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Abstract
A rectilinear Steiner tree for a set P of points in R2 is a tree that connects the points in P using
horizontal and vertical line segments. The goal of Minimum Rectilinear Steiner Tree is to
find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of
Minimum Rectilinear Steiner Tree for point sets P inside the strip (−∞, +∞) × [0, δ] depends
on the strip width δ. We obtain two main results.

We present an algorithm with running time nO(
√

δ) for sparse point sets, that is, point sets where
each 1 × δ rectangle inside the strip contains O(1) points.
For random point sets, where the points are chosen randomly inside a rectangle of height δ and
expected width n, we present an algorithm that is fixed-parameter tractable with respect to δ

and linear in n. It has an expected running time of 2O(δ
√

δ)n.
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1 Introduction

In the Minimum Steiner Tree problem in the plane, we are given as input a set P of
points in the plane, called terminals, and the goal is to find a minimum-length tree that
connects the terminals in P . Thus the given terminals must be nodes of the tree, but the
tree may also use so-called Steiner points as nodes. Minimum Steiner Tree is a classic
optimization problem. It was among the first problems to be proven NP-hard, not only for
the case where the length of the tree is measured using Euclidean metric [13] but also in the
rectilinear version [14]. It was also shown to be NP-hard for other metrics [6]

The rectilinear version of the problem, where the edges of the tree must be horizontal or
vertical, is one of the most widely studied variants, and it is also the topic of our paper. The
Minimum Rectilinear Steiner Tree problem dates back more than 50 years [15, 16]. Its
popularity arises from its many applications, in particular in the design of integrated circuits [7,
4, 5, 23]. The two most important early insights on Minimum Rectilinear Steiner Tree
came from Hanan [16] and Hwang [17]. Hanan observed that any terminal set P admits
a minimum rectilinear Steiner tree (MRST, for short) whose edges lie on the grid formed
by all horizontal and vertical lines passing through at least one terminal in P . This grid is
often called the Hanan grid. This implies that the Minimum Rectilinear Steiner Tree
problem can be reduced to a purely combinatorial problem – namely, a Steiner-tree problem
on graphs – which is not possible for the Euclidean version of the problem. Hwang investigated
the structure of optimal MRSTs in more detail, by providing a characterization of the different
components of an MRST; see Section 2.
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9:2 Rectilinear Steiner Trees in Narrow Strips

As mentioned, Minimum Rectilinear Steiner Tree can be considered a special case
of the Steiner-tree problem on graphs. Here the input is an edge-weighted graph G =
(V (G), E(G)) and a terminal set P ⊆ V (G), and the goal is to compute a minimum-length
subtree of G that includes all terminals. In 1971 Dreyfus and Wagner [11] gave an algorithm
solving the Steiner-Tree problem on graphs in time 3n · log W · |V (G)|O(1), where W is
the maximum edge weight in G. This was later improved by Björklund et al. [3] and
Nederlof [19], who gave an algorithm with 2n · W · |V (G)|O(1) running time. A variant
of the Dreyfus-Wagner algorithm for Minimum Rectilinear Steiner Tree runs in time
O(n2 · 3n). Thobmorson et al. [21] and Deneen et al. [10] gave randomized algorithms for
the special case of Minimum Rectilinear Steiner Tree where the terminals are drawn
independently and uniformly from a rectangle. Both run in 2O(

√
n log n) expected time. Finally,

in 2018 Fomin et al. [12] presented a 2O(
√

n log n) algorithm for general point sets.
Due to the many applications of Minimum Steiner Tree variants in the plane, there

has also been significant interest in practical implementations. These implementations rely
on the insight that a minimum Steiner tree can always be decomposed into so-called full
components, which are maximal subtrees that do not have any terminals as internal nodes [17].
(This holds for the Euclidean as well as the rectilinear version.) To compute an exact solution,
a set of candidate full components is first computed and then it is computed which subset of
candidate full components can be concatenated into an MRST. This process was introduced
by Winter in 1985 [24], in his software package GeoSteiner. Still, only very small data sets
could be handled, and even in 1994 the state-of-the-art software could solve the rectilinear
variant of the problem for only up to 16 points [20]. Warme’s dissertation [22] significantly
improved the process of concatenating the full components, resulting in optimal Steiner trees
for up to 1,000 points for the rectilinear version of the problem and up to 2,000 points for
the Euclidean version. In 1998 Althaus [2] obtained similar results. Throughout the years,
GeoSteiner, which had become a collaboration between Warme, Winter and Zachariasen,
has remained the fastest publicly available software package for computing minimum Steiner
trees in the plane. By 2018, it could solve instances for up to 4,000 points for the rectilinear
version, and up to 10,000 points for the Euclidean version [18].

Our contribution. The fastest known algorithm for Minimum Rectilinear Steiner Tree
in R2 runs in 2O(

√
n log n) time [12]. In R, on the other hand, the problem can be trivially

solved in O(n log n) time by just sorting the points. In order to better understand the
computational complexity of the classic Minimum Rectilinear Steiner Tree problem in
the plane, we therefore investigate how the complexity depends on the width of the terminal
set P . If the point set in P is “almost 1-dimensional” in the sense that the points lie in
a narrow strip R× [0, δ], then can we solve Minimum Rectilinear Steiner Tree more
efficiently than in the general case? And if so, how does the complexity scale with δ? Can
we obtain an algorithm that is fixed-parameter tractable with respect to δ? This follows the
line of research started recently by Alkema et al. [1], who studied these questions for the
Traveling Salesman Problem. We study these questions in the following two scenarios.

Sparse point sets. In this scenario, for any x ∈ R the rectangle [x, x + 1]× [0, δ] contains
O(1) points. We show that for sparse point sets in R2 an MRST must be k-tonic – an
MRST is k-tonic if it intersects any vertical line at most k-times – for k = O(

√
δ), and

we give a dynamic-programming algorithm which runs in nO(
√

δ) time.
Random point sets. Our main result is for point sets P generated randomly inside a
rectangle of height δ and expected width n, as follows. First, we generate n independent
exponentially distributed variables ∆0, ..., ∆n−1 ∼ Exp(1). Using these, we compute the
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x-coordinates of our points by setting xi, the x-coordinate of the i-th point from P , as
xi :=

∑i−1
j=0 ∆i for 1 ⩽ i ⩽ n. Next, we generate the y-coordinates of the points by

picking each yi uniformly and independently from the interval [0, δ]. Thus the points
from P lie inside the rectangle [0, xn] × [0, δ]. One can show that asymptotically this
distribution is essentially the same as the distribution obtained by picking n points
uniformly at random from the rectangle [0, n] × [0, δ] [9]. However, the random point
process as just described is somewhat easier to analyze, so we will assume the points
are generated according to that process. For this case we provide an FPT algorithm for
Minimum Rectilinear Steiner Tree, which runs in expected time 2O(δ

√
δ)n. More

precisely, expected running time is min(nO(
√

δ), 2O(δ
√

δ)n). Note that the running time is
linear when δ = O(1).

2 Preliminaries

Notation and terminology. Let P := {p1, . . . , pn} be a set of terminals in a 2-dimensional
strip with height δ – we call such a strip a δ-strip – which we assume without loss of generality
to be R× [0, δ]. We use xi and yi to denote the x- and y-coordinate of point pi, respectively.
The points can be easily sorted on their x-coordinates: this can be done in O(n log n) time
for sparse point sets, and in O(n) expected time for random point sets [8]. Therefore, we
will from now on assume that xi ⩽ xj for all 1 ⩽ i ⩽ j ⩽ n. We define the spacing of pi (in
P ) as ∆i := xi+1 − xi, for all 1 ⩽ i ⩽ n− 1. We write P [i, j] to denote the set {pi, ..., pj}.
We denote the vertical distance between two horizontal edges e, e′ (or the horizontal distance
between two vertical edges) by dist(e, e′).

Next we give some (mostly standard) terminology concerning rectilinear Steiner trees;
see also Figure 1. A rectilinear tree is a tree structure embedded in the plane whose edges
are horizontal or vertical line segments overlapping only at their endpoints. The length of a
tree T , or ∥T∥, is the sum of the lengths of its edges. A rectilinear Steiner tree for a set P of
terminals is a rectilinear tree such that each terminal p ∈ P is an endpoint of an edge in the
tree. A minimal rectilinear Steiner minimal tree (MRST) is such a tree of minimum length.

The degree of a (Steiner or terminal) point q in a tree T is the number of edges incident
on it. We denote the degree of q in T by degreeT (q), or simply degree(q) when T is clear
from the context. Without loss of generality, if a degree-2 point has collinear (i.e. both
horizontal or both vertical) incident edges then that point must be a terminal. Clearly, a
point has degree at most 4. A point with degree of at least 3 that is not a terminal is called
a Steiner point. A corner is a degree-2 point with non-collinear incident edges that is not a
terminal. Hence, each endpoint of an edge is either a terminal, a Steiner point, or a corner.

A segment is defined to be a sequence of one or more adjacent collinear edges, with
no terminals in the segments’ interior.1 A complete segment is a inclusion-wise maximal
segment. Note that a complete segment does not have terminals in its interior. A corner
is incident to exactly one horizontal complete segment and exactly one vertical complete
segment. These complete segments are the legs of the corner. A T-point is a degree-3 Steiner
point. Finally, a cross is a degree-4 Steiner point. Note that the endpoints of a complete
segment are T-points, corners or terminals.

1 When we refer to the “interior” of a segment, we always mean its relative interior, i.e. the segment
excluding its endpoints.

SoCG 2021
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segmentedge

complete segment

leg

cornercross
T-point

Figure 1 Illustration of terminology concerning rectilinear Steiner trees.

Separators will play a crucial role in our algorithms. A separator is a vertical line,
not containing any of the points in P , that separates P into two non-empty subsets. For
all 1 ⩽ i < n such that xi < xi+1, we define si to be the separator with x-coordinate
(xi + xi+1)/2. The tonicity of a rectilinear tree T at a separator s is the number of times
T crosses s; when the tonicity of T at s is 1, we call it monotonic at s. The tonicity of a
rectilinear tree T is the maximum over the tonicity of T at all separators. A rectilinear tree
is called monotonic when its tonicity is 1.

Characterisation of the MRST. Over the years, many different properties of the MRST
have been proven. One of the most important ones is the following:

▶ Observation 1 (Hanan [16]). Let P be a set of terminals in R2. Then there exists an
MRST on P that is a subset of the Hanan grid, the grid formed by taking all horizontal and
vertical lines which pass through at least one of the points of P .

From now on, we will only consider rectilinear Steiner trees that lie on the Hanan grid.
Furthermore, we can now directly conclude that the tonicity of an MRST is at most n.

A continuation on this characterisation is given by the Hwang theorem. We define a full
component of a rectilinear Steiner tree T to be a maximal subtree that does not have any
terminals as internal nodes. Note that a node in a full component of an MRST is a terminal
if and only if it is a leaf in that component. Also note that any terminal pi ∈ P will be a leaf
in exactly degree(pi) full components. Hwang’s theorem is now given by the following:

▶ Theorem 2 (Hwang [17]). Let P be a set of terminals in R2. Then there exists an MRST
T on P with a maximal number of full components, such that each full component C is of
one of the following four types. Let mC be the number of terminals in C. Then C consists of

four edges, connected in a cross,
a single complete segment with mC − 2 alternating incident edges,
a corner and its legs, with mC − 2 alternating edges incident to a single leg, or
a corner and its legs, with mC − 3 alternating edges incident to a single leg and a single
edge incident to the other leg.

For all legs, the incident edge closest to the corner must point away from the opposite leg.
Furthermore, the edges incident to the long leg on the same side as the short leg are at least
as long as the short leg.

We will call MRSTs which have this property Hwang trees. See Figure 2 for an example of
each of the four types of full components of Hwang trees. Note that these full components
do not contain a U-shape formed by an edge and two adjacent segments lying to the same
side of that edge; any component with such a U-shape can be split into two full components
by sliding the edge towards the terminals at the end of those segments. See Figure 3 for an
example. We will call the complete segment with the mC − 2 or mC − 3 incident edges the
long leg, and the other leg (if any) the short leg. If there are two complete segments which
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long leg

short leg

long leg

short leg

long leg

long leg

short leg

Figure 2 An example of each of the four different types of full components in Hwang trees.

−→
Figure 3 An example showing that Hwang trees do not contain a U-shape. The tree on the left

has the same length as the tree on the right, but contains fewer full components. Therefore, the tree
on the left is not a Hwang tree.

both have mC − 2 or mC − 3 incident edges, we will consider the horizontal one to be the
long leg, and the vertical one to be the short leg. If the long leg is horizontal (vertical), we
call the full component a horizontal (vertical) full component.

3 Sparse point sets inside a narrow strip

We say a point set is sparse if for all x the rectangle [x, x + 1] × [0, δ] contains at most k

points for some arbitrary but fixed sparseness constant k. In this section, we will give a
nO(

√
δ) algorithm for sparse point sets. We will do so in two steps. First, we will show that

all separators are crossed at most O(
√

δ) times. Then, we will give a dynamic-programming
algorithm which sweeps from left to right and runs in the desired time.

First, we will show that parallel edges of an MRST cannot be too close. Recall that ∆i

denotes the horizontal spacing between pi and pi+1, and that δ denotes the height of the
strip containing P . Also recall that si is the separator in between the points pi and pi+1.

▶ Observation 3.
(i) Let E = {e1, . . . , em} be a set of m horizontal edges of an MRST T which all intersect

two vertical lines ℓ and ℓ′. Then m ⩽ 1 + ⌊δ/dist(ℓ, ℓ′)⌋. A similar statement holds
when E is a set of vertical edges intersecting two horizontal lines.

(ii) If ∆i > δ, then the tonicity of any MRST at si is 1.

For the proof, see the full version. We are now ready to bound the tonicity at the separators.
The following lemma will also be applicable for randomly generated point sets.

▶ Lemma 4. Let T be a Hwang tree on P . Let si be a separator such that

xi+⌈
√

δ⌉+c1
− xi > c2

√
δ

for an integer constant c1 ⩾ 0 and a constant c2 > 0. Then the tonicity of T at si is O(
√

δ+1).

The proof of Lemma 4 can be found in the full version.
Using Lemma 4 we can now prove a bound on the tonicity of MRSTs of sparse point sets.

SoCG 2021
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si

q1

q2

q3

q4

q5

si

Figure 4 An example of an MRST and its crossing pattern C = {{q1, q2, q5}, {q3, q4}} at si.

▶ Corollary 5. An MRST on a sparse point set P in a δ-strip is
(

(9k + 18)(2 +
√

δ)
)

-tonic,
where k is the sparseness constant.

Proof. First, we note that since our point set P is sparse, we have xj − xi ⩾ ⌊(j − i)/k⌋ for
all j > i. Specifically, for all si such that i + ⌈

√
δ⌉+ k ⩽ n, we get

xi+⌈√δ⌉+k − xi ⩾


⌈√

δ
⌉

+ k

k

 ⩾

⌊√
δ

k
+ 1
⌋
⩾

√
δ

k
.

Therefore, we can invoke Lemma 4 with c1 = k and c2 = 1/k, giving us that all these si are
crossed at most 17k + 36 + (4k + 17)

√
δ times. (These constant follow from the constants in

the proof of Lemma 4, see the Appendix.) By symmetry, we can do the same for all si such
that (i + 1)− ⌈

√
δ⌉ − k ⩾ 1. Finally, we note that if this does not cover all si, then we have

fewer than 17k + 36 + (4k + 17)
√

δ points in total. Since every separator is crossed at most
n times, the statement also holds in this case. We conclude that for sparse terminal sets, all
separators are crossed at most 17k + 36 + (4k + 17)

√
δ < (9k + 18)(2 +

√
δ) times. ◀

Corollary 5 gives rise to a natural dynamic-programming algorithm, as explained next.
Let T be a rectilinear Steiner tree, and let si be a separator. We define the crossing pattern
of T at si as follows. Let X(si) be the set of at most n points where the Hanan grid crosses si,
and let X(si, T ) ⊆ X(si) be the subset of points where T crosses si. If T is an MRST,

|X(si, T )| ⩽ (9k + 18)(2 +
√

δ) = O(
√

δ)

by Corollary 5. We partition X(si, T ) into parts (that is, subsets) such that two points
from X(si, T ) are in the same part if the path in T between these points fully lies to the
left of si. The resulting partition of X(si, T ) is the crossing pattern of T at si; see Figure 4
for an example. We will say that a rectilinear forest T adheres to C at si if T lies fully to
the left of si, and there exists a rectilinear forest T ′ which lies fully to the right of si such
that T ∪ T ′ is a rectilinear Steiner tree with crossing pattern C at si. Note that not all
crossing patterns can lead to an MRST: those that require crossing edges on the left-hand
side (because they do not have a proper “nesting structure”) can never lead to an MRST. We
call the crossing patterns that contain at most (9k + 18)(2 +

√
δ) points and do not require

crossing edges on the left-hand side viable crossing patterns. We will now count the number
of viable crossing patterns at si. There are nO(

√
δ) possible sets X(si, T ) that contain at

most (9k + 18)(2 +
√

δ) points. The number of viable partitions of these points – also known
as the number of non-crossing partitions – follows the Catalan numbers. Hence, there are
2O(

√
δ) possible viable partitions for each X(si, T ). This implies that the total number of

viable crossing patterns for si is nO(
√

δ) · 2O(
√

δ) = nO(
√

δ).
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The algorithm. We can now define a table entry A[i, X] for each separator si and viable
crossing pattern X at si as follows.

A[i, X] := the minimum length of a rectilinear forest adhering to X at si.

Note that the length of an MRST equals A[n, {∅}]. Next we describe a recursive formula to
compute the table entries. As a base case, we will use A[0, X] = 0 for X = {∅}, and ∞ for
all other X.

Let sj and si be consecutive separators, with j < i. Note that since the point set is
sparse, at most k points share an x-coordinate. Therefore, j ⩾ i − k. Let F (X, si) be a
minimum-length rectilinear forest adhering to X at si, and let X ′ be its (unknown) crossing
pattern at sj . Then the value of A[i, X] equals the value of A[j, X ′] plus the total length
of the edges of F (X, si) between sj and si. The total length of F (X, si) between these two
separators only depends on X ′ and X. Since this subproblem contains O(

√
δ) points with

three different x-coordinates, its Hanan grid contains only O(
√

δ) edges. Therefore, its value
can be computed in 2O(

√
δ) time by simply checking every possible subset of edges. Let

L(X ′, X) denote the total length of the solution to this subproblem. If no solution exists, we
define it to be ∞. Then we get

A[i, X] = min
viable X′

A[j, X ′] + L(X ′, X),

where sj is the separator immediately preceding si, and the sum is over all crossing patterns
X ′ that are viable at sj .

The running time. To analyse the running time, we first determine the number of table
entries. There are O(n) separators, and we have already seen for every separator si there
are nO(

√
δ) possible viable crossing patterns. Hence, the total number of table entries is

O(n) · nO(
√

δ) = nO(
√

δ). Next, we calculate the time needed per table entry. For each of
the nO(

√
δ) possible viable crossing patterns X ′ we compute L(X ′, X) in 2O(

√
δ) time. This

brings the total time needed per table entry to nO(
√

δ).
Since we have nO(

√
δ) table entries, each needing nO(

√
δ) time, we conclude:

▶ Theorem 6. Let P be a sparse point set of size n inside a δ-strip. Then we can compute
an MRST on P in nO(

√
δ) time.

4 Random point sets inside a narrow rectangle

In this section we give an algorithm with min{nO(
√

δ), 2O(δ
√

δ)n} expected running time for
points generated randomly inside a rectangle of height δ and expected width n. Specifically,
we assume the points in P are generated as follows. First, we generate n independent
exponentially distributed variables ∆0, ..., ∆n−1 ∼ Exp(1). Using these, we compute the
x-coordinates of our points by setting xi :=

∑i−1
j=0 ∆i for 1 ⩽ i ⩽ n. Next, we generate

the y-coordinates of the points by picking each yi uniformly and independently from the
interval [0, δ]. Thus the points from P lie inside the rectangle [0, xn]×[0, δ]. Since the spacings
∆i are chosen from an exponential distribution of rate 1, we have E[xn] = E[

∑n−1
i=0 ∆i] = n.

(More precisely,
∑n−1

i=0 ∆i converges to a normal distribution with mean n and variance
√

n.)
Recall that the algorithm for sparse point sets from the previous section, which had

running time nO(
√

δ), was based on the fact that any separator si of a sparse point set
is crossed only O(

√
δ) times. Thus for each separator there are nO(

√
δ) different crossing

patterns. Our main goal is now to change this algorithm into an algorithm for random point

SoCG 2021
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sets that is fixed-parameter tractable with parameter δ. We face two difficulties. First, unlike
in the case of sparse point sets, we cannot guarantee that all separators are crossed only
O(
√

δ) times. Second, even if a separator is crossed O(
√

δ) times, the number of candidate
crossing patterns can still be nΘ(

√
δ), which is too much for an FPT algorithm. We overcome

these difficulties as follows.
To deal with the first issue we will define a certain configuration of points and a cor-

responding separator – we will call such separator a soft wall – such that the separator
is crossed only O(

√
δ) times. Our new dynamic programming algorithm will have table

entries for every soft wall instead of for every separator. We will prove that we expect to
find sufficiently many soft walls, so that the expected number of points in between two
consecutive soft walls only depends on δ (and not on n). This still leaves the second problem,
because where a soft wall is crossed by an MRST may depend on points from P that are
beyond the previous or next soft wall. Thus the number of crossing patterns can still be
nΘ(

√
δ). We therefore also devise a second type of wall, the hard wall. This is a vertical

line ℓ through an input point pi that will not be crossed at all by an edge of an MRST. The
MRST will consist of two independent parts: an MRST for the points to the left of ℓ plus
pi itself, and an MRST for the points to the right of ℓ plus pi itself. More generally, if we
have a collection of hard walls then the subproblems between any two consecutive hard walls
are completely independent. Hard walls will occur much less frequently than soft walls, but
still the expected number of points in between two consecutive hard walls will be shown to
depend only on δ. Hence, the number of crossing patterns we need to consider for the soft
walls in between the two hard walls only depends on δ, giving us an FPT algorithm.

We first give pseudocode for the global algorithm. Recall that P [i, j] := {pi, ..., pj}. The
constant 100 mentioned is not special; it is merely an arbitrary large enough constant.

Algorithm 1 ComputeMRST(P ).

1: Compute a collection Whard = {ℓ0, . . . , ℓm} of hard walls, as described below. The walls
in Whard are numbered from left to right, with ℓ0 and ℓm being “hard walls” consisting
of the leftmost and rightmost points of P , respectively.

2: for i← 0 to m− 1 do
3: Let pj and pj′ be the middle points of the hard walls ℓi and ℓi+1, respectively.
4: if δ < 100 then
5: Compute an MRST Ti for P [j, j′] using the 2O(

√
n log n) algorithm by Fomin et al.

6: else
7: Compute a collection Wsoft = {t1, . . . , tz} of soft walls for P [j, j′], as described

below.
8: Compute an MRST Ti for P [j, j′] using the dynamic-programming algorithm

described in Section 3, but using the collection Wsoft as separators (instead of
using all separators between consecutive points), as described below.

9: return T0 ∪ · · · ∪ Tm−1.

Computing hard walls. Let P [i, i + 4] be a subset of points from P , and let ℓ be the vertical
line through pi+2. We call ℓ a hard wall if P [i, i + 4] has the following properties:

∆j > δ for all i ⩽ j ⩽ i + 3
yi+1 < yi+2 < yi+3

See Figure 5 for an example of a hard wall. A hard wall indeed splits the problem into
independent subproblems, as shown in the lemma below.
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δ

`

> δ > δ > δ > δ

pi pi+1

pi+2 pi+3

pi+4

Figure 5 Example of a hard wall.

pi

pi+1

pi+2 pi+3

pi+4

Figure 6 Illustration for the proof of Lemma 7 showing an MRST T where degreeT (pi+2) = 1.
In red, the U -shape showing that T is not a Hwang tree.

▶ Lemma 7. Let ℓ be a hard wall, defined by the subset P [i, i + 4]. Let T1 be an MRST on
P [1, i + 2] and let T2 be an MRST on P [i + 2, n]. Then ∥T∥ = ∥T1∥+ ∥T2∥ and so T1 ∪ T2
is an MRST on P .

Proof. Let T be a Hwang tree on P . By Observation 3 we know that an MRST on P is
monotonic at si, ..., si+3. The monotonicity at si+1 and si+2 implies that degreeT (pi+2) ⩽ 2.
If degreeT (pi+2) = 2 then splitting T at pi+2 results in subtrees on P [1, i + 2] and P [i + 2, n]
– this follows from the monotonicity at si+1 and si+2 – and so we are done. Now assume
for a contradiction that degreeT (pi+2) = 1. Then the incident edge if pi+2 must be vertical.
Assume without loss of generality that pi+2 is the top endpoint of this edge. But then the
(single) edge of T crossing si+2 must reach the vertical line through pi+3 at a point q that
lies somewhere below pi+3. The monotonicity at si+3 then implies that q must be connected
to pi+3 by a vertical segment, thus creating a U-shape and contradicting that T is a Hwang
tree. See Figure 6 for an example. ◀

The next lemma gives a bound on the probability that P [i, i + 4] is a hard wall.

▶ Lemma 8. P
[

P [i, i + 4] defines a hard wall
]

= e−4δ/6 for all 1 ⩽ i ⩽ n− 4.

Proof. Recall that the spacings ∆j are drawn from an exponential distribution with rate 1.
Hence, P[∆j ] > δ] = e−δ for all j. Since the spacings are independent, the probability
that all four spacings between the points in P [i, i + 4] are greater than δ is e−4δ. Finally,
P[yi+1 < yi+2 < yi+3] = 1/6, since all y-coordinates are chosen uniformly at random
from [0, δ] and so all six orderings of yi+1 < yy+2 < yi+3 are equally likely. ◀

The set Whard of hard walls is now computed in the following straightforward manner: we
check for all i := 5j + 1 with j ∈ {0, . . . , ⌊n/5⌋ − 1} whether P [i, i + 4] defines a hard wall; if
so, we add the corresponding hard wall to Whard. Note that this takes only O(n) time in
total, as each of the O(n) candidate hard walls can be checked in O(1) time.

Computing soft walls. Let P [i, i + ⌈
√

δ⌉] be a subset of ⌈
√

δ⌉ + 1 points from P such
that xi+⌈

√
δ⌉ − xi > ⌈

√
δ⌉/4. Then we call the separator si – recall that si is the separator

between pi and pi+1 – a soft wall. See Figure 7 for an example.
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pi

pi+d√δ∗e

>
√
δ/4

si

Figure 7 Example of a soft wall.

▶ Lemma 9. Let δ ⩾ 100. Let si be a soft wall, defined by P [i, i + ⌈
√

δ⌉]. Then si is crossed
O(
√

δ) times by an MRST. Furthermore, even under the assumption that ∆j < δ for all
1 ⩽ j ⩽ n− 1, we have

P
[

P
[
i, i +

⌈√
δ
⌉]

defines a soft wall
]

⩾ 1− 23−⌈√δ⌉/2 for all 1 ⩽ i ⩽ n−
⌈√

δ
⌉
.

Proof. The fact that si is crossed at most O(1+⌈
√

δ⌉) = O(⌈
√

δ⌉) times follows immediately
from Lemma 4. To be precise, si is crossed at most 18(2 +

√
δ) times. It remains to derive a

lower bound on the probability that P [i, i + ⌈
√

δ⌉] is a soft wall, given that ∆j < δ for all
1 ⩽ j ⩽ n− 1. We have

P
[
xi+⌈√δ⌉ − xi >

⌈√
δ
⌉

/4
]

= 1− P

i+⌈√δ⌉−1∑
j=i

∆j ⩽
⌈√

δ
⌉

/4


⩾ 1−min

t>0
et⌈√δ⌉/4 (E[e−t∆1 ]

)⌈√δ⌉−1 by the Chernoff bound

⩾ 1−min
t>0

et⌈√δ⌉/4

(∫ δ

x=0
e−txe−x 1

1− e−δ

)⌈√δ⌉−1

∆1 ∼ Exp(1) and ∆1 ⩽ δ

By taking t = 3, it can be shown that this is at least 1− 23−⌈√δ⌉/2. ◀

Recall that in Algorithm ComputeMRST we need to compute soft walls for every subset
P [j, j′] between two consecutive hard walls (including the points on those two hard walls).
To this end we check whether P [pr, ..., pr+⌈

√
δ⌉] forms a soft wall for all r := j + i⌈

√
δ⌉ with

0 ⩽ i ⩽ j′ − ⌈
√

δ⌉.

The dynamic-programming algorithm between two hard walls. Recall that X(si) is the
set of points where the Hanan grid crosses si. Let Xi denote the family of subsets of X(si) of
size at most 18(2 +

√
δ). We can now define a table entry A[i] for each soft wall si as follows.

A[i] := a representative set of pairs (X, l) where l is the minimum length of a
rectilinear forest adhering to X ∈ Xi at si.

Here, “representative” means that for every soft wall si there exists an MRST T and
(X, l) ∈ A[i] such that T adheres to X at si. We will call this T an MRST represented in
A[i]. See Figure 8 for an example. Note that A[n] contains one element, of which l equals
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si si si

Figure 8 An example of an element of a table entry A[i]. On the left, an MRST T represented in
A[i]. T is represented in A[i] by a pair (Xi, l). In the middle, we have Xi. On the right, the edges
contributing to the length l. Note that since T is an MRST, these edges indeed form a minimal
length rectilinear forest adhering to Xi at si.

the length of an MRST on P . Next we describe a recursive formula to compute the table
entries. As base case, we have A[0] = {{∅}, 0}. We first give pseudocode for this part of the
algorithm.

Algorithm 2 ComputeA(i).

1: Let sj be the rightmost soft wall to the left of si.
2: for (Xj , l) ∈ A[j] do
3: for all viable mirrored crossing patterns X ′

i at si do
4: Compute an MRST T ′ for the subproblem given by Xj and Xi.
5: Add (Xi, l + ∥T ′∥) to A[i], where Xi is the crossing pattern of T ′ at si.
6: Remove unviable pairs from A[i].

Let si be a soft wall, and let sj be the rightmost soft wall to the left of si. We define a
mirrored crossing pattern to be a crossing pattern where the partition denotes on how the
rectilinear Steiner tree is connected on the right hand side. Let (Xj , l) be a pair in A[j]. Let
T be an MRST adhering to Xj at sj , and adhering to some (unknown) mirrored crossing
pattern X ′

i at si. Then there is a pair (Xi, l′) in A[i], where l′ equals l plus the total length
of the edges of T between sj and si. The total length of T between these two separators
only depends on Xj and X ′

i. Let L(Xj , X ′
i) denote the total length of the solution to this

subproblem. Now, to compute the value of L(Xj , X ′
i), we use the 2O(

√
n log n) algorithm by

Fomin et al. [12]. Since this algorithm only computes Steiner trees (not forests adhering to
some crossing pattern), we need to adapt our subproblem. To ensure the crossing pattern
Xj , we mimic the edges on the left of Xj . For every part of Xj , we add a path of “virtual”
edges of length 0, connecting the points in that part. These are automatically added to
the so-called shortest path RST found by the first part of the algorithm by Fomin et al.
Since the number of virtual edges added is constant in n, it does not affect its running time.
We ensure the crossing pattern X ′

i analogously. Given the output T ′ of the algorithm, we
remove its virtual edges, and analyse its (non-mirrored) crossing pattern Xi at si. We then
add the pair (Xi, l + ∥T ′∥) to A[i]. After doing so for all pairs in A[j] and viable mirrored
crossing patterns X ′

i, we may be able to remove some elements from A[i]. First, we remove
any duplicates. Then, if two pairs have the same crossing pattern Xi, we need only the one
with the smallest l.

We will now prove that A[i] is indeed a representative set by induction on i. Clearly, A[0]
is a representative set. Now, suppose A[j] is a representative set. We will now show that
after performing the above, A[i] is a representative set. See Figure 9 for an example. Since
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sj si sj si

sj si sj si

(i) (ii)

(iii) (iv)

Figure 9 Illustration for the correctness proof of Algorithm 2. At (i), we have an MRST T which
adheres to Xj at sj , and to X ′

i at si. At (ii), we have the corresponding subproblem. The thick
grey edges denote the virtual edges of length 0. At (iii), a solution T ′ to the subproblem. Note that
the total length of T ′ equals the total length of T between sj and si. At (iv), the new MRST T ′′

represented in A[i], obtained by combining T and T ′.

A[j] is a representative set, there exists a pair (Xj , l) ∈ A[j] and an MRST T such that T

adheres to Xj at sj . Now, T adheres to some mirrored crossing pattern X ′
i at si. Therefore,

we will find an MRST T ′ on the subproblem defined by Xj and X ′
i, and add a pair (Xi, l′)

to A[i]. Let T ′′ be the MRST on P obtained by exchanging the part of T between sj and si

for T ′. Note that we can do that, since T and T ′ adhere to the same crossing patterns Xj

and X ′
i. Now, T ′′ is represented in A[i] by (Xi, l′).

Analysis of the running time. We now analyze the expected running time of Algorithm Com-
puteMRST. To do so, we will bound certain distributions by other distributions. To be
precise, we bound the expected running time of any algorithm on a point set with a ran-
dom number of points following a certain distribution by the expected running time of the
algorithm on a point set with a differently distributed random number of points.

▶ Observation 10 ([1]). Let Y1, Y2 be two discrete nonnegative random variables, such that
for all k ⩾ 0, the equation P[Y1 ⩽ k] ⩾ P[Y2 ⩽ k] holds. Let f(k) be an increasing nonnegative
function such that E[f(Y2)] <∞. Then

E[f(Y1)] =
∞∑

k=0
f(k)P[Y1 = k] ⩽

∞∑
k=0

f(k)P[Y2 = k] = E[f(Y2)].

We write Y1 ≼ Y2 to denote that for all k ⩾ 0, the equation P[Y1 ⩽ k] ⩾ P[Y2 ⩽ k] holds.
Let us take a look at the sizes of the subproblems defined by the hard walls. Suppose

we are computing Whard and have just found a hard wall ℓi. Let the random variable X1
denote the number of points in the subproblem P [j, j′] between the two hard walls ℓi and
the unknown ℓi+1. Note that X1 is at most m := n− j + 1, and that X1 only depends on m.
Therefore, we will write X1,m. Now, X1,m is almost geometrically distributed. There are two
differences: we only check whether P [i, i + 4] defines a hard wall for i of the form 5j + 1, and
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X1,m is at most m. Since the probability that P [i, i + 4] defines a hard wall is e−4δ/6, we
have X1,m ∼ min{m, 1 + 5 ·Geom(e−4δ/6)}. Here, the probability mass function of Geom(p)
is (1− p)k−1p. Let X2 be the same distribution, but where we ignore the maximum number
of points, X2 ∼ 1 + 5 ·Geom(e−4δ/6). Then, X1,m ≼ X2 for all m.

We are now ready to calculate the expected running time of ComputeMRST if δ < 100.
We have already seen that we can find Whard in O(n) time. Since X1,m ≼ X2 for all m, the
expected time needed per subproblem is bounded by the expected time needed to run the
2O(

√
n log n) algorithm by Fomin et al. on a point set with X2 points. We get:

∞∑
k=1

(1− e−4δ/6)k−1 ·
(
e−4δ/6

)
· 2O(

√
5k+1 log(5k+1)) <

∞∑
k=1

2−Θ(k) · 2O(
√

5k log(5k)) = O(1)

Since there are O(n) subproblems, this finishes the case δ < 100.
We can use the same trick for the distribution of the number of points between soft

walls. Here, we let the random variable Y1,m denote the number of points between two
consecutive soft walls, given that we have found no hard walls between the hard walls
defining our subproblem and where m is once more the maximum number of points. We
can bound Y1,m in three steps. First, note that the condition that no ∆j is larger than
δ is stronger than the condition that there are no hard walls between the hard walls
defining our subproblem. Let Y2,m denote the number of points between the soft walls,
given that no ∆j is larger than δ. Then Y1,m ≼ Y2,m. Next, recall that if δ ⩾ 100,
by Lemma 9 the probability that si is a soft wall is at least 1 − 23−⌈

√
δ⌉/2, even if all

∆j < δ. Define Y3,m ∼ min{m, ⌈
√

δ⌉ · Geom(1 − 23−⌈
√

δ⌉/2)}. Then Y2,m ≼ Y3,m. Finally,
analogously to the hard walls, we can remove the maximum number of points. Define
Y4 ∼ ⌈

√
δ⌉ ·Geom(1− 23−⌈

√
δ⌉/2). We conclude that Y1,m ≼ Y4 for all m.

Let c, λ > 0 be such that the algorithm by Fomin et al. runs in under c · 2λ
√

n log n time.
For the case δ ⩾ 100, the total expected time needed per subsubproblem is then bounded by

∞∑
i=1

c · 2λ
√

i⌈√δ⌉+1 log(i⌈√δ⌉+1) ·
(

23−⌈√δ⌉/2
)i−1

·
(

1− 23−⌈√δ⌉/2
)

< c · 2⌈
√

δ⌉/2−3
∞∑

i=1
2λ
√

2i⌈√δ⌉ log(2i⌈√δ⌉) · 2(3−⌈√δ⌉/2)i · 1

< c · 2⌈
√

δ⌉
∞∑

i=1
24λ(2i⌈√δ⌉)3/4

· 2−i⌈√δ⌉/5 since δ ⩾ 100

< c · 2⌈
√

δ⌉
∞∑

i=1
2⌈

√
δ⌉(8λi3/4−i/5)

Now, for a sufficiently large M , we have 8λi3/4 − i/5 < −i/10 for all i ⩾ M . We get:

c · 2⌈
√

δ⌉
∞∑

i=1
2⌈

√
δ⌉(8λi3/4−i/5)

= c · 2⌈
√

δ⌉
(

M∑
i=1

2⌈
√

δ⌉(8λi3/4−i/5) +
∞∑

i=M+1
2⌈

√
δ⌉(8λi3/4−i/5)

)

< c · 2⌈
√

δ⌉
(

M · 2⌈
√

δ⌉maxi⩾1(8λi3/4−i/5) +
∞∑

i=M+1
2−i/10

)
= 2O(⌈√δ⌉).
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Let m be the number of points in the corresponding subproblem defined by two hard walls.
Note that the above bound is independent of m. Analogously to the original sparse point-
set algorithm, there are mO(⌈√δ⌉) possible crossing patterns per separator. In total, this
algorithm therefore takes m ·mO(⌈√δ⌉) · 2O(⌈√δ⌉) = mO(

√
δ) expected time.

Now, all that remains is calculating the expected running time of our main random point
set algorithm in this case. Clearly, it runs in at most expected nO(

√
δ) time, since splitting

up the problem using the hard walls can only speed up the algorithm.
Let λ, µ ⩾ 1 be such that the mO(

√
δ) expected running time algorithm runs in at

most mλ
√

δ expected time, and that the probability of a hard wall is 2−µδ. Let Y1 be the
distribution of the number of points of a subproblem. Recall that Y1 ≼ 1 + 5 ·Geom(e−4δ/6).
Then the total expected time needed per subproblem is bounded by

E
[
Y λ

√
δ

1

]
⩽

∞∑
k=1

(1− 2−µδ)k−1 · 2−µδ · (5k + 1)λ
√

δ
< O(1) + 2−µδ

∞∑
k=2

24λ
√

δ log k−2−µδk.

Splitting this sum as well (see the full version for details), it can be shown that:

2−µδ
∞∑

k=2
24λ

√
δ log k−2−µδk < 2O(δ

√
δ).

This brings the total expected running time to O(n) · (O(1) + 2O(δ
√

δ)) = 2O(δ
√

δ)n.
All in all, our main random point set algorithm run in O(n) expected time if δ < 100,

and in min{nO(
√

δ), 2O(δ
√

δ)n} expected time if δ ⩾ 100. We conclude:

▶ Theorem 11. Let P be a set of n points generated randomly inside a rectangle of height δ

and expected width n, generated according to the procedure described earlier. Then an MRST
on P can be found in min{nO(

√
δ), 2O(δ

√
δ)n} expected time.

5 Concluding remarks

Our paper contains two main results on Minimum Rectilinear Steiner Tree. First, we
proved that for sparse point sets in a strip of width δ, an MRST can be found in nO(

√
δ) time.

Second, we gave a min{nO(
√

δ), 2O(δ
√

δ)n} expected running time algorithm for random point
sets. For δ = Θ(n) the running time equals the 2O(

√
n log n) of the algorithm for arbitrary

point sets in the plane [12]. A challenging open problem is to see if an algorithm with running
time 2O(

√
δ log δ)poly(n) is possible. Another direction for future research is to study the

problem in higher dimensions. We believe that our algorithmic results may carry over to Rd

to points that are almost collinear, that is, that lie in a narrow cylinder. Generalizing the
results to, say, points lying in a narrow slab will most likely be more challenging.

More generally, we believe that it is interesting to study the parameterized complexity
of geometric problems using a “geometric parameter”. For problems involving planar point
sets, the strip width δ is a natural parameter, which is interesting because it explores the
boundary between the 1-dimensional and 2-dimensional version of the problem. We have
studied this for TSP in a previous paper [1] and for Minimum Rectilinear Steiner Tree
in the current paper, but many other problems can be studied from this perspective as well.
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