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Abstract
We revisit a classical problem in computational geometry: finding the largest-volume axis-aligned
empty box (inside a given bounding box) amidst n given points in d dimensions. Previously, the
best algorithms known have running time O(n log2 n) for d = 2 (by Aggarwal and Suri [SoCG’87])
and near nd for d ≥ 3. We describe faster algorithms with running time

O(n2O(log∗ n) log n) for d = 2,
O(n2.5+o(1)) time for d = 3, and
Õ(n(5d+2)/6) time for any constant d ≥ 4.

To obtain the higher-dimensional result, we adapt and extend previous techniques for Klee’s measure
problem to optimize certain objective functions over the complement of a union of orthants.
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1 Introduction

Two dimensions. In the first part of this paper, we tackle the largest empty rectangle
problem: Given a set P of n points in the plane and a fixed rectangle B0, find the largest
rectangle B ⊂ B0 such that B does not contain any points of P in its interior. Here and
throughout this paper, a “rectangle” refers to an axis-parallel rectangle; and unless stated
otherwise, “largest” refers to maximizing the area.

The problem has been studied since the early years of computational geometry. While
similar basic problems such as largest empty circle or largest empty square can be solved
efficiently using Voronoi diagrams, the largest empty rectangle problem seems more chal-
lenging. The earliest reference on the 2D problem appears to be by Naamad, Lee, and Hsu
in 1984 [26], who gave a quadratic-time algorithm. In 1986, Chazelle, Drysdale, and Lee [15]
obtained an O(n log3 n)-time algorithm. Subsequently, at SoCG’87, Aggarwal and Suri [3]
presented another algorithm requiring O(n log3 n) time, followed by a more complicated
second algorithm requiring O(n log2 n) time. The O(n log2 n) worst-case bound has not been
improved since.1

A few results on related questions have been given. Dumitrescu and Jiang [20] examined
the combinatorial problem of determining the worst-case number of maximum-area empty
rectangles and proved an O(n2α(n) log n) upper bound; their proof does not appear to have

1 Aggarwal and Suri’s first algorithm can be sped up to run in near O(n log2 n) time as well, since it relied
on a subroutine for finding row minima in Monge staircase matrices, a problem for which improved
results were later found [24, 12]; but these results do not appear to lower the cost of Aggarwal and
Suri’s second algorithm.
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any implication to the algorithmic problem of finding a maximum-area empty rectangle. If
the objective is changed to maximizing the perimeter, the problem is a little easier and an
optimal O(n log n)-time algorithm can already be found in Aggarwal and Suri’s paper [3].
Another related problem of computing a maximum-area rectangle contained in a polygon
has also been explored [16].

We obtain a new randomized algorithm that finds the maximum-area empty rectangle
in O(n2O(log∗ n) log n) expected time. This is not only an improvement of almost a full
logarithmic factor over the previous 33-year-old bound, but is also close to optimal, except
for the slow-growing iterated-logarithmic-like factor (as Ω(n log n) is a lower bound in the
algebraic decision tree model).

Our solution interestingly uses interval trees to efficiently divide the problem into sub-
problems of logarithmic size, yielding a recursion with O(log∗ n) depth.

Higher dimensions. The higher-dimensional analog of the problem is largest empty box:
Given a set P of n points in Rd and a fixed box B0, find the largest box B ⊂ B0 such that
B does not contain any points of P in its interior. Here and throughout this paper, a “box”
refers to an axis-parallel hyperrectangle; and unless stated otherwise, “largest” refers to
maximizing the volume.

Several papers [18, 20, 19, 30] have studied related questions in higher dimensions, e.g.,
proving combinatorial bounds on the number of optimal boxes, or proving extremal bounds
on the volume, or designing approximation algorithms. For the original (exact) computational
problem, it is not difficult to obtain an algorithm that finds the largest empty box in Õ(nd)
time (for example, as was done by Backers and Keil [4]).2 At the end of their SoCG’16 paper,
Dumitrescu and Jiang [20] explicitly asked whether a faster algorithm is possible:

“Can a maximum empty box in Rd for some fixed d ≥ 3 be computed in O(nγd) time
for some constant γd < d?”

Dumitrescu and Jiang attempted to give a subcubic algorithm for the 3D problem, but their
conditional solution required a sublinear-time dynamic data structure for finding the 2D
maximum empty rectangles containing a query point – currently, the existence of such a
data structure is not known.

On the lower bound side, Giannopoulos, Knauer, Wahlström, and Werner [23] proved
that the largest empty box problem is W [1]-hard with respect to the dimension. This implies
a conditional lower bound of Ω(nβd) for some absolute constant β > 0, assuming a popular
conjecture on the hardness of the clique problem.

We answer the above question affirmatively. For d = 3, we give an O(n5/2+ε)-time
algorithm, where ε > 0 is an arbitrarily small constant. For higher constant d ≥ 4, we obtain
an algorithm with an intriguing time bound that improves over nd even more dramatically:
Õ(n(5d+2)/6). For example, the bound is O(n3.667) for d = 4, Õ(n4.5) for d = 5, and O(n8.667)
for d = 10.

Not too surprisingly, our 3D algorithm achieves subcubic complexity by applying standard
range searching data structures (though the application is not be immediately obvious).
Dynamic data structures are not used.

The techniques for our higher-dimensional algorithm are perhaps more original and
significant, with potential impact to other problems. We first transform the largest empty
box problem into a problem about a union of n orthants in D = 2d dimensions (the

2 Throughout the paper, Õ notation hides polylogarithmic factor.
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transformation is simple and has been exploited before, such as in [5]). The union of orthants
is known to have worst-case combinatorial complexity O(n⌊D/2⌋) [7]. Interestingly, we show
that it is possible to maximize certain types of objective functions over the complement of
the union, in time significantly smaller than the worst-case combinatorial complexity.

We accomplish this by adapting known techniques on Klee’s measure problem [27, 10, 8, 11].
Specifically, we build on a remarkable method by Bringmann [8] for computing the volume of
a union of n orthants in D dimensions in O(nD/3+O(1)) time (the O(1) term in the exponent
was 2/3 but has been later removed by author [11]). However, maximizing an objective
function over the complement of the union is different from summing or integrating a function,
and Bringmann’s method does not immediately generalize to the former (for example, it
exploits subtraction). We introduce extra ideas to extend the method, which results in a
bigger time bound than nD/3 = n2d/3 but nevertheless beats nD/2 = nd. In particular, we
use some simple graph-theoretical arguments, applied to graphs with O(D) vertices.

Organization. We present our 2D algorithm in Sec. 2, our 3D algorithm in the full paper,
and our higher-dimensional algorithms in Sec. 3–4 (all these parts may be read independently).

2 Largest empty rectangle in 2D

As in previous work [15, 3], we focus on solving a line-restricted version of the 2D largest
empty rectangle problem: given a set P of n points below a fixed horizontal line ℓ0 and a
set Q of n points above ℓ0, where the x-coordinates of all points have been pre-sorted, and
given a rectangle B0, find the largest-area rectangle B ⊂ B0 that intersects ℓ0 and is empty
of points of P ∪ Q. By standard divide-and-conquer, an O(T (n))-time algorithm for the
line-restricted problem immediately yields an O(T (n) log n)-time algorithm for the original
largest empty rectangle problem, assuming that T (n)/n is nondecreasing.

We begin by reformulating the line-restricted problem as a problem about horizontal line
segments. In the subsequent subsections, we will work with this re-formulation.

For each point p ∈ P , let s(p) be the longest horizontal line segment inside B0 such
that s(p) passes through p and there are no points of P above s(p). See Figure 1(a). We
can compute s(p) for all p ∈ P in O(n) time: this step is equivalent to the construction of
the standard Cartesan tree [31, 22], for which there are simple linear-time algorithms (for
example, by inserting points from left to right and maintaining a stack, like Graham’s scan,
as also re-described in previous papers [15, 3]). Similarly, for each q ∈ Q, let t(q) be the
longest horizontal line segment inside B0 such that t(q) passes through q and there are no
points of Q below t(q). We can also compute t(q) for all q ∈ Q in O(n) time.

For a horizontal segment s, let x−
s and x+

s denote the x-coordinates of its left and right
endpoints respectively, and let ys denote its y-coordinate. We say that a set S of horizontal
segments is laminar if for every s, s′ ∈ S, either the two intervals [x−

s , x+
s ] and [x−

s′ , x+
s′ ]

are disjoint, or one interval is contained in the other (in other words, the intervals form a
“balanceded parentheses” or tree structure). It is easy to see that for the segments defined
above, {s(p) : p ∈ P} is laminar and {t(q) : q ∈ Q} is laminar.

The optimal rectangle must have some point p∗ ∈ P on its bottom side and some point
q∗ ∈ Q on its top side (except when the optimal rectangle touches the bottom or top side
of B0, a case that can be easily dismissed in linear time). Chazelle, Drysdale, and Lee [15]
already noted that the case when [x−

s(p∗), x+
s(p∗)] is contained in [x−

t(q∗), x+
t(q∗)] can be handled

in O(n) time (in their terminology, this is the case of “three supports in one half, one in the

SoCG 2021
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Figure 1 (a,b) Transforming points into horizontal segments. (c) Pseudo-ray ←γs.

other”).3 The key remaining case is when x−
t(q∗) < x−

s(p∗) < x+
t(q∗) < x+

s(p∗), where the area of
the optimal rectangle is (x+

t(q∗) − x−
s(p∗))(yt(q∗) − ys(p∗)). All other cases are symmetric. The

problem is thus reduced to the following (see Figure 1(b)):

▶ Problem 1. Given a laminar set S of n horizontal segments and a laminar set T of n

horizontal segments, where all x-coordinates have been pre-sorted, find a pair (s, t) ∈ S × T

such that x−
t < x−

s < x+
t < x+

s , maximizing (x+
t − x−

s )(yt − ys).

We find it more convenient to work with the corresponding decision problem, as stated
below. By the author’s randomized optimization technique [9], an O(T (n))-time algorithm
for Problem 2 yields an O(T (n))-expected-time algorithm for Problem 1, assuming that
T (n)/n is nondecreasing:

▶ Problem 2. Given a laminar set S of n horizontal segments and a laminar set T of
n horizontal segments, where all x-coordinates have been pre-sorted, and given a value
r > 0, decide if there exists a pair (s, t) ∈ S × T such that x−

t < x−
s < x+

t < x+
s and

(x+
t − x−

s )(yt − ys) > r, and if so, report one such pair. We call such a pair good.

2.1 Preliminaries
To help solve Problem 2, we define a curve γs for each s ∈ S:

γs(x) =
{

r
x−x−s

+ ys if x ≥ x−
s + δ

M + x−
s if x < x−

s + δ,

for a sufficiently small δ > 0 and a sufficiently large M = M(δ). (The main first part of
the curve is a hyperbola.) The condition (x+

t − x−
s )(yt − ys) > r is met iff the point (x+

t , yt)
(i.e., the right endpoint of t) is above the curve γs, assuming x+

t ≥ x−
s + δ. Note that these

curves form a family of pseudo-lines, i.e., every pair of curves intersect at most once: this
can be seen from the fact that for any two curves γs and γs′ with x−

s ≥ x−
s′ , the difference

γs(x) − γs′(x) = r(x−s −x−
s′

)
(x−x−s )(x−x−

s′
) + ys − ys′ is nonincreasing for x ≥ x−

s .

3 The solution is simple: for each p ∈ P , we find the lowest point qp ∈ Q with x-coordinate in the interval
[x−

s(p), x+
s(p)], and take the maximum of (x+

s(p) − x−
s(p))(yt(qp) − ys(p)). All these lowest points qp can be

found “bottom-up” in the tree formed by the intervals {[x−
s(p), x+

s(p)] : p ∈ P }, in linear total time.
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Figure 2 Proof of Lemma 1(b): the x-projected intervals and the division into slabs.

Define the curve segment ←γs to be the part of γs restricted to x ≤ x+
s . (See Figure 1(c).)

These curve segments form a family of pseudo-rays. The lower envelope of n pseudo-rays has at
most 2n edges, by known combinatorial bounds on order-2 Davenport-Schinzel sequences [29].
The following lemma summarizes known subroutines we need on the computation of lower
envelopes (proofs are briefly sketched).

▶ Lemma 1. Consider a set of n pseudo-lines, sorted by their pseudo-slopes, such that
if γ and γ′ intersects and γ has smaller pseudo-slope, then γ is above γ′ to the left of
the intersection. Assume that the intersection of any two pseudo-lines can be computed in
constant time.
(a) Consider n pseudo-rays that are parts of the given pseudo-lines, such that the x-coordinates

of the left endpoints are all −∞, and the x-coordinates of the right endpoints are monotone
(increasing or decreasing) in the pseudo-slopes. Then the lower envelope of these pseudo-
rays can be computed in O(n) time.

(b) Consider n pseudo-segments that are parts of the given pseudo-lines, such that x-
coordinates of the left endpoints are monotone in the pseudo-slopes and the x-coordinates
of the right endpoints are monotone in the pseudo-slopes. Then the lower envelope of
these pseudo-segments can be computed in O(n) time.

Proof. Part (a) follows by a straightfoward variant of Graham’s scan [17] (originally for
computing planar convex hulls, or by duality, lower envelopes of lines). We insert pseudo-rays
in decreasing order of their right endpoints’ x-values, while maintaining the portion of the
lower envelope to the left of the right endpoint of the current pseudo-ray. In each iteration,
by the monotonicity assumption, a prefix or suffix of the lower envelope gets deleted (i.e.,
popped from a stack).

For part (b), the main case is when both the left and right endpoints are monotonically
increasing in the pseudo-slopes (the case when both are monotonically decreasing is symmetric,
and the case when they are monotone in different directions easily reduces to two instances
of the pseudo-ray case). Greedily construct a minimal set of vertical lines that stab all the
pseudo-segments: namely, draw a vertical line at the leftmost right endpoint, remove all
pseudo-segments stabbed, and repeat. This process can be done in O(n) time by a linear
scan. These vertical lines divide the plane into slabs. (See Figure 2.) In each slab, the
pseudo-segments behave like pseudo-rays, so we can compute the lower envelope inside the
slab in linear time by applying part (a) twice, for the leftward rays and for the rightward rays
(the two envelopes can be merged in linear time). Since each pseudo-segment participates in
at most two slabs, the total time is linear. ◀

As an application of Lemma 1(b), we mention an efficient algorithm for a special case of
Problem 2, which will be useful later.

▶ Corollary 2. In the case when all segments in S and T intersect a fixed vertical line,
Problem 2 can be solved in O(n) time.

SoCG 2021
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Proof. Since S and T are laminar, the x-projected intervals in each set are nested. Let
s1, s2, . . . be the segments in S with [x−

s1
, x+

s1
] ⊆ [x−

s2
, x+

s2
] ⊆ · · · , and let t1, t2, . . . be the

segments in T with [x−
t1

, x+
t1

] ⊆ [x−
t2

, x+
t2

] ⊆ · · · . For each si, let a(i) be the smallest index with
x−

ta(i)
< x−

si
, let b(i) be the smallest index with x−

si
< x+

tb(i)
, and let c(i) be the largest index

with x+
tc(i)

< x+
si

. Note that a(i) is monotonically increasing in i, and b(i) is monotonically
decreasing in i, and c(i) is monotonically increasing in i. It is straightforward to compute
a(i), b(i), c(i) for all i by a linear scan.

The problem reduces to finding a pair (si, tj) such that max{a(i), b(i)} ≤ j ≤ c(i) and
the right endpoint of tj is above γsi . Define the curve segment γsi

to be the part of γsi

restricted to x ∈ [max{x+
ta(i)

, x+
tb(i)

}, x+
tc(i)

]. The problem reduces to finding a tj whose right
endpoint is above some curve segment γsi

, i.e., above the lower envelope of these curve
segments. We can compute this lower envelope in O(n) time by Lemma 1(b) (more precisely,
by two invocations of the lemma, as max{x+

ta(i)
, x+

tb(i)
} consists of a monotonically increasing

and a monotonically decreasing part). The problem can be then be solved by linear scan
over the envelope and the endpoints of tj . ◀

2.2 Algorithm
We are now ready to describe our new algorithm for solving Problem 2, using interval trees
and an interesting recursion with O(log∗ n) depth.

▶ Theorem 3. Problem 2 can be solved in O(n2O(log∗ n)) time.

Proof. As a first step, we build the standard interval tree for the given horizontal segments
in S ∪ T . This is a perfectly balanced binary tree of with O(log n) levels, where each node
corresponds to a vertical slab. The root slab is the entire plane, the slab at a node is the union
of the slabs of its two children, and each leaf slab contains no endpoints in its interior. Each
segment is stored in the lowest node v whose slab contains the segment (i.e., the segment is
contained in v’s slab but is not contained in either child’s subslab). Note that each segment
is stored only once (unlike in another standard structure called the “segment tree”). We can
determine the slab containing each segment in O(1) time by an LCA query [6] (which is
easier in the case of a perfectly balanced binary tree).

For each node v, let Sv (resp. Tv) be the set of all segments of S (resp. T ) stored in v.
Define the level of a segment to be the level of the node it is stored in.

Case 1. There exists a good pair (s∗, t∗) where s∗ and t∗ have the same level. Here, s∗ and
t∗ must be stored in the same node v of the interval tree. Thus, a good pair can be found as
follows:
1. For each node v, solve the problem for Sv and Tv by Corollary 2 in O(|Sv| + |Tv|) time.

Note that all segments in Sv ∪ Tv indeed intersect a fixed vertical line (the dividing line
at v).

The total running time of this step is O(n), since each segment is in only one Sv or Tv.

Case 2. There exists a good pair (s∗, t∗) where s∗ is on a strictly lower level than t∗. To
deal with this case, we perform the following steps, for some choice of parameter b ≥ log n:
2a. For each node v, compute the lower envelope of the pseudo-rays {←γs : s ∈ Sv} by

Lemma 1(a) in O(|Sv|) time; let Ev denote this envelope restricted to v’s slab. Note that
because all segments in Sv intersect a fixed vertical line and Sv is laminar, the x+

s values
are monotonically decreasing in the x−

s values for s ∈ Sv and so are indeed monotone in
the pseudo-slopes of these pseudo-rays.
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2b. Divide the plane into a set Σ of n/b vertical slabs each containing b right endpoints of T .
2c. For each slab σ ∈ Σ,

let Tσ be the set of all segments t ∈ T with right endpoints in σ, and
let Sσ be the set of all segments s ∈ S such that ←γs appears on Ev ∩ σ for some node v.

Divide Sσ (arbitrarily) into blocks of size b and recursively solve the problem for Tσ and
each block of Sσ.

Correctness. Consider a good pair (s∗, t∗) with s∗ on a strictly lower level than t∗. Let σ

be the slab in Σ containing the right endpoint of t∗, i.e., t∗ ∈ Tσ. Let v be the node s∗ is
stored in. Then t∗ intersects the left wall of the slab at v (since t∗ must be stored in a
proper ancestor of v). Now, the right endpoint of t∗ is below ←

γs∗ and is thus below Ev.
Let ←γs be the curve on Ev that the right endpoint of t∗ is below, with s ∈ Sv. Then ←γs

appears on Ev ∩ σ, and so s ∈ Sσ. Since the right endpoint of t∗ is below ←
γs, we have

x−
s < x+

t∗ < x+
s , and since t∗ intersects the left wall of v’s slab, we have x−

t∗ < x−
s . So,

(s, t∗) is good, and the recursive call for Tσ and some block of Sσ will find a good pair.
Analysis. The total number of edges in all envelopes Ev is at most 2

∑
v |Sv| ≤ 2n. Since the

envelopes Ev have disjoint x-projections for nodes v at the same level, and since there are
O(log n) levels, the O(n/b) dividing vertical lines of Σ intersect at most O((n/b) log n)
edges among all the envelopes. Thus,

∑
σ∈Σ |Sσ| ≤ 2n+O((n/b) log n) = O(n) if b ≥ log n,

and so the total number of recursive calls in step 2c is O(n/b).

Case 3. There exists a good pair (s∗, t∗) where s∗ is on a strictly higher level than t∗. This
remaining case is symmetric to Case 2 (by switching S and T and negating y-coordinates).

Total time. By running the algorithms for all three cases, a good pair is guaranteed to be
found if one exists. The running time satisfies the recurrence T (n) ≤ O(n/b)T (b) + O(n).
Setting b = log n gives T (n) ≤ n2O(log∗ n). ◀

By the observations from the beginning of this section, we can now solve Problem 1 and
the line-restricted problem in O(n2O(log∗ n)) expected time, and the original largest empty
rectangle problem in O(n2O(log∗ n) log n) expected time.
▶ Corollary 4. Given n points in R2 and a rectangle B0, we can compute the maximum-area
empty rectangle inside B0 in O(n2O(log∗ n) log n) expected time.

3 Largest empty anchored box in higher dimensions (warm-up)

To prepare for our solution to the largest empty box problem in higher constant dimensions,
we first investigate a simpler variant, the largest empty anchored box problem: given a
set P of n points in Rd and a fixed box B0, find the largest-volume anchored box in B0
that does not contain any points of P in its interior, where an anchored box has the form
B = (0, x1) × · · · (0, xd) (having the origin as one of its vertices).

Let
⋃

S denote the union of a set S of objects. By mapping a box B = (0, x1) × · · · (0, xd)
to the point (x1, . . . , xd), and mapping each input point (p1, . . . , pd) to the orthant (p1, ∞) ×
· · · × (pd, ∞), the largest empty anchored box problem reduces to:
▶ Problem 3. Define the function Hvol(x1, . . . , xd) = x1x2 · · · xd. Given a set S of n orthants
in Rd and a box B0, find the maximum of Hvol over B0 −

⋃
S.

By known results [7], the union of n orthants in Rd has worst-case combinatorial complexity
O(n⌊d/2⌋) and can be constructed in Õ(n⌊d/2⌋) time. We will show that Problem 3 can be
solved faster than explicitly constructing the union.

SoCG 2021
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3.1 Preliminaries
A key tool we need is a spatial partitioning scheme due to Overmars and Yap [27] (originally
developed for solving Klee’s measure problem in Õ(nd/2) time). The version stated below is
taken from [11, Lemma 4.6]; see that paper for a short proof. (The partitioning scheme is
also related to “orthogonal BSP trees” [21, 14].)

▶ Lemma 5. Given a set of n axis-parallel flats (of possibly different dimensions) in Rd,
and given a parameter r, we can divide Rd into O(rd) cells (bounded and unbounded boxes)
so that each cell intersects O(n/rj) (d − j)-flats.

The construction of the cells, along with the conflict lists (lists of all flats intersecting
each cell), can be done in Õ(n + rd + K) time,4 where K is the total size of the conflict lists.

Call a function H : Rd → R simple if it has the form

H(x1, . . . , xd) = h1(x1) · · · hd(xd),

where each hi is a univariate step function. The complexity of H refers to the total complexity
(number of steps) in these step functions. As an illustration of the usefulness of Lemma 5,
we first how to maximize simple functions over the complement of a union of orthants in
Õ(nd/2) time:

▶ Lemma 6. Let H be a simple function with O(n) complexity. Given a set S of n orthants
in Rd and a box B0, we can compute the maximum of H in B0 −

⋃
S in Õ(nd/2) time for

any constant d ≥ 2.

Proof. Apply Lemma 5 to the O(n) (d − 2)-flats that pass through the (d − 2)-faces of the
given orthants. This yields a partition of B0 into cells.

Consider a cell ∆. The number of (d − 2)-flats intersecting ∆ is bounded by O(n/r2),
which can be made 0 by setting r := Θ(

√
n). Consequently, only (d − 1)-faces of the given

orthants may intersect ∆, i.e., all orthants are 1-sided inside ∆. The union of 1-sided orthants
simplifies to the complement of a box (we can use orthogonal range searching or intersection
data structure to identify the 1-sided orthants intersecting ∆ and compute this box in Õ(1)
time [1, 17]). For a simple function H(x1, . . . , xd) = h1(x1) · · · hd(xd), we can maximize H

over a box by maximizing hi(xi) over an interval for each i ∈ {1, . . . , d} separately. This
corresponds to a 1D range maximum query for each i, which can be done straightforwardly in
O(log n) time (or more carefully in O(1) time [6]). As the number of cells is O(rd) = O(nd/2),
the total running time is Õ(nd/2). ◀

3.2 Algorithm
To improve over nd/2, we adapt an approach by Bringmann [8] (originally for solving Klee’s
measure problem for orthants in O(nd/3+O(1)) time). The approach involves first solving
the 2-sided special case, and then applying Overmars and Yap’s partitioning scheme. A
2-sided orthant is the set of all points (x1, . . . , xd) ∈ Rd satisfying a condition of the form
[xi ? a] ∧ [xj ? b] for some i, j ∈ {1, . . . , d}, where each occurrence of “?” is either ≤ or
≥. We will adapt the author’s subsequent re-interpretation [11, Section 4.1] of Bringman’s
technique, described in terms of monotone step functions.

▶ Theorem 7. In the case when all the input orthants are 2-sided, Problem 3 can be solved
in Õ(n⌊d/2⌋/2) time for any constant d ≥ 4.

4 A weaker time bound was stated in [11, Lemma 4.6], but the output-sensitive time bound follows directly
from the same construction.
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Figure 3 The union of one type of 2-sided orthants.

Proof. The boundary of the union of 2-sided orthants of the form [xi ? a] ∧ [xj ? b] with
a fixed i, j and a fixed choice for the two “?”s is a staircase, i.e., the graph of a univariate
monotone (increasing or decreasing) step function. (See Figure 3.) Thus, the complement
of the union of 2-sided orthants can be expressed as the set of all points (x1, . . . , xd) ∈ Rd

satisfying an expression E(x1, . . . , xd) which is a conjunction of O(d2) predicates each of the
form [xi ? f(xj)], where i, j ∈ {1, . . . , d}, “?” is ≤ or ≥, and f is a monotone step function.
The total complexity of these step functions is O(n). Conversely, any such expression can be
mapped back to the complement of a union of O(n) 2-sided orthants.

We first observe a few simple rules for rewriting expressions:
1. [xi ≤ f(xj)] ∧ [xi ≤ g(xj)] can be rewritten as [xi ≤ min{f, g}(xj)] if f and g are both

increasing or both decreasing. Note that the lower envelope min{f, g} is still a monotone
step function with O(n) complexity. A similar rule applies for ≥.

2. [xi ≤ f(xj)] can be rewritten as [xj ≥ f−1(xi)] if f is increasing (the inequality is flipped
if f is decreasing). Note that the inverse f−1 is still a monotone step function.

3. More generally, [f(xi) ≤ g(xj)] can be rewritten as [xj ≥ (f−1 ◦ g)(xi)] if f is increasing
(the inequality is flipped if f is decreasing). Note that the composition f−1 ◦ g is still a
monotone step function with O(n) complexity.

4. [xi ≤ f(xj)] ∧ [xi ≤ g(xk)] can be rewritten as the disjunction of [xi ≤ f(xj)] ∧ [f(xj) ≤
g(xk)] and [xi ≤ g(xk)] ∧ [g(xk) ≤ f(xj)]. A similar rule applies for ≥.

The plan is to decrease the dimension by repeatedly eliminating variables:
We maintain a simple function H. Initially, H(x1, . . . , xd) = σ(x1) · · · σ(xd), where σ(x)

denotes the successor of x among the O(n) input coordinate values (σ is a step function).
We call an index i free if the variable xi appears exactly once in H and is “unaltered”, i.e.,
hi(xi) = σ(xi). All indices are initially free.

In each iteration, we pick a free index i. Whenever xi appears more than twice in E, we
can apply rule 4 (in combination with rules 1–3) to obtain a disjunction of 2 subexpressions,
where in each subexpression, the number of occurrences of xi is decreased. By repeating this
process O(1) times (recall that d is a constant), we obtain a disjunction of O(1) subexpressions,
where in each subexpression, only at most two occurrences of xi remain – in at most one
predicate of the form [xi ≤ f(xj)], and at most one predicate of the form [xi ≥ g(xk)].

We branch off to maximize H over each of these subexpressions separately. In such a
subexpression, to eliminate the variable xi while maximizing H, we replace the two predicates
[xi ≤ f(xj)] and [xi ≥ g(xk)] with [f(xj) ≥ g(xk)], and replace xi with f(xj) in H (i.e., reset
hj(xj) to hj(xj)σ(f(xj)), which is still a step function with O(n) complexity). Now, i and j

are not free.
We stop a branch when there are no free indices left. At the end, we get a large but

O(1) number of subproblems, where in each subproblem, at least ⌈d/2⌉ variables have been
eliminated, i.e., the dimension is decreased to d′ ≤ ⌊d/2⌋. We solve each subproblem by
Lemma 6 in Õ(nd′/2) time. ◀
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We now combine Theorem 7 and Lemma 5 to solve Problem 3:

▶ Corollary 8. Problem 3 can be solved in Õ(nd/3+⌊d/2⌋/6) time for any constant d ≥ 4.

Proof. Apply Lemma 5 to the O(n) (d − 3)-flats and (d − 2)-flats through the (d − 3)-faces
and (d − 2)-faces of the given orthants. This yields a partition of B0 into cells.

Consider a cell ∆. The number of (d−3)-flats intersecting ∆ is O(n/r3), which can be made
0 by setting r := Θ(n1/3). The number of (d − 2)-flats intersecting ∆ is O(n/r2) = O(n1/3).
So, inside the cell ∆, all orthants are 2-sided or 1-sided, with O(n1/3) 2-sided orthants. The
union of 1-sided orthants simplifies to the complement of a box (we can use orthogonal range
searching or intersection data structures [1, 17] to identify the 1-sided orthants intersecting
∆ and compute this box). We can thus apply Theorem 7 to maximize H over the cell
∆ in Õ((n1/3)⌊d/2⌋/2) time. As there are O(rd) = O(nd/3) cells, the total running time is
Õ(nd/3 · (n1/3)⌊d/2⌋/2). ◀

▶ Corollary 9. Given n points in Rd and a box B0, we can compute the maximum-volume
empty anchored box inside B0 in Õ(nd/3+⌊d/2⌋/6) ≤ Õ(n5d/12) time for any constant d ≥ 4.

4 Largest empty box in higher dimensions

We now adapt the approach from Section 3 to solve the original largest empty box problem
in higher constant dimensions. By d levels of divide-and-conquer, it suffices to solve the
point-restricted version of the problem: given a set P of n points in Rd, a fixed box B0, and
a fixed point o, find the largest-volume box B ⊂ B0 that contains o and is empty of points
of P . An O(T (n))-time algorithm for the point-restricted problem immediately yields an
O(T (n) logd n)-time algorithm for the original problem (in fact, the polylogarithmic factor
disappears if T (n)/n1+δ is increasing for some constant δ > 0). Without loss of generality,
assume that o is the origin.

By mapping a box B = (−x1, x′
1) × · · · × (−xd, x′

d) (which has volume (x1 + x′
1) · · · (xd +

x′
d)) to the point (x1, x′

1, . . . , xd, x′
d) in 2d dimensions, and mapping each input point p =

(p1, . . . , pd) to the orthant (−p1, ∞) × (p1, ∞) × · · · (−pd, ∞) × (pd, ∞) in 2d dimensions (and
changing B0 appropriately), the problem reduces to the following variant of Problem 3, after
doubling the dimension:

▶ Problem 4. Define the function Hnew-vol(x1, . . . , xd) = (x1 + x2)(x3 + x4) · · · (xd−1 + xd)
for an even d. Given a set S of n orthants in Rd and a box B0, find the maximum of Hnew-vol
over B0 −

⋃
S.

The above objective function Hnew-vol is a bit more complicated than the one from
Section 3, and so further ideas are needed. . .

4.1 Preliminaries
For a multigraph G with vertex set {1, . . . , d} (without self-loops), define a G-function
H : Rd → R to be a function of the form

H(x1, . . . , xd) =
d∏

i=1
hi(xi) ·

∏
e=ij∈G

(h′
e(xi) + h′′

e (xj)),

where hi, h′
e, and h′′

e are univariate step functions. The complexity of H refers to the total
complexity of these step functions.
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i
`j

Figure 4 After removing vertex i and adding edge jℓ, the graph G remains a pseudo-forest.

A pseudo-forest is a graph where each component is either a tree, or a tree plus an edge
– in the latter case, the component is called a 1-tree (and we allow the extra edge to be a
duplicate of an edge in the tree).

▶ Lemma 10. Let H be a G-function H with O(n) complexity. Given a box B0, we can
compute the maximum of H over B0 in Õ(n) time if G is a forest, or Õ(n2) time if G is a
pseudo-forest, for any constant d.

Proof. For the forest case: Pick a leaf i. Then H is of the form h(xi) · (h′(xi) + h′′(xj)) · · · ,
where h, h′, h′′ are step functions and xi does not appear in “· · · ”. Define F (ξ) :=
maxx∈R h(x) · (h′(x) + ξ). Then F is the upper envelope of O(n) linear functions in the
single variable ξ, and can be constructed in Õ(n) time by the dual of a planar convex hull
algorithm [17]. We can eliminate the variable xi by replacing the h(xi) · (h′(xi) + h′′(xj))
factor with F (h′′(xj)) (which is a step function in xj with O(n) complexity). As a result, H

becomes a (G − {i})-function in d − 1 variables. After d iterations, the problem becomes
trivial.

For the pseudo-forest case: We may assume the graph is connected, since we can maximize
the parts of H corresponding to different components separately. Pick a vertex i that belongs
to the unique cycle of G (if exists). Then G − {i} is a forest. By trying out all O(n) different
settings of xi (breakpoints of the step functions), the problem reduces to O(n) instances of
the forest case. ◀

▶ Lemma 11. Let H be a G-function with O(n) complexity, where G is a pseudo-forest.
Given a set S of n boxes in Rd and a box B0, we can compute the maximum of H over
B0 −

⋃
S in Õ(nd/2+1) time for any constant d.

Proof. Apply Lemma 5 to the O(n) (d − 2)-flats through the boundaries of the orthants,
together with the O(n) (d − 1)-flats xj = a for all breakpoints a of the step functions
appearing in H. This yields a partition of B0 into cells.

Consider a cell ∆. The number of (d − 2)-flats intersecting ∆ is O(n/r2), which can
be made 0 by setting r := Θ(

√
n). So, inside the cell ∆, we see only 1-sided orthants, and

their union simplifies to the complement of a box. In addition, the number of (d − 1)-flats
intersecting ∆ is O(n/r) = O(

√
n); in other words, the breakpoints of the step functions in

H relevant to the cell ∆ is O(
√

n). We can thus apply Lemma 10 to maximize H over the
cell ∆ in Õ((

√
n)2) time. As the number of cells is O(rd) = O(nd/2), the total running time

is Õ(nd/2 · (
√

n)2). ◀

4.2 Algorithm
We now modify the proof of Theorem 7 to solve Problem 4 for the 2-sided orthant case:

▶ Theorem 12. In the case when all input orthants are 2-sided, Problem 4 can be solved in
Õ(nd/4+1) time for any constant even d.

SoCG 2021
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Proof. We maintain a G-function H. Initially, H(x1, . . . , xd) = (σ(x1) + σ(x2))(σ(x3) +
σ(x4)) · · · (σ(xd−1) + σ(xd)), with G being a matching with d/2 edges, where σ(x) denotes
the successor of x among all O(n) input coordinate values. We call an index i free if xi

appears exactly once in H and is “unaltered” (i.e., H is of the form (σ(xi) + h(xℓ)) · · ·
where xi does not appear in “· · · ”). All indices are initially free. We maintain the following
invariants: at any time, (i) G is a pseudo-forest with at most d/2 edges, and (ii) for each
component T of G which is a tree (not a 1-tree), T has at least two free leaves.

In each iteration, we pick a free leaf i in some component T of G which is a tree. As
before, we rewrite the expression E as a disjunction of O(1) subexpressions, where in each
subexpression, only two occurrences of xi remain – in a predicate of the form [xi ≤ f(xj)],
and another predicate of the form [xi ≥ g(xk)].

We branch off to maximize H for each of these subexpressions separately. In such a
subexpression, to eliminate the variable xi while maximizing H, we replace the two predicates
[xi ≤ f(xj)] and [xi ≥ g(xk)] with [f(xj) ≥ g(xk)], and replace xi with f(xj) in H (since xi

is free). Now, i and j are not free. Also, in the graph G, the unique edge iℓ incident to i is
replaced by jℓ (unless j = ℓ). If j is in the same component T as i, then T becomes a 1-tree;
otherwise, two components are merged and the new component is either a tree with at least
two free leaves, or a 1-tree. (See Figure 4.) So, the invariants are maintained.

We stop a branch when there are no free indices left. At the end, we get O(1) subproblems,
where in each subproblem, all components are 1-trees, and so the number of nodes is exactly
equal to the number of edges, implying that the dimension is d′ ≤ d/2. Now we can apply
Lemma 11 to solve these subproblems in Õ(nd′/2+1) time. ◀

▶ Corollary 13. Problem 4 can be solved in Õ(n(5d+4)/12) time for any constant even d.

Proof. Following the proof of Corollary 8 but using Theorem 12 instead of Theorem 7 gives
running time Õ(nd/3 · (n1/3)d/4+1). ◀

Applying the above corollary in 2d dimensions, we finally obtain:

▶ Corollary 14. Given n points in Rd and a box B0, we can compute the maximum-volume
empty box inside B0 in Õ(n(5d+2)/6) time for any constant d.

5 Remarks

On the 2D algorithm. The 2O(log∗ n) factor can be analyzed more precisely (an upper bound
of 3log∗ n can be shown with minor changes to the algorithm). A question remains whether
the extra factor could be further lowered to inverse-Ackermann, or eliminated completely.

The previous algorithm by Aggarwal and Suri [3] used matrix searching techniques, namely,
for finding row minima in certain types of partial Monge matrices. We are able to bypass
such subroutines because we have focused our effort on solving the decision problem (due to
the author’s randomized optimization technique [9]). Generally, the row minima problem
is equivalent to the computation of lower envelopes of pseudo-rays and pseudo-segments,
not necessarily of constant complexity [12]. However, to solve the decision problem, we only
need lower envelopes of pseudo-rays and pseudo-segments of constant complexity (formed
by hyperbolas), for which there are simpler direct methods, as we have noted in Lemma 1.
(Incidentally, the proof we gave for reducing Lemma 1(b) to (a) is essentially equivalent to
Aggarwal and Klawe’s reduction of row minima in double-staircase to staircase matrices [2];
a similar idea has also been used in dynamic data structures with “FIFO updates” [13].)
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On the other hand, it should be possible to modify our approach to get improved
deterministic algorithms for 2D largest empty rectangle, by solving the optimization problem
directly and using known matrix searching subroutines [24], though details are more involved
and the running time seems slightly worse than in our randomized algorithm.

It is theoretically possible to devise an optimal algorithm for Problem 1 without knowing
the true complexity of the algorithm, since by a constant number of rounds of recursion in our
method, the problem is reduced to subproblems of very small size (say, log log log log n), for
which we can afford to explicitly build an optimal decision tree (this type of trick appeared
before in the literature [25, 28]).

On the higher-dimensional algorithms. Our approach in higher dimensions works for
maximizing the perimeter (sum of edge lengths) of the box as well. In fact, the algorithm
for the simpler, largest empty anchored box problem should suffice here after doubling the
dimension, since the required objective function here is Hperim(x1, . . . , xd) = x1 + · · · + xd,
which is “similar” to Hvol(x1, . . . , xd) = x1 · · · xd.

For the largest empty anchored box problem, the Õ(n5d/12) time bound can be further
improved to Õ(n(7d+6)/18), by building on the graph-theoretic ideas from Section 4, as we
show in the full paper. Still further improvements of the exponent is likely possible, by
working with G-functions for hypergraphs G, not just graphs, though improvement on the
fraction 7/18 appears very tiny and requires d to be a very large constant, and the algorithm
becomes more complicated. For the largest empty box problem, we currently don’t know
how to improve the fraction 5/6, even using hypergraphs. It remains a fascinating question
what the best fraction β is for which the problem could be solved in O(nβd+o(d)) time.

On the conditional lower bound side, another relevant question is whether Problem 3 or 4
remain W [1]-hard with respect to the parameter d in the special case of 2-sided orthants.
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