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Abstract
We study whether a given graph can be realized as an adjacency graph of the polygonal cells of
a polyhedral surface in R3. We show that every graph is realizable as a polyhedral surface with
arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular,
if the given graph contains K5, K5,81, or any nonplanar 3-tree as a subgraph, no such realization
exists. On the other hand, all planar graphs, K4,4, and K3,5 can be realized with convex cells. The
same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a
result from McMullen et al. (1983), for any hypercube.

Our results have implications on the maximum density of graphs describing polyhedral surfaces
with convex cells: The realizability of hypercubes shows that the maximum number of edges over all
realizable n-vertex graphs is in Ω(n log n). From the non-realizability of K5,81, we obtain that any
realizable n-vertex graph has O(n9/5) edges. As such, these graphs can be considerably denser than
planar graphs, but not arbitrarily dense.
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1 Introduction

A polyhedral surface consists of a set of interior-disjoint polygons embedded in R3, where each
edge may be shared by at most two polygons. Polyhedral surfaces have been long studied
in computational geometry, and have well-established applications in for instance computer
graphics [11] and geographical information science [8].

Inspired by those applications, classic work in this area often focuses on restricted cases,
such as surfaces of (genus 0) polyhedra [3, 23], or x, y-monotone surfaces known as polyhedral
terrains [7]. Such surfaces are, in a sense, 2-dimensional. One elegant way to capture this
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11:2 Adjacency Graphs of Polyhedral Surfaces

“essentially 2-dimensional behaviour” is to look at the adjacency graph (see below for a
precise definition) of the surface: in both cases described above, this graph is planar. In fact,
by Steinitz’s Theorem the adjacency graphs of surfaces of convex polyhedra are exactly the
3-connected planar graphs [35]. If we allow the surface of a polyhedron to have a boundary,
then every planar graph has a representation as such a polyhedral surface [12].

Recently, applications in computational topology have intensified the study of polyhedral
surfaces of non-trivial topology. In sharp contrast to the simpler case above, where the
classification is completely understood, little is known about the class of adjacency graphs
that describe general polyhedral surfaces. In this paper we investigate this graph class.

Our model. A polyhedral surface S = {S1, . . . , Sn} is a set of n closed polygons embedded
in R3 such that, for all pairwise distinct indices i, j, k ∈ {1, 2, . . . , n}:

Si and Sj are interior-disjoint (w.r.t. the 2D relative interior of the objects);
if Si ∩ Sj ̸= ∅, then Si ∩ Sj is either a single corner or a complete side of both Si and Sj ;
if Si ∩ Sj ∩ Sk ̸= ∅ then it is a single corner (i.e., a side is shared by at most two polygons).

To avoid confusion with the corresponding graph elements, we consistently refer to polygon
vertices as corners and to polygon edges as sides.

The adjacency graph of a polyhedral surface S, denoted as G(S), is the graph whose
vertices correspond to the polygons of S and which has an edge between two vertices if and
only if the corresponding polygons of S share a side. Note that a corner–corner contact is
allowed in our model but does not induce an edge in the adjacency graph. Further observe
that the adjacency graph does not uniquely determine the topology of the surface. Fig. 1
shows an example of a polyhedral surface and its adjacency graph. We say that a polyhedral
surface S realizes a graph G if G(S) is isomorphic to G. In this case, we write G(S) ≃ G.

(a) A surface S. (b) The graph G(S).

Figure 1 A convex-polyhedral surface S and its nonplanar 3-degenerate adjacency graph G(S).

If every polygon of a polyhedral surface S is strictly convex, we call S a convex-polyhedral
surface. Our paper focuses on convex-polyhedral surfaces; refer to Fig. 2 for an example of a
general (nonconvex) polyhedral surface. We emphasize that we do not require that every
polygon side has to be shared with another polygon.
Our work relates to two lines of research: Steinitz-type problems and contact representations.

Steinitz-type problems. Steinitz’s Theorem gives the positive answer to the realizability
problem for convex polyhedra. This result is typically stated in terms of the realizabilty of a
graph as the 1-skeleton of a convex polyhedron. Our perspective comes from the dual point
of view, describing the adjacencies of the faces instead of the adjacencies of the vertices.

Steinitz’s Theorem settles the problem raised in this paper for surfaces that are homeo-
morphic to a sphere. A slightly stronger version of Steinitz’s Theorem by Grünbaum and
Barnette [5] states that every planar 3-connected graph can be realized as the 1-skeleton
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of a convex polyhedron with the prescribed shape of one face. Consequently, also in our
model we can prescribe the shape of one polygon if the adjacency graph of the surface is
planar. For other classes of polyhedra only very few partial results for their graph-theoretic
characterizations are known [13, 22]. No generalization for Steinitz’s Theorem for surfaces
of higher genus is known, and therefore there are also no results for the dual perspective.
In higher dimensions, Richter-Gebert’s Universality Theorem implies that the realizability
problem for abstract 4-polytopes is ∃R-complete [31].

The algorithmic problem of determining whether a given k-dimensional simplicial complex
embeds in Rd is an active field of research [6, 17, 28, 30, 33, 34]. There exist at least three
interesting notions of embeddability: linear, piecewise linear, and topological embeddability,
which usually are not the same [28]. The case (k, d) = (1, 2), however, corresponds to testing
graph planarity, and thus, all three notions coincide, and the problem lies in P.

Contact representations. A realization of a graph as a polyhedral surface can be viewed as
a contact representation of this graph with polygons in R3, where a contact between two
polygons is realized by sharing an entire polygon side, and each side is shared by at most
two polygons. In a general contact representation of a graph, the vertices are represented by
interior-disjoint geometric objects, where two objects touch if and only if the corresponding
vertices are adjacent. In concrete settings, the object type (disks, lines, polygons, etc.), the
type of contact, and the embedding space is specified. Numerous results concerning which
graphs admit a contact representation of some type are known; we review some of them.

The well-known Andreev–Koebe–Thurston circle packing theorem [2, 27] states that every
planar graph admits a contact representation by touching disks in R2. A less known but
impactful generalization by Schramm [32, Theorem 8.3] guarantees that every triangulation
(i.e., maximal planar graph) has a contact representation in R2 where every inner vertex
corresponds to a homothetic copy of a prescribed smooth convex set; the three outer
vertices correspond to prescribed smooth arcs whose union is a simple closed curve. If the
prototypes and the curve are polygonal, i.e., are not smooth, then there still exists a contact
representation, however, the sets representing inner vertices may degenerate to points, which
may lead to extra contacts. As observed by Gonçalves et al. [19], Schramm’s result implies
that every subgraph of a 4-connected triangulation has a contact representation with aligned
equilateral triangles and similarly, every inner triangulation of a 4-gon without separating 3-
and 4-cycles has a hole-free contact representation with squares [15].

While for the afore-mentioned existence results there are only iterative procedures that
compute a series of representations converging to the desired one, there also exist a variety of
shapes for which contact representations can be computed efficiently. Allowing for sides of one
polygon to be contained in the side of adjacent polygons, Duncan et al. [12] showed that, in
this model, every planar graph can be realized by hexagons in the plane and that hexagons are
sometimes necessary. Assuming side–corner contacts, de Fraysseix et al. [10] showed that every
plane graph has a triangle contact representation and how to compute one. Gansner et al. [18]
presented linear-time algorithms for triangle side-contact representations for outerplanar
graphs, square grid graphs, and hexagonal grid graphs. Kobourov et al. [26] showed that
every 3-connected cubic planar graph admits a triangle side-contact representation whose
triangles form a tiling of a triangle. For a survey of planar graphs that can be represented by
dissections of a rectangle into rectangles, we refer to Felsner [15]. Alam et al. [1] presented
a linear-time algorithm for hole-free contact representations of triangulations where each
vertex is represented by a 10-sided rectilinear polygon of prescribed area.

SoCG 2021
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Representations with one-dimensional objects in R2 have also been studied. While every
plane bipartite graph has a contact representation with horizontal and vertical segments [9],
recognizing segment contact graphs is an NP-complete problem even for planar graphs [20].
Hliněný showed that recognizing curve contact graphs, where no four curves meet in one point,
is NP-complete for planar graphs and is solvable in polynomial time for planar triangulations.

Less is known about contact representations in higher dimensions. Every graph is
the contact graph of interior-disjoint convex polytopes in R3 where contacts are shared
2-dimensional facets [37]. Hliněný and Kratochvíl [21] proved that the recognition of unit-ball
contact graphs in Rd is NP-hard for d = 3, 4, and 8. Felsner and Francis [16] showed that every
planar graph has a contact representation with axis-parallel cubes in R3. For proper side
contacts, Kleist and Rahman [25] proved that every subgraph of an Archimedean grid can be
represented with unit cubes, and every subgraph of a d-dimensional grid can be represented
with d-cubes. Evans et al. [14] showed that every graph has a contact representation where
vertices are represented by convex polygons in R3 and edges by shared corners of polygons,
and gave polynomial-volume representations for bipartite, 1-planar, and cubic graphs.

Contribution and organization. We show that for every graph G there exists a polyhedral
surface S such that G is the adjacency graph of S; see Section 2. For convex-polyhedral
surfaces, the situation is more intricate; see Section 3. Every planar graph can be realized by
a flat convex-polyhedral surface (Proposition 3), i.e., a convex-polyhedral surface in R2. Some
nonplanar graphs cannot be realized by convex-polyhedral surfaces in R3; in particular this
holds for all supergraphs of K5 (Proposition 5), of K5,81 (Theorem 9), and of all nonplanar
3-trees (Theorem 14). Nevertheless, many nonplanar graphs, including K4,4 and K3,5, have
such a realization (Propositions 7 and 8). We remark that all our positive results hold for
subgraphs and subdivisions as well (Proposition 2). Similarly, our negative results carry over
to supergraphs. For some proofs and additional figures, see the full version of this article [4].

Our results have implications on the maximum density of adjacency graphs of convex-
polyhedral surfaces; see Section 4. While the non-realizability of K5,81 implies that the
number of edges of any realizable n-vertex graph is upperbounded by O(n9/5) edges, the
realizability of hypercubes (Section 3.4) implies that it is in Ω(n log n). Hence these graphs
can be considerably denser than planar graphs, but not arbitrarily dense.

2 General Polyhedral Surfaces

We start with a positive result.

▶ Proposition 1. For every graph G, there exists a polyhedral surface S such that G(S) ≃ G.

Proof. We start our construction with n = |V (G)| interior-disjoint rectangles such that
there is a line segment s that acts as a common side of all these rectangles. We then cut
away parts of each rectangle thereby turning it into a comb-shaped polygon as illustrated in
Fig. 2. These polygons represent the vertices of G. For each pair (P, P ′) of polygons that
are adjacent in G, there is a subsegment sP P ′ of s such that sP P ′ is a side of both P and P ′

that is disjoint from the remaining polygons. In particular, every polygon side is adjacent to
at most two polygons. The result is a polyhedral surface whose adjacency graph is G. ◀

If we additionally insist that each polygon shares all of its sides with other polygons,
the polyhedral surface describe a closed volume. In this model, K7 can be realized as the
Szilassi polyhedron; see Fig. 3. The tetrahedron and the Szilassi polyhedron are the only two
known polyhedra in which each face shares a side with every other face [36]. Which other
(complete) graphs can be realized in this way remains an open problem.
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Figure 2 A realization of K5 by arbitrary polygons with
side contacts in R3.

Figure 3 The Szilassi polyhe-
dron realizes K7 [36].

3 Convex-Polyhedral Surfaces

In this section we investigate which graphs can be realized by convex-polyhedral surfaces.
First of all, it is always possible to represent a subgraph or a subdivision of an adjacency
graph with slight modifications of the corresponding surface. While trimming the polygons
allows to represent subgraphs, subdivision can be obtained by trimming and inserting chains
of polygons. Consequently, we obtain the following result, which we prove formally in the
full version of this article [4].

▶ Proposition 2. The set of adjacency graphs of convex-polyhedral surfaces in R3 is closed
under taking subgraphs and subdivisions.

The existence of a flat surface with the correct adjacencies follows from the Andreev–
Koebe–Thurston circle packing theorem; we include a direct proof in the full version [4].

▶ Proposition 3. For every planar graph G, there exists a flat convex-polyhedral surface S
such that G(S) ≃ G. Moreover, such a surface can be computed in linear time.

So for planar graphs, corner and side contacts behave similarly. For nonplanar graphs
(for which the third dimension is essential), the situation is different. Here, side contacts are
more restrictive.

3.1 Complete Graphs
We introduce the following notation. In a polyhedral surface S with adjacency graph G, we
denote by Pv the polygon in S that represents vertex v of G.

▶ Lemma 4. Let S be a convex-polyhedral surface in R3 with adjacency graph G. If G

contains a triangle uvw, polygons Pv and Pw lie in the same closed halfspace w.r.t. Pu.

Proof. Due to their convexity, each of Pv and Pw lie entirely in one of the closed halfspaces
with respect to the supporting plane of Pu. Moreover, one of the halfspaces contains both Pv

and Pw; otherwise they cannot share a side and the edge vw would not be represented. ◀

A graph H is subisomorphic to a graph G if G contains a subgraph G′ with H ≃ G′.

▶ Proposition 5. There exists no convex-polyhedral surface S in R3 such that K5 is subiso-
morphic to G(S).

Proof. Suppose that there is a convex-polyhedral surface S with G(S) ≃ K5. By Lemma 4
and the fact that all vertex triples form a triangle, the surface S lies in one closed halfspace of
the supporting plane of every polygon P of S. In other words, S is a subcomplex of a (weakly)
convex polyhedron, whose adjacency graph must be planar. This yields a contradiction to
the nonplanarity of K5. Together with Proposition 2 this implies the claim. ◀

SoCG 2021
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Evans et al. [14] showed that every bipartite graph has a contact representation by
touching polygons on a polynomial-size integer grid in R3 for the case of corner contacts.
As we have seen before, side contacts are less flexible. In particular, in Theorem 9 we show
that K5,81 cannot be represented. On the positive side, we show in the following that those
bipartite graphs that come from subdividing edges of arbitrary graphs can be realized. In
our construction, we place the polygons in a cylindrical fashion, which is reminiscent to
the realizations created by Evans et al. However, due to the more restrictive nature of side
contacts, the details of the two approaches are necessarily quite different.

▶ Theorem 6. Let G be any graph, and let G′ be the subdivision of G in which every edge is
subdivided with (at least) one vertex. Then there exists a convex-polyhedral surface S in R3

such that G(S) ≃ G′.

Proof. Let V (G) = {v1, . . . , vn}, let E(G) = {e1, . . . , em}, and let P be a strictly convex
polygon with corners p1, . . . , p2m in the plane. We assume that m ≥ 2, that p1 and p2m lie
on the x-axis, and that the rest of the polygon is a convex chain that projects vertically onto
the line segment p1p2m, which we call the long side of P . We call the other sides short sides.
We choose P such that no short side is parallel to the long side.

Let Z be a (say, unit-radius) cylinder centered at the z-axis. For each vertex vi of G, we
take a copy P i of P and place it vertically in R3 such that its long side lies on the boundary
of Z; see Fig. 4a. Each polygon P i lies inside Z on a distinct halfplane that is bounded
by the z-axis. Finally, all polygons are positioned at the same height, implying that for
any j ∈ {1, . . . , 2m}, all copies of pj lie on the same horizontal plane hj and have the same
distance to the z-axis.

(a) polygons P 1, . . . , P n.

P k P `
sk s`

z

Q
p`2i

pk2i

pk2i−1

p`2i−1

(b) quadrilateral Q spanned by sk and sℓ.

Figure 4 Illustration for the proof of Theorem 6.

Let i ∈ {1, . . . , m}. Then the side s = p2i−1p2i is a short side of P . For k = 1, 2, . . . , n,
we denote by sk and pk

i the copies of s and pi in P k, respectively. We claim that, for
1 ≤ k < ℓ ≤ n, the sides sk and sℓ span a convex quadrilateral that does not intersect any
P j with j ̸∈ {k, ℓ}. To prove the claim, we argue as follows; see Fig. 4b.

By the placement of P k and P ℓ inside Z, the supporting lines of sk and sℓ intersect at
a point z on the z-axis, implying that sk and sℓ are coplanar. Moreover, pk

2i−1 and pℓ
2i−1

are at the same distance from z, and the same holds for pk
2i and pℓ

2i. Hence the triangle
spanned by z, pk

2i−1, and pℓ
2i−1 is similar to the triangle spanned by z, pk

2i, and pℓ
2i, implying

that pk
2i−1pℓ

2i−1 and pk
2ip

ℓ
2i are parallel and hence span a convex quadrilateral Q (actually

a trapezoid). Finally, no polygon P j with j ̸∈ {k, ℓ} can intersect Q as any point in the
interior of Q lies closer to the z-axis than any point of P j at the same z-coordinate, which
proves the claim.
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We use Q as polygon for the subdivision vertex of the edge ei of G (in case ei was
subdivided multiple times, we dissect Q accordingly). Let va and vb be the endpoints of ei.
By our claim, Q that does not intersect any P j with j ̸∈ {a, b}. The quadrilateral Q lies in
the horizontal slice of Z bounded by the horizontal planes h2i−1 and h2i. Since any two such
slices are vertically separated and hence disjoint, the m quadrilaterals together with the n

copies of P constitute a valid representation of G′. ◀

Note that the combination of Proposition 5 and Theorem 6 rules out any Kuratowski-type
characterization for adjacency graphs of convex-polyhedral surfaces. This graph class contains
a subdivision of K5, but it does not contain K5; hence it is not minor-closed.

3.2 Complete Bipartite Graphs
▶ Proposition 7. There exists a convex-polyhedral surface S such that G(S) ≃ K4,4.

Proof sketch. Start with a rectangular box in R3 and stab it with two rectangles that
intersect each other in the center of the box as indicated in Fig. 5 (left). We can now draw
polygons on these eight rectangles such that each of the four vertical rectangles (representing
the four vertices of one side of the bipartition of K4,4) contains a polygon that has a side
contact with a polygon on each of the four horizontal or slanted rectangles (representing the
other side of the bipartition of K4,4). To remove the intersection of the (polygons drawn
on the) two slanted rectangles, we shift one corner of the original box; see Fig. 5 (center
and right). A description of the resulting polygons via their coordinates and more figures
can be found in the full version [4]. Note that, in the resulting representation, there are two
additional side contacts between pairs of polygons that are colored blue in Fig. 5 (right). By
Proposition 2, these contacts can be removed. ◀

Figure 5 Construction of a convex-polyhedral surface S with G(S) ≃ K4,4. The 2-coloring of the
polygons in the central figure reflects the bipartition of K4,4.

▶ Proposition 8. There exists a convex-polyhedral surface S such that G(S) ≃ K3,5.

Proof. We call the vertices of the smaller bipartition class the gray vertices, and their
polygons gray polygons. For the other class we pick a distinct color for every vertex and use
the same naming-by-color convention. We start our construction with a triangular prism in
which the quadrilateral faces q1, q2, q3 are rectangles of the same size. Each of the faces qi

will contain one gray polygon. All colorful polygons lie inside the prism. We call the lines
resulting from the intersection of the supporting planes with the prism the colorful supporting
lines. Unfolding the faces q1, q2, and q3 yields Fig. 6, which shows the gray polygons and
the colorful supporting lines. Note that the vertices of the gray polygons in the figure are
actually very small edges that have the slope of the colorful supporting line there are placed
on. The colorful polygons are now already determined.

SoCG 2021



11:8 Adjacency Graphs of Polyhedral Surfaces

Figure 6 Constructing a convex-polyhedral surface whose adjacency graph is isomorphic to K3,5.
The prism boundary is unfolded into the plane.

P1

P3

P2

P0

P4

Figure 7 Front view of the prism containing a realization of K3,5. Lines on the back are dashed.

P2

P3

s32
s23

P2P1

s12 s21
P1

P3

s31

s13

Figure 8 Certificates for the disjointness of colorful polygons P1, P2, and P3. The supporting
planes intersect in the thin black lines; thicker segments indicate where the lines intersect polygons.
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We are left with checking that the colorful polygons are disjoint. Fig. 7 shows the prism
in a view from the side where we dashed all objects on the hidden prism face. The brown
polygon P0 and the blue polygon P4 avoid all other colorful polygons in this projection and
thus they avoid all other polygons in R3, too.

For the pink polygon P1, the orange polygon P2 and the green polygon P3, we proceed as
follows to prove disjointness. Pick two of the polygons and name them Pi and Pj . The line ℓij

of intersection of the supporting planes of Pi and Pj is determined by the two intersections of
the corresponding colorful supporting lines. If the polygons intersect, they have to intersect
on this line. Polygon Pi intersects ℓij in a segment sij ; polygon Pj intersects ℓij in sji. Fig. 8
shows, however, that sij and sji do not overlap in any of the three cases. ◀

In contrast to Propositions 7 and 8, we can show that not every complete bipartite graph
can be realized as a convex-polyhedral surface in R3.

▶ Theorem 9. There exists no convex-polyhedral surface S in R3 such that K5,81 is subiso-
morphic to G(S).

To prove the theorem we start with some observations about realizing complete bipartite
graphs. We will consider a set R of red polygons, and a set B of blue polygons, so that each
red–blue pair must have a side contact. For all p ∈ R ∪ B we denote by p= the supporting
plane of p, by p− the closed half-space left of p=, and by p+ the closed half-space right of p=

(orientations can be chosen arbitrarily). We start with a simpler setting where we have an
additional constraint. We call B one-sided w.r.t. R if all red polygons must be on the same
half-space of each blue polygon, i.e., ∀b ∈ B : ((∀r ∈ R : r ⊆ b−) ∨ (∀r ∈ R : r ⊆ b+)).

▶ Lemma 10. Let R and B be two sets of convex polygons in R3 realizing K|R|,|B|. If |R| = 3
and B is one-sided w.r.t. R, then |B| ≤ 8.

Proof. Let R = {r1, r2, r3} and let A be the arrangement of the supporting planes of R.
Consider a polygon b ∈ B. For every polygon ri ∈ R, since b is convex and shares a side with
ri, b is contained in r−

i or r+
i . Thus, b is contained in a cell of A. Let r∗ = r=

1 ∩ r=
2 ∩ r=

3
be the intersection of the supporting planes of R. We may assume that no two supporting
planes of R coincide; otherwise, by strict convexity, all polygons (in B and finally in B ∪ R)
must lie in the same plane and the non-planarity of K3,3 implies that |B| ≤ 2. Further, if r∗
is a line, then every b lies in a cell C, in which one of the red polygons is only present as
a subset of r∗. It is not possible to add b such that it has a common segment with r∗ and
each of the bounding planes of C. Consequently, r∗ is either a point or the empty set. We
consider two cases: either (1) r∗ = ∅ or no polygon in R contains the point r∗, or (2) one
polygon in R does contain the point r∗.

Case (1). Either r∗ = ∅ or no polygon in R contains the point r∗. We claim that at most
four cells of A are incident to all polygons of R, and at most two polygons of B exist per
cell.

If r∗ = ∅, A contains two parallel planes or forms an infinite prism. It is easy to check
that A has at most four cells that are incident to three planes. If r∗ ̸= ∅, there are eight
cells, called octants, of space of the form Qa0b0c0 = ra0

1 ∩ rb0
2 ∩ rc0

3 , a0, b0, c0 ∈ {+, −}. If
the point r∗ is disjoint from all ri, then each ri intersects at most six octants: r1 rules out
the two octants Q±b1c1 , r2 “rules out” the two octants Qa2±c2 , and r3 rules out the two
octants Qa3b3± for some a2, a3, b1, b3, c1, c2 ∈ {+, −}. The maximal number of octants that
“remain” is four. For example one could pick a2 = a3 = b1 = b3 = c1 = c2 = +. By this
choice, Q+−−, Q−+−, Q−−+, and Q−−− remain. All other choices (a finite set to check) will
have at most four octants touching all three polygons.

SoCG 2021
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Now consider one such cell C incident to all ri. For the argument within this cell, we can
truncate ri to C. Since each ri lies in a boundary plane of C and we are looking for a polygon
b that has all of R on one side, the four polygons r1, r2, r3, b must be in convex position.
Assume that we have three such polygons b1, b2, and b3. The cell C has three (unbounded)
boundary faces f1, f2, and f3 such that rj lies in fj . Let ℓi,j be the segment that is the
intersection of the plane b=

i and the polygon fj , and let ti be the triangle formed by ℓi,1, ℓi,2,
ℓi,3. Two of these triangles intersect either in two points or they are disjoint. On no face
fj , all three ℓ1,j , ℓ2,j , ℓ3,j can be disjoint since then the polygon belonging to the “middle
segment” intersects the interior of rj . On the other hand, every pair ti, ti′ has one face fj

without intersection. Since we have three possible pairs, every face fj contains two segments
ℓi,j and ℓi′,j that do not intersect. Furthermore, the pair i, i′ will be different for every fj .
We call the corresponding parallel segments upper and lower, depending on whether rj lies
below or above the corresponding plane (b=

i or b=
i′ ). Now we have a contradiction to B being

one-sided with respect to R since there has to be one ti that belongs to an upper segment
on one face fj and to a lower segment on another face fj′ . In other words, not all polygons
in R lie on the same side of b=

i . Thus, at most two polygons of B lie in C, one corresponding
to upper segments and one corresponding to lower segments. This yields at most 2 · 4 = 8
polygons in B in Case (1).

Case (2). One red polygon contains r∗, w.l.o.g. this is r1. We claim that at most five cells
of A are incident to all polygons of R, and at most one polygon of B exist per cell.

Similar as in Case (1), now r2 and r3 both intersect at most 6 octants, and there are at
most five octants that intersect every polygon in R. Consider again some octant Q. Since r1
contains r∗, now there may be only one polygon b ∈ B that is contained in Q and has all
polygons in R on the same side of b= (the lower segments in Case (1) are now forbidden).
Thus, there are at most 1 · 5 = 5 polygons in B in Case (2). ◀

With the help of Lemma 10 we can now prove Theorem 9.

Proof of Theorem 9. Assume that K5,81 can be realized, and let R be a set of five red
polygons. Since every b ∈ B is adjacent to all polygons in R, b partitions R into two sets:
those in b− and those in b+. At least one of these subsets must have at least three elements.
Arbitrarily charge b to such a set of three polygons. By Lemma 10, each set of three red
polygons can be charged at most eight times. There are

(5
3
)

= 10 sets of three red polygons.
Therefore, there can be at most 8 · 10 = 80 blue polygons; a contradiction. Together with
Proposition 2 this implies the claim. ◀

3.3 3-Trees
The graph class of 3-trees is recursively defined as follows: K4 is a 3-tree. A graph obtained
from a 3-tree G by adding a new vertex x with exactly three neighbors u, v, w that form a
triangle in G is a 3-tree. We say x is stacked on the triangle uvw. It follows that for each
3-tree there exists a (not necessarily unique) construction sequence of 3-trees G4, G5, . . . , Gn

such that G4 ≃ K4, Gn = G, and where for i = 4, 5, . . . , n − 1 the graph Gi+1 is obtained
from Gi by stacking a vertex vi+1 on some triangle of Gi.

By Proposition 3, for every planar 3-tree G there is a polyhedral surface S (even in R2)
with G(S) ≃ G. On the other hand, we can show that no nonplanar 3-tree has such a
realization in R3. To this end, we observe that a 3-tree is nonplanar if and only if it contains
the triple-stacked triangle as a subgraph. The triple-stacked triangle is the graph that consists
of K3,3 plus a cycle that connects the vertices of one part of the bipartition; see Fig. 9. We
show that the triple-stacked triangle is not realizable.
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Figure 9 The unique minimal nonplanar 3-tree, which we call triple-stacked triangle.

▶ Lemma 11. Let uvw be a separating triangle in a plane 3-tree G = (V, E). Then there
exist vertices a, b ∈ V that belong to distinct sides of uvw in G such that both {a, u, v, w}
and {b, u, v, w} induce a K4 in G.

Proof. Let G4, G5, . . . , Gn denote a construction sequence of G = Gn, and let k be the largest
index in {4, 5, . . . , n} such that uvw is nonseparating in Gk. Since uvw is separating in Gk+1,
it follows that the vertex vk+1 = a is stacked on uvw (say, inside uvw) to obtain Gk+1 and,
hence, {a, u, v, w} induce a K4 in Gk+1 and G.

It remains to argue about the existence of the vertex b in the exterior of uvw. If uvw is
one of the triangles of the original G4 ≃ K4, there is nothing to show, so assume otherwise.
Let j be the smallest index in {5, 6, . . . , n} such that uvw is contained in Gj . It follows
that one of u, v, w, say u, is the vertex vj that was stacked on some triangle xyz of Gj−1
to obtain Gj . Without loss of generality, we may assume that {v, w} = {y, z}. It follows
that x = b forms a K4 with u, v, w in Gj and G. ◀

▶ Lemma 12. A 3-tree is nonplanar iff it contains the triple-stacked triangle as a subgraph.

Proof. The triple-stacked triangle is nonplanar because it contains a K3,3 (one part of the
bipartition is formed by the gray vertices and the other by the colored vertices).

For the other direction, let G be a nonplanar 3-tree. Let G4, G5, . . . , Gn be a construction
sequence of G. Let k be the smallest index in {4, 5, . . . , n} such that Gk is nonplanar. By
3-connectivity, the graph Gk−1, which is planar, has a unique combinatorial embedding.
Therefore, we may consider Gk−1 to be a plane graph. Let uvw be the triangle that the
vertex vk was stacked on to obtain Gk from Gk−1. Since Gk is nonplanar, the triangle uvw

is a separating triangle of Gk−1. It follows by Lemma 11 that Gk (and, hence, G) contains
the triple-stacked triangle. ◀

▶ Lemma 13. There exists no convex-polyhedral surface S in R3 such that triple-stacked
triangle is subisomorphic to G(S).

Proof. We refer to the vertices of the triple-stacked triangle as the three gray vertices and
the three colored (red, green, and blue) vertices; see also Fig. 9. Given the correspondence
between vertices and polygons (and their supporting planes), we also refer to the polygons
(and the supporting planes) as gray and colored.

Assume that the triple-stacked triangle can be realized. Consider the arrangement of the
gray supporting planes. By strict convexity, it follows that if a pair of gray polygons has the
same supporting plane, then all their common neighbors lie in the same plane. This implies
that all supporting planes coincide – a contradiction to the non-planarity of the triple-stacked
triangle. Consequently, the gray supporting planes are pairwise distinct. (Likewise, it holds
that no colored and gray supporting plane coincide.)
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We now argue that all colored polygons are contained in the same closed cell of the gray
arrangement. To see this, fix one gray polygon and observe, by Lemma 4, that all polygons
are contained in the same closed half space with respect to its supporting plane.

Note that gray plane arrangement has one of the following two combinatorics: either the
three planes have a common point of intersection (cone case) or not (prism-case). In the first
case, the planes partition the space into eight cones, one of which contains all polygons; in
the second case, the (unbounded) cell containing all polygons forms a (unbounded) prism.
For a unified presentation, we transform any occurrence of the first case into the second case.
To do so, we move the apex of the cone containing all polygons to the point at infinity by a
projective transformation. This turns each face of the cone into a strip that is bounded by
two of the extremal rays of the cone, which now has been deformed into a prism.

Consider one of the strips, which we call S. The strip S has to contain one of the gray
polygons, which we call PS . We know that PS has at least five sides, one for each neighbor.
Each of the two bounding lines contains a side to realize the adjacency to the other two gray
polygons. We call the sides of PS that realize the adjacencies to the remaining polygons
red, green, and blue, in correspondence to the vertex colors. The supporting line of the red
side intersects each bounding line of S. We add a red point at each of the intersections.
For the blue and green sides we proceed analogously. By convexity of PS , these points are
distinct. This yields a permutation of red, green, blue (see Fig. 10) on each bounding line.
The permutations on the boundary of two adjacent strips coincide because the supporting
lines are clearly contained in the supporting planes.

(a) 0 inversions. (b) 1 inversion. (c) 2 inversions. (d) 3 inversions.

Figure 10 The permutations of the intersections with the supporting lines of the red, green, and
blue edges as in the proof of Lemma 13. Figures (a) and (c) illustrate possible scenarios. Figures (b)
and (d) show impossible scenarios because they do not contain cells of complexity 5.

Consider the line arrangement inside S given by the supporting lines of the red, green,
and blue sides. Up to symmetry, Fig. 10 illustrates the different intersection patterns. To
realize all contacts, the polygon PS has to lie inside a cell incident to all five lines, namely the
two bounding lines and the supporting lines. It is easy to observe that such a cell exists only
if the permutation has exactly one or three inversions, see Figs. 10b and 10d. In particular,
the number of inversions is odd.

Following the cyclic order of the bounding lines around the prism, we record three odd
numbers of inversions in the permutations before coming back to the start. Since an odd
number of inversions does not yield the identity, we obtain the desired contradiction. ◀

Together Lemmas 12 and 13 yield the following theorem.

▶ Theorem 14. Let G be a 3-tree. There exists a convex-polyhedral surface S in R3 with
G(S) ≃ G if and only if G is planar.
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In contrast to Theorem 14, there are nonplanar 3-degenerate graphs that can be realized;
see the example in Fig. 1.

3.4 Hypercubes
In a paper from 1983, McMullen, Schulz, and Wills construct a polyhedron for every integer
p ≥ 4 such that all faces are convex p-gons [29, Sect. 4]. In the following, we show and
illustrate how their result proves the realizability of any hypercube.

▶ Proposition 15 ([29]). For every d-hypercube Qd, d ≥ 0, there exists a convex-polyhedral
surface S in R3 with G(S) ≃ Qd and every polygon of S is a (d + 4)-gon.

The main building block in their construction is a polyhedral surface whose adjacency
graph is a (p−4)-hypercube. In fact, we observed that the adjacency graph of the polyhedron
they finally construct is the Cartesian product of Qp−4 and a cycle graph Cn, n ≥ 3. For the
first few steps of their inductive construction, see Fig. 11.

(a) Realization of Q1 (red), xy-plane (blue). (b) Inductive step. (c) Realization of Q2.

Figure 11 The inductive construction of McMullen et al. [29].

Recall that the d-hypercube has 2d vertices. The base case for d = 0 is given by a single
4-gon, namely by the unit square. What follows is a series of inductive steps. In every step,
the value of d increases by one and the number of polygons doubles. Before explaining the
step, we state the invariants of the construction. After every step, all polygons have (almost)
the same orthogonal projection into the xy-plane. Furthermore, this projection looks like the
unit square in which we have replaced the upper right corner with a convex chain as shown
in Fig. 12(a). The sides on the convex chain (with negative slopes) have already two incident
polygons, the four other sides are currently incident to only one polygon. When projecting
the polygons into the xy-plane only the convex chain edges differ.

We explain next how to execute the inductive step. Suppose that we have a polyhedral
surface where every polygon is a (d + 4)-gon fulfilling our invariant. We apply a shear along
the z-axis and a vertical shift to the whole surface such that exactly the sides at x = 1 lie
completely below the xy-plane, see also Fig. 11a. These transformations do not change the
projections of the polygons to the xy-plane. We then cut the surface with the xy-plane. By
this we slice away one of the sides in all polygons but also add a side that lies in the xy-plane;
see Fig. 12(b). Each polygon now has a side that lies in the xy-plane and is disjoint from all
other polygons. We now take a copy of the surface at hand and reflect it across the xy-plane.
Every polygon of the original (unreflected) surfaces is now glued to its reflected copy via the
common side in the xy-plane. With this step, we already have transformed the adjacency

SoCG 2021



11:14 Adjacency Graphs of Polyhedral Surfaces

(a)

e

(b) (c)

Figure 12 Projection of a polygon into the xy-plane in the construction of McMullen et al.
The gray rectangle depicts the unit square. Edges incident to only one polygon are drawn in blue.
(a) The start configuration for d + 4 = 7. (b) Cutting with the xy-plane after the shear that puts
only e below the xy-plane (before glueing the reflected copy). (c) Slicing off a corner to get the
initial situation for d + 4 = 8 modulo a projective transformation.

graph from a d-hypercube to a (d + 1)-hypercube. We only need to bring the surface back
into the shape required by the invariant. To do so, we cut off a corner (see Fig. 12(c)) by
slicing the whole construction with an appropriate plane, see also Fig. 11b. This turns all
(d + 4)-gons into (d + 5)-gons. Finally, we apply a projective transformation to restore a
required shape. Figures 11a–11c show spatial images of this construction.

4 Bounds on the Density

It is an intriguing question how dense adjacency graphs of convex-polyhedral surfaces can be.
In this section, we use realizability and non-realizability results from the previous sections
to derive asymptotic bounds on the maximum density of such graphs, which we phrase in
terms of the relation between their number of vertices and edges.

Let Gn be the class of graphs on n vertices with a realization as a convex-polyhedral
surface in R3. Further, let emax(n) = maxG∈Gn

|E(G)| be the maximum number of edges
that a graph in Gn can have.

▶ Corollary 16. emax(n) ∈ Ω(n log n) and emax(n) ∈ O(n9/5).

Proof. For the lower bound, note that by Proposition 15, every hypercube is the adjacency
graph of a convex-polyhedral surface. As the d-dimensional hypercube has 2d vertices and
2d · d/2 edges, the bound follows.

For the upper bound, we use that, by Theorem 9, the adjacency graph of a convex-
polyhedral surface cannot contain K5,81 as a subgraph. It remains to apply the Kővari–Sós–
Turán Theorem [24], which states that an n-vertex graph that has no Ks,t as a subgraph
can have at most O(n2−1/s) edges. ◀

Before being aware of the result of McMullen et al. [29], we constructed a family of
surfaces with (large, but) constant average degree; see the full version [4]. Our construction
is not recursive and therefore easier to understand and visualize; see Fig. 13. Note that some
polygons in our construction have polynomial degree.

▶ Proposition 17. There is an unbounded family of convex-polyhedral surfaces in R3 whose
adjacency graphs have average vertex degree 12 − o(1).
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(a) placement of octagon grids. (b) a vertical polygon. (c) a horizontal polygon from above.

Figure 13 An family of convex-polyhedral surfaces whose adjacency graphs have average vertex
degree 12 − o(1). The vertical polygons are attached to the “outside” of the grids; the horizontal
polygons touch each grid along a single polygon side.

5 Conclusion and Open Problems

In this paper, we have studied the question which graphs can be realized as adjacency graphs
of (convex-)polyhedral surfaces. In Corollary 16, we bound the maximum number emax(n) of
edges in realizable graphs on n vertices by Ω(n log n) and O(n9/5). It would be interesting
to improve upon these bounds. We conjecture that realizability is NP-hard to decide.
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