyperplanes such that if a perfect matching of X has crossing number κ with respect to T (t),
then its crossing number with respect to Hd is at most (d + 1)κ + 6d2n

t .

Now let X be a set of n points in Rd and T = T (n1/d) be the set of (d+1)n half-spaces in Rd

provided by Lemma 15. Notice that T ⊂ Hd = Γd,1,1, thus by Lemma 13, π∗
T (k) ≤ (4e)dkd.

We apply Corollary 12 for (X, T) and obtain the following.

▶ Corollary 16. Let X be a set of n points in Rd and T = T (n1/d) be the set of half-
spaces provided by Lemma 15. Then BuildMatching

(
(X, T), 4e, ln n, 1 − 1

d

)
returns a

perfect matching of X with expected crossing number at most
[

6d2 + (d + 1) · 20ed
d−1

]
n1−1/d +

11
ln 2 ln2 n with respect to half-spaces in Rd, in expected time O

(
dn2+2/d ln n

)
.

Balls. Let Bd denote the subsets of X that are induced by balls in Rd. It is well known that
there are mappings α : X → Rd+1 and β : Bd → Hd+1 such that for any x ∈ X and B ∈ Bd,
we have x ∈ B iff α(x) ∈ β(B), see eg. [24, Chap. 10]. This mapping and Lemma 15 applied
in Rd+1 with t = n1/d give the following test set lemma for Bd.

▶ Lemma 17. Let X be a set of n points in Rd. There exists a set Q of at most (d+2)n1+1/d

balls such that if a perfect matching of X has crossing number κ with respect to Q, then its
crossing number with respect to Bd is at most (d + 2)κ + 6(d + 1)2n1−1/d.

Given a set X of n points in Rd, let Q be the set of balls provided by Lemma 15. As
Q ⊂ Bd ⊂ Γd,2,1, the dual shatter function of Q can be bounded as π∗

Q(k) ≤ (8e)dkd

(Lemma 13). We apply Corollary 12 for (X,Q), and obtain the following corollary.

▶ Corollary 18. Let X be a set of n points in Rd and let Q be the set of balls provided
by Lemma 17. Then BuildMatching

(
(X,Q), 8e, ln(n1+1/d), 1 − 1

d

)
returns a perfect

matching of X with expected crossing number at most
[

6(d + 1)2 + (d + 2) · 40ed
d−1

]
n1−1/d +

11(d+1)
d ln 2 ln2 n with respect to balls in Rd, in expected time Õ(dn2+2/d).

▶ Remark. The previous-best algorithm to construct spanning trees with crossing number
O(n1−1/d) with respect to Bd is based on randomized LP rounding and has time complexity
Õ(mn2) [19, 11], which combined with Lemma 17 yields an Õ

(
n3+1/d

)
time algorithm.

Alternatively, one can obtain a matching with suboptimal crossing number O
(
n1−1/(d+1))

by lifting X into Rd+1, where the image of each range in Bd can be represented by a range
in Hd+1 and applying Chan’s algorithm [8] with time complexity Õ(n).

5 Empirical Aspects

In this section we present preliminary experimental results and provide some implementation
details. We conducted our experiments on an accelerated version of BuildMatching
(available on Github):

https://github.com/csikosm/LowCrossingMatchings

M. Csikós and N. H. Mustafa 28:15

instead of maintaining the weights on all the O(n2) edges, we work with an initial uniform
random sample of O (n ln n) edges;
at each iteration, we set p = Θ

(ln n
n1−1/d

)
and q = Θ

(ln m
n1−1/d

)
instead of p = Θ

(ln n
n1−2/d

)
and q = Θ

(ln m
n1−2/d

)
.

Despite restricting ourselves to pick matching edges only from the inital sample of O(n log n)
edges, we still obtain matchings with relatively low crossing numbers (see the table below).
Incorporating this pre-sampling idea to the theoretical analysis of the algorithm is an
interesting direction for future study.

Experimental setup. We apply the algorithm for set systems induced by half-spaces in
dimensions 2, 4, 6, 8, and 10. We consider two different types of input point sets:

Grid: each point is picked randomly in a cell of the uniform grid;
Moment Curve: each point is a slightly perturbed element of the moment curve.

All the experiments are performed with dual Xeon E5-2643 v3 processors, each with 6
cores, 12 threads, at 3.4 GHz.

Grid
Input d = 2 d = 4 d = 6 d = 8 d = 10
size cr # time (s) cr # time (s) cr # time (s) cr # time (s) cr # time (s)

10000 162 58.89 699 11.84 1238 8.07 1639 6.38 1863 6.73
25000 330 279.82 1509 37.33 2804 26.49 3912 20.32 4525 20.76
50000 630 918.26 2732 99.62 5251 61.21 7387 47.02 8797 48.66
100000 1170 3001.16 5040 271.29 9774 147.91 13683 120.53 16754 110.48

Moment Curve

10000 57 58.51 324 11.68 807 7.9 1028 6.47 1354 6.12
25000 89 275.96 706 37.35 1698 24.08 2642 22.79 3411 20.62
50000 132 916.39 1151 98.25 2608 61.06 4836 52.4 6263 44.79
100000 209 2978.21 2797 268.95 5502 161.1 7743 133.25 10713 113.01

Evaluation. We present our experimental results in the table below. It shows the observed
crossing numbers and running times on inputs of size up to 100000. We see that the
algorithm becomes faster as the dimension increases (note that the crossing number
increases with dimension). For example, in dimension 6, it takes only around 160 seconds
to create a matching for 100000 points. Previous experimental results only considered
inputs of size at most 159, see [16].

Test set generation. Linear-sized test set that achieves the guarantee of Lemma 15 can be
constructed via cuttings, which are impractical in higher dimensions. Since the study
of test-sets is not the main focus of this work and to speed-up the computations, our
implementation, builds the test set by n log n random d-tuples of the input points; we
report the crossing numbers with respect to this particular test set. We refer to [2] for a
detailed overview on constructions and sizes of test-sets for various geometric objects.

6 Applications

We present an application of spanning path with low crossing number from learning theory.
Further applications will be provided in the full version of the paper.

SoCG 2021

28:16 Matchings with Low Crossing Numbers and Their Applications

Approximating sign rank. Let (X,S) be a set system and let A ∈ Rn×m be its signed
membership matrix, that is, (A)x,S = 1 if x ∈ S and (A)x,S = −1 otherwise. The sign rank
of (X,S) is defined as the minimum rank of a matrix having the same sign pattern as A.
Geometrically, it captures the minimum dimension of a Euclidean space in which (X,S) can
be embedded and realized by half-spaces through the origin. Using a connection between the
sign-rank and the crossing number of a spanning path established in Alon et al.[7], we get
the following corollary.

▶ Corollary 19. Let (X,S) be a set system and let a > 0, b and γ ∈ [1/ log n, 1] such
that any Y ⊆ X has a spanning path with crossing number at most a|Y |γ + b. Then
there is a randomized algorithm that constructs an embedding of X into RD with D ≤
5
γ nγ + (3b + 8 ln m) log n in expectation such that each S ∈ S can be represented with a
half-space in RD. The algorithm makes O

(
min

{
n4−2γ ln n + mn2−2γ ln m ln n, n3 + mn

})
calls to the membership Oracle of (X,S).

References
1 P. K. Agarwal. Simplex range searching. In Journey Through Discrete Mathematics, pages

1–30. Springer, 2017.
2 P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete &

Computational Geometry, 11(4):393–418, 1994.
3 P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets. II.

SIAM Journal on Computing, 42(6):2039–2062, 2013.
4 P. K. Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers. In

Proceedings of Symposium on Computational Geometry, SOCG’14, page 271–279, 2014.
5 N. Alon, O. Ben-Eliezer, Y. Dagan, S. Moran, M. Naor, and E. Yogev. Adversarial laws of

large numbers and optimal regret in online classification, 2021. arXiv:2101.09054.
6 N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range spaces of

finite Vapnik-Chervonenkis dimension. In SoCG ’87, 1987.
7 N. Alon, S. Moran, and A. Yehudayoff. Sign rank versus VC dimension. In COLT, 2016.
8 T. M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012.
9 T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority, and

geometric set cover via improved quasi-uniform sampling. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1576–1585, 2012.

10 B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.
Discrete Comput. Geom., page 467–489, 1989.

11 C. Chekuri and K. Quanrud. Randomized MWU for positive LPs. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, SODA ’18, page 358–377, 2018.

12 C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding for matroid
polytopes and applications. arXiv preprint, 2009. arXiv:0909.4348.

13 E. Ezra, S. Har-Peled, H. Kaplan, and M. Sharir. Decomposing arrangements of hyper-
planes: VC-dimension, combinatorial dimension, and point location. Discret. Comput. Geom.,
64(1):109–173, 2020.

14 S. P. Fekete, M. E. Lübbecke, and H. Meijer. Minimizing the stabbing number of matchings,
trees, and triangulations. In Proceedings of Symposium on Discrete Algorithms (SODA), 2004.

15 D. A. Freedman. On Tail Probabilities for Martingales. The Annals of Probability, 3(1):100–118,
1975. doi:10.1214/aop/1176996452.

16 P. Giannopoulos, M. Konzack, and W Mulzer. Low-crossing spanning trees: an alternative
proof and experiments. In Proceedings of EuroCG, 2014.

17 M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm
for matrix games. Operations Research Letters, 18(2):53–58, 1995.

http://arxiv.org/abs/2101.09054
http://arxiv.org/abs/0909.4348
https://doi.org/10.1214/aop/1176996452

M. Csikós and N. H. Mustafa 28:17

18 S. Har-Peled. Constructing planar cuttings in theory and practice. SIAM J. Comput.,
29:2016–2039, 2000.

19 S. Har-Peled. Approximating spanning trees with low crossing number. arXiv, abs/0907.1131,
2009. arXiv:0907.1131.

20 D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-
Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995.

21 M. Matheny and J. M. Phillips. Practical low-dimensional halfspace range space sampling. In
Annual European Symposium on Algorithms (ESA), volume 112, pages 62:1–62:14, 2018.

22 J. Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

23 J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer Berlin Heidelberg, 1999.
24 J. Matoušek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,

2013.
25 J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded

VC-dimension. Combinatorica, 13(4):455–466, 1993.
26 N. H. Mustafa. Computing optimal epsilon-nets is as easy as finding an unhit set. In

46th International Colloquium on Automata, Languages, and Programming (ICALP), pages
87:1–87:12, 2019.

27 N. H. Mustafa, K. Dutta, and A. Ghosh. A simple proof of optimal epsilon-nets. Combinatorica,
38(5):1269–1277, 2018.

28 N. H. Mustafa and K. Varadarajan. Epsilon-approximations and Epsilon-nets. In J. E.
Goodman, J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational
Geometry. CRC Press LLC, 2017.

29 K. R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings
of ACM Symposium on Theory of Computing (STOC), pages 641–648, 2010.

30 H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
American Mathematical Society, 133(1):167–178, 1968.

31 E. Welzl. Partition trees for triangle counting and other range searching problems. In
Proceedings of Annual Symposium on Computational Geometry (SoCG), page 23–33, 1988.

32 E. Welzl. On spanning trees with low crossing numbers. In Data Structures and Efficient
Algorithms, Final Report on the DFG Special Joint Initiative, page 233–249, 1992.

SoCG 2021

http://arxiv.org/abs/0907.1131

	1 Introduction
	2 Our Results
	3 Proof of Theorem 1
	4 Corollaries of Theorem 1
	5 Empirical Aspects
	6 Applications

