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Abstract
Let A be a convex body in the plane and A1, . . . , An be translates of A. Such translates give rise to an
intersection graph of A, G = (V, E), with vertices V = {1, . . . , n} and edges E = {uv | Au ∩ Av ̸= ∅}.
The subgraph G′ = (V, E′) satisfying that E′ ⊂ E is the set of edges uv for which the interiors of
Au and Av are disjoint is a unit distance graph of A. If furthermore G′ = G, i.e., if the interiors of
Au and Av are disjoint whenever u ̸= v, then G is a contact graph of A.

In this paper, we study which pairs of convex bodies have the same contact, unit distance, or
intersection graphs. We say that two convex bodies A and B are equivalent if there exists a linear
transformation B′ of B such that for any slope, the longest line segments with that slope contained
in A and B′, respectively, are equally long. For a broad class of convex bodies, including all strictly
convex bodies and linear transformations of regular polygons, we show that the contact graphs of A

and B are the same if and only if A and B are equivalent. We prove the same statement for unit
distance and intersection graphs.
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1 Introduction

Consider a convex body A, i.e., a convex, compact region of the plane with non-empty
interior, and let A = {A1, . . . , An} be a set of n translates of A. Then A gives rise to an
intersection graph G = (V, E), where V = {1, . . . , n} and E = {uv | Au ∩ Av ̸= ∅}, and a
unit distance graph G′ = (V, E′), where uv ∈ E′ if and only if uv ∈ E and Au and Av have
disjoint interiors. In the special case that G = G′ (i.e., the convex bodies of A have pairwise
disjoint interiors), we say that G is a contact graph (also known as a touch graph or tangency
graph). Thus, A defines three classes of graphs, namely the intersection graphs I(A), the
unit distance graphs U(A), and the contact graphs C(A) of translates of A.
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3:2 Classifying Convex Bodies by Their Contact and Intersection Graphs

A1 A2

A3

Figure 1 Translates of a convex body not having the URTC property. The disk A3 can “slide”
along A1 and A2.

Figure 2 Reuleaux triangle (left), ellipse (middle), and regular hexagon (right).

The study of intersection graphs has been an active research area in discrete and com-
putational geometry for the past three decades. For instance, numerous papers consider
the problem of solving classical graph problems efficiently on various classes of geometric
intersection graphs; see Section 1.1 for some references. Meanwhile, the study of contact
graphs of translates of a convex body has much older roots. It is closely related to the
packings of such a body, which has a very long and rich history in mathematics going back
(at least) to the seventeenth century, where research on the packings of circles of varying
and constant radii was conducted and Kepler famously conjectured upon a 3-dimensional
counterpart of such problems, the packing of spheres.

In this paper we investigate the question of when two convex bodies A and B give rise
to the same classes of graphs. We restrict ourselves to convex bodies A that have the
URTC property (unique regular triangle constructibility). This is the property that given two
interior disjoint translates A1, A2 of A that touch, there are exactly two ways to place a third
translate A3 such that A3 is interior disjoint from A1 and A2, but touches both. Convex
bodies with the URTC property include all linear transformations of regular polygons except
squares and all strictly convex bodies [15]. Thus, almost all convex bodies in a measure
theoretic sense have the property [15, 18, 30]. A convex body without the property must
have a sufficiently long line segment on the boundary (to be made precise in Section 1.3); see
Figure 1 for an example.

The main result of the paper is summarized in the following theorem.

▶ Theorem 1. Let A and B be convex bodies with the URTC property. Then each of the
identities I(A) = I(B), U(A) = U(B), and C(A) = C(B) holds if and only if the following
condition is satisfied: there is a linear transformation B′ of B such that for any slope, the
longest segments contained in A and B′, respectively, with that slope are equally long.

If the condition from the theorem is satisfied, we say that A and B are equivalent. The
length of the longest segment with a given slope contained in a convex body A is often called
the width of A in the corresponding direction. A circle has constant width but there are
other convex bodies of constant width, the simplest example being the Reuleaux triangle;
see Figure 2. As an example it follows from the theorem that circles and Reuleaux triangles
have the same contact, unit distance, and intersection graphs, which in turn are the same as
those for ellipses (ellipses are linear transforms of circles). It also follows that these classes
are different from those of regular hexagons.
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Figure 3 The strength of radiation in every direction and at various frequencies for two different
transmitters described in [25]. In engineering circles, this known as the radiation pattern.

Figure 4 When the reachable region of a device is symmetric and the devices are oriented in the
same way, a communication network is the intersection graph of the reachable region scaled by 1/2.
Left: A network of five identical devices with the reachable regions shown. Right: The intersection
graph of the reachable regions scaled by 1/2.

1.1 Practical Implications

From a practical point of view, the research on intersection graphs is often motivated by the
applicability of these graphs when modeling wireless communication networks and facility
location problems. If a device is located at some point in the plane and is able to transmit to
and receive from all other devices within some distance, then the devices can be represented
as unit disks in such a way that two devices can communicate if and only if their disks
overlap. Many highly-cited papers gave this motivation for studying unit disk intersection
graphs [9, 14, 16, 21, 29] and it remains a motivation for new research [7, 12, 13, 24].

However, it is in general not the case that a transmitter emits an equally strong signal
in all directions. For a real-world example of how the signal strength may vary in different
directions; see Figure 3. If the networks that can be made with devices of a given type are not
the unit disk intersection graphs, the algorithms for unit disk graphs cannot be expected to
work when applied to the actual networks. It is therefore necessary to study how the possible
networks that can be made with devices of different types depend on the radiation pattern
of the devices. See Figure 4 for a demonstration of the connection between communication
networks of a device with a non-circular radiation pattern and intersection graphs of the
corresponding convex body.

SoCG 2021



3:4 Classifying Convex Bodies by Their Contact and Intersection Graphs

1.2 Other Related Work
An important notion in the area of contact graphs is that of the Hadwiger number of a
body K, which is the maximum possible number of pairwise interior-disjoint translates Ki

of K that each touch but do not overlap K. The Hadwiger number of K is thus the maximum
degree of a contact graph of translates of K. In the plane, the Hadwiger number is 8 for
parallelograms and 6 for all other convex bodies. We refer the reader to the books and
surveys by László and Gábor Fejes Tóth [28, 10] and Böröczky [3].

Another noteworthy result on contact graphs is the Circle Packing Theorem (also known
as the Koebe–Andreev–Thurston Theorem): A graph is simple and planar if and only if it is
the contact graph of some set of circular disks in the plane (the radii of which need not be
equal). The result was proven by Koebe in 1935 [19] (see [11] for a streamlined, elementary
proof). Schramm [26] generalized the circle packing theorem by showing that if a planar
convex body with smooth boundary is assigned to each vertex in a planar graph, then the
graph can be realized as a contact graph where each vertex is represented by a homothet
(i.e., a scaled translation) of its assigned body.

Several papers have compared classes of intersection graphs of various geometric objects,
see for instance [4, 6, 8, 17, 20]. Most of the results are inclusions between classes of
intersection graphs of one-dimensional objects such as line segments and curves.

A survey by Swanepoel [27] summarizes results on minimum distance graphs and unit
distance graphs in normed spaces, including bounds on the minimum/maximum degree,
maximum number of edges, chromatic number, and independence number.

In the area of computational geometry, Müller, van Leeuwen, and van Leeuwen [23]
gave sharp upper and lower bounds on the size of an integer grid used to represent an
intersection graph of translates of a convex polygon with corners at rational coordinates.
Their results imply that for any convex polygon R with rational corners, the problem of
recognizing intersection graphs of translates of R is in NP. On the contrary, it is open
whether recognition of unit disk intersection graphs in the Euclidean plane is in NP. Indeed,
the problem is ∃R-complete (and thus in PSPACE), and using integers to represent the center
coordinates and radii of the disks in some graphs requires exponentially many bits [5, 22].

Bonnet, Grelier, and Miltzow [2] showed how well-known algorithms for the clique
problem in unit disk intersection graphs and disk intersection graphs can be adjusted to
work for intersection graphs of translates or homothets of an arbitrary centrally symmetric
convex body.

1.3 Preliminaries
We begin by defining some basic geometric concepts and terminology.

For a subset A ⊂ R2 of the plane we denote by A◦ the interior of A, that is,

A◦ = {x ∈ A | ∃ open U ⊂ R2 such that {x} ⊂ U ⊂ A}.

We say that A is a convex body if A is compact, convex, and has non-empty interior. We
say that A is symmetric if whenever x ∈ A, then −x ∈ A. It is well-known that if A is a
symmetric convex body, then the map ∥·∥A : R2 → R≥0 defined by

∥x∥A = inf{λ ≥ 0 | x ∈ λA},

is a norm. Moreover A = {x ∈ R2 | ∥x∥A ≤ 1} and A◦ = {x ∈ R2 | ∥x∥A < 1}.
It follows from these properties that for translates A1 = A + v1 and A2 = A + v2 it

holds that A1 ∩ A2 ̸= ∅ if and only if ∥v1 − v2∥A ≤ 2 and A◦
1 ∩ A◦

2 ̸= ∅ if and only if
∥v1 − v2∥A < 2. This means that when studying contact, unit distance, and intersection
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graphs of a symmetric convex body A, we can shift our viewpoint from translates of A to point
sets in R2 and their ∥·∥A-distances: If A ⊂ R2 is a set of points we define IA(A) and UA(A)
to be the graphs with vertex set A and edge sets {(x, y) ∈ A2 | x ̸= y and ∥x − y∥A ≤ 2}
and {(x, y) ∈ A2 | ∥x − y∥A = 2}, respectively. Moreover, if for all distinct points x, y ∈ A it
holds that ∥x − y∥A ≥ 2, we say that A is compatible with A and define CA(A) to be the
graph with vertex set A and edge set {(x, y) ∈ A2 | ∥x − y∥A = 2}. Then IA(A), UA(A), and
CA(A), respectively, are isomorphic to the intersection, unit distance, and contact graph of A

realized by the translates (A + a)a∈A. When studying contact, unit distance, and intersection
graphs of a symmetric, convex body A we will view them as being induced by point sets
rather than by translates of A.

We say that a (not necessarily symmetric) convex body A in the plane has the URTC
property if the following holds: For any two interior disjoint translates of A, A1 and A2,
satisfying A1 ∩ A2 ≠ ∅, there exists precisely two vectors v ∈ R2 such that for i ∈ {1, 2},
(A+v)◦ ∩A◦

i = ∅ but (A+v)∩Ai ̸= ∅. If A is symmetric, this amounts to saying that for any
two points v1, v2 ∈ R2 with ∥v1 − v2∥A = 2, the set {v ∈ R2 | ∥v − v1∥A = ∥v − v2∥A = 2}
has size two. Gehér [15] proved that a symmetric convex body A has the URTC property if
and only if the boundary ∂A does not contain a line segment of length more than 1 in the
∥·∥A-norm. See Figure 1 for an example of a convex body not having the URTC property.

A drawing of a graph G ∈ I(A) as an intersection graph of a symmetric convex body A

is a point set A ⊂ R2 and a set of straight line segments L such that IA(A) is isomorphic to
G and L is exactly the line segments between the points u, v ∈ A which are connected by an
edge in G. We define a drawing of a graph G as a contact and unit distance graph similarly.

For a norm ∥·∥ on R2 and a line segment ℓ with endpoints a and b we will often write
∥ℓ∥ = ∥ab∥ instead of ∥a − b∥. Also, if A is a symmetric convex body and U, V ⊂ R2, we
define dA(U, V ) := inf{∥uv∥A | (u, v) ∈ U × V }.

1.4 Structure and Techniques of the Paper
Establishing the sufficiency of the condition of Theorem 1, i.e., showing that if A and B are
equivalent then I(A) = I(B), U(A) = U(B), and C(A) = C(B), is relatively straightforward
and has been deferred to the full version of the paper. It is also relatively easy to reduce
Theorem 1 to the case where the convex bodies are symmetric so this too is deferred to
the full version. When both A and B are symmetric, they are equivalent according to the
condition of Theorem 1 if and only if they are linear transformations of each other.

Thus, left with the task of proving the necessity of the condition of Theorem 1 in the
symmetric case, we proceed in two steps. First, in Section 2, we prove the following result,
which for contact and unit distance graphs is a generalization of this direction of Theorem 1.

▶ Theorem 2. Let A and B be symmetric convex bodies with the URTC property such
that A is not a linear transformation of B. There exists a graph G ∈ C(A) such that
for all H ∈ C(B) and all subgraphs H ′ ⊆ H, G is not isomorphic to H ′. In particular
C(A) \ C(B) ̸= ∅.

As we will also discuss in Section 2 the same result holds if C(X) is replaced by U(X)
for X ∈ {A, B} everywhere in the theorem above and the proof is identical.

The core idea in proving Theorem 2 is to consider a graph G satisfying that any drawing
of G as a contact graph of A has certain structural properties. Concretely, we ensure that
any drawing of G as a contact graph of A consists of many large hollow hexagons. In the
interior of each hexagon, we force there to be a “bridge” of translates of A connecting the

SoCG 2021



3:6 Classifying Convex Bodies by Their Contact and Intersection Graphs

sides of the hexagon. We show that if B is not a linear transformation of A, then the contact
graph cannot be realized by translates of B if we make sufficiently many and sufficiently
large hexagons with bridges of different slopes. See Figures 6 and 7 for illustrations.

To include intersection graphs, we proceed with the second step. In Section 3, we prove
the following result which combined with Theorem 2 immediately yields the necessity of the
condition of Theorem 1 for intersection graphs.

▶ Theorem 3. Let A and B be symmetric convex bodies. If there exists a graph G ∈ C(A)
such that for all H ∈ C(B) and all subgraphs H ′ ⊂ H, G is not isomorphic to H ′, then
I(A) ̸= I(B).

This result holds for general symmetric convex bodies. An improvement of Theorem 2 to
general symmetric convex bodies (not necessarily having the URTC property) would thus
yield a version of Theorem 1 that also holds for general convex bodies.

In order to prove Theorem 3, we proceed as follows. For every positive integer k we
construct a gadget Qk ∈ I(A) which contains as a subgraph a distinguished cycle αk ⊂ Qk.
We prove that in any drawing of Qk as an intersection graph of translates of A, αk is contained
in a translation of the annulus kA \ (k − 1)A (here, kA = {ka | a ∈ A} is the scaling of A by
k). This allows us to view αk as an upscaled copy of the boundary of A with a precision
error decreasing in k. Similarly, in any drawing of the same gadget Qk as an intersection
graph of another body, B, the cycle αk appears as an upscaled copy of B. The idea is then
to simulate a contact graph G ∈ C(A) using distinct copies of Qk, where each copy plays
the role of a single vertex in G. If A is not a linear transformation of B, we can choose G

with the properties promised in Theorem 2. We are then able to prove that if we choose k

sufficiently large (i.e., obtaining sufficiently high resemblence between αk and an upscaled
copy of A resp. B), then we can realize the simulation of G as an intersection graph using
translates of A, but not using translates of B. This then implies I(A) ̸= I(B) as desired.

Beyond aiding us in the proof of our main theorem, we believe that this proof technique –
the reduction from intersection to contact graphs – is of independent interest. It appears a
novel approach with the potential to answer other questions on intersection graphs.

2 Contact and Unit Distance Graphs

In this section we prove Theorem 2. The proof for unit distance graphs is completely identical
so we will merely provide a remark justifying this claim by the end of the section.

Throughout the section A and B will denote symmetric convex bodies. For θ ∈ [0, 2π)
we define eA(θ) to be the vector of argument θ and with ∥eA(θ)∥A = 1. We also define
ρA(θ) = 2 ∥eA(θ)∥2. Then ρA(θ) can be thought of as the “diameter” of A in direction θ.
One of our most important tools is the following lemma.

▶ Lemma 4. Let A, B be symmetric convex bodies in R2. If for every finite set Θ ⊂ [0, π) and
for every ε > 0, there exists a linear map T : R2 → R2 satisfying that |ρT (B)(θ) − ρA(θ)| < ε

for all θ ∈ Θ, then there exists a linear map T : R2 → R2 with T (B) = A.

Due to space limitations we have left out the proof, but it can be found in the full version.
We proceed to describe certain lattices which give rise to contact graphs that can only be

realized in an essentially unique way. We start with the following definition.

▶ Definition 5. Let A ⊂ R2 be a symmetric convex body, and ∥·∥A the associated norm.
Let e1, e2 ∈ R2 be such that ∥e1∥A = ∥e2∥A = ∥e1 − e2∥A = 2. We define the lattice
LA(e1, e2) = {a1e1 + a2e2 | (a1, a2) ∈ Z2}.
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conv(SA)
1
2 conv(SA)

e2

e1

e2 − e1

−e1

−e2 e1 − e2

Figure 5 A symmetric convex body A and the sets 1
2 conv(SA) and conv(SA) (blue and green

respectively) which satisfies 1
2 conv(SA) ⊆ A ⊆ conv(SA).

The left hand side of figure Figure 6 illustrates the lattice structure. Let us assume that
A has the URTC property and describe a few properties of the lattice LA(e1, e2). After
choosing e1 with ∥e1∥A = 2, there are precisely two vectors v with ∥v∥A = ∥v − e1∥A = 2,
using the URTC property. If one is v2 the second is e1 − v2 so regardless how we choose
e2 we obtain the same lattice. Using the triangle inequality and the URTC property of A

it is easily verified that for distinct x, y ∈ LA(e1, e2), ∥x − y∥A ≥ 2 with equality holding
exactly if x − y ∈ SA := {e1, e2, e2 − e1, −e1, −e2, e1 − e2}. This implies that the contact
graph G0 := CA(LA(e1, e2)) is in fact (isomorphic to) an infinite triangular grid.

Another useful fact is the following:

▶ Lemma 6. With SA as above it holds that 1
2 conv(SA) ⊂ A ⊂ conv(SA). Here conv(SA)

is the convex hull of SA. If in particular B is another symmetric convex body for which
∥e1∥B = ∥e2∥B = ∥e1 − e2∥B = 2, then for all x ∈ R2 it holds that 1

2 ∥x∥A ≤ ∥x∥B ≤ 2 ∥x∥A.

Proof. See Figure 5. As 1
2 SA ⊂ A and A is convex the first inclusion is clear. For the

second inclusion we note that all points y on the hexagon connecting the points e1, e2, e2 −
e1, −e1, −e2, e1 − e2 of SA in this order have ∥y∥A ≥ 1 by the triangle inequality and so
A ⊂ conv(SA).

For the last statement of the lemma note that if x ∈ R2 then

∥x∥B ≥ inf
λ≥0

{x ∈ λ conv(SB)} = inf
λ≥0

{x ∈ λ conv(SA)} ≥ inf
λ≥0

{x ∈ 2λA} = 1
2 ∥x∥A ,

and similarly ∥x∥A ≥ 1
2 ∥x∥B . ◀

▶ Definition 7. We say that a graph G = (V, E) is lattice unique if |V | = n ≥ 3 and there
exists an enumeration of its vertices v1, . . . , vn such that

The vertex induced subgraph G[v1, v2, v3] ≃ K3 is a triangle.
For i > 3 there exists distinct j, k, l < i such that G[vj , vk, vl] ≃ K3 and both (vi, vj) and
(vi, vk) are edges of G.

Suppose that A is a symmetric convex body with the URTC property, that A ⊂ R2

is compatible with A, and that G = CA(A) is lattice unique. Enumerate the points of
A = {v1, . . . , vn} according to the definition of lattice uniqueness. Without loss of generality
assume that v1 = 0. Then the URTC property of A combined with the lattice uniqueness of G

gives that v4, . . . , vn are uniquely determined from v2 and v3 and all contained in LA(v2, v3).
If moreover B is another convex body with the URTC property, B = {v′

1, . . . , v′
n} ⊂ R2

has v′
1 = 0 and is compatible with B, and CB(B) ≃ CA(A) via the graph isomorphism

φ : v′
i 7→ vi, then the linear map T : R2 → R2 defined by T : a1v′

2 + a2v′
3 7→ a1v2 + a2v3

satisfies that T |B = φ.
We will use this observation in the proof of Theorem 2 which we now provide.

SoCG 2021
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θ

Hk

Bθ(`)

S1(θ)

S2(θ)

zθ1

zθ2

Figure 6 Left: The points of H6 along with the corresponding lattice unique subgraph G0[H6].
Right: The attachment of the beam Bθ(ℓ).

Proof of Theorem 2. We choose e1, e2 ∈ R2 be such that ∥e1∥A = ∥e2∥A = ∥e1 − e2∥A = 2
and define the lattice L := LA(e1, e2). We also define the infinite graph G0 := CA(L) which
by the remarks following Definition 5 is isomorphic to the infinite triangular grid. Without
loss of generality we can assume that e1 and e2 satisfy that ∥e1∥2 = ∥e2∥2 = ∥e1 − e2∥2 = 2,
since there exists a non-singular linear transformation T such that ∥T (e1)∥2 = ∥T (e2)∥2 =
∥T (e1) − T (e2)∥2 = 2, and C(A) = C(T (A)). Note that in this setting we can use Lemma 6
to compare A to the disk of radius 1 and obtain 1

2 ∥x∥2 ≤ ∥x∥A ≤ 2∥x∥2 for every x ∈ R2.
We will construct G by specifying a finite point set A ⊂ R2 compatible with A and define

G = CA(A). The construction of A can be divided into several sub-constructions. We start
by describing a hexagon of points Hk for k ∈ N which satisfies that CA(Hk) is lattice unique.

▶ Construction 8 (Hk). For an illustration of the construction see the left-hand side of
Figure 6. For x, y ∈ L we write d(x, y) for the distance between x and y in the graph G0,
and for k ∈ N we define Hk = {x ∈ L | d(x, 0) ∈ {k, k + 1}}.

Using that G0 is the infinite triangular grid, it is easy to check that G0[Hk] is a lattice
unique graph by specifying an enumeration of its vertices satisfying the condition in Defin-
ition 7. Moreover, using that e1 and e2 satisfy ∥e1∥2 = ∥e2∥2 = ∥e1 − e2∥2 = 2 it follows
that the points {x ∈ L | d(x, 0) = k} ⊂ Hk lie on a regular hexagon Hk whose corners have
Euclidean distance exactly 2k to the origin. In particular any point p ∈ Hk has ∥p∥2 ≥

√
3k,

and thus ∥p∥A ≥
√

3
2 k by Lemma 6.

For a given θ ∈ [0, π) and ℓ ∈ N we will construct a set of points Bθ(ℓ) ⊂ R2 compatible
with A which constitute a “beam” of argument θ:

▶ Construction 9 (Bθ(ℓ)). See Figure 6 (right). Let eθ ∈ R2 be the vector of argument
θ with ∥eθ∥A = 2, and let fθ ∈ R2 be such that ∥fθ∥A = ∥fθ − eθ∥A = 2 (by the URTC
property we have two choices for fθ). For a given ℓ ∈ N we define

Bθ(ℓ) = {aeθ | a ∈ {−ℓ, . . . , ℓ}} ∪ {aeθ + fθ | a ∈ {−ℓ, . . . , ℓ − 1}}

As Bθ(ℓ) ⊂ LA(eθ, fθ) it is compatible with A. Moreover it is easy to specify an enumeration
of the vertices of C(Bθ(ℓ)) showing that it is lattice unique.

For a given k we want to choose ℓ as large as possible such that Bθ(ℓ) “fits inside” G0[Hk].
We then wish to “attach” Bθ(ℓ) to G0[Hk] with extra points S, the number of which does
neither depend on k nor on θ. We wish to do it in such a way that Ak

1(θ) := Bθ(ℓ)∪G0[Hk]∪S
is compatible with A. The precise construction is as follows:
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θ1

θ2

θ3

θ4

θ5

θ6

θ7

Figure 7 The final point set A where the point sets Ck(θ) are “glued” together by translating
them such that the contact graph realized by the union of the subsets Hk ⊂ Ck(θ) is lattice unique.

▶ Construction 10 (Ck(θ)). See Figure 6 (right). Consider the open line segment Lθ =
{reθ | r ∈ (−rmax, rmax)} where rmax is maximal with the property that for all points
x ∈ Lθ and all y ∈ Hk it holds that ∥x − y∥A > 4. Also let ℓ ∈ N be maximal such that
{aeθ | a ∈ {−ℓ, . . . , ℓ}} ⊂ Lθ. Note that

4 < dA({ℓeθ}, Hk) ≤ 6. Observe moreover that ℓ ≥
√

3
4 k − 3 as the points p ∈ Hk have

∥p∥A ≥
√

3
2 k. In particular we have the following property which we highlight for later use:

If k >
12√
3 − 1

it holds that ℓ >
k

4 . (1)

When ℓ is chosen in this fashion, we have that Bθ(ℓ) is contained in the interior of Hk.
Now, Bθ(ℓ) will constitute our beam in direction θ and we will proceed to show that we can
attach it to Hk, as illustrated, using only a constant number of extra points. That this can
be done is conceptually unsurprising but requires a somewhat technical proof.

We define S1(θ) to be extra points going from the boundary of Hk and zθ
1 to be the extra

point which connects Bθ(ℓ) and S1(θ). This attaches one end of the beam, Bθ(ℓ), to Hk, and we
similarly define S2(θ) and zθ

2 to attach the other end. See Figure 6 (right). In the full version
we show that |Si(θ)| ≤ 13 for i ∈ {1, 2}. Letting Ck(θ) = Hk ∪Bθ(ℓ)∪S1(θ)∪S2(θ)∪

{
zθ

1 , zθ
2
}

be the combination of the components completes the construction.

We are now ready to construct A which will consist of several translated copies Ck(θ).

▶ Construction 11 (A). By Lemma 4 we can find an ε ∈ (0, 1) and a finite set of directions
Θ ⊂ [0, π) such that for all linear maps T : R2 → R2 there exists θ ∈ Θ such that∣∣∣∣ ρA(θ)

ρT (B)(θ) − 1
∣∣∣∣ ≥ ε. (2)

That we can scale the deviation to be multiplicative rather than additive is possible because
0 < infθ∈[0,π) ρA(θ) ≤ supθ∈[0,π) ρA(θ) < ∞.

For each θ ∈ Θ we construct a copy of Ck(θ) = Hk ∪Bθ(ℓ)∪S1(θ)∪S2(θ)∪{zθ
1 , zθ

2} where k

is yet to be fixed (ℓ is of course determined by k and θ). We then choose translations tθ ∈ R2

for each θ ∈ Θ such that the sets (Hk + tθ)θ∈Θ are pairwise disjoint, and
⋃

θ∈Θ(Hk + tθ) ⊂ R2

is compatible with A and induces a lattice unique contact graph. We can choose (tθ)θ∈Θ
in numerous ways to satisfy this. One is depicted in Figure 7. Another is obtained by

SoCG 2021



3:10 Classifying Convex Bodies by Their Contact and Intersection Graphs

enumerating Θ = {θ1, . . . , θq} and defining tθi = ((2k + 3)e1 − (k + 1)e2) × (i − 1). The exact
choice is not important and picking one, we define A(k) =

⋃
θ∈Θ(Ck(θ) + tθ) which is a point

set compatible with A. Lastly, we set A = A
(⌈ 180

ε

⌉)
.

We are now ready for the final step of the proof:

Proving that no graph in C(B) contains a subgraph isomorphic to G = CA(A).

Suppose for contradiction that there exists a set of points B ⊂ R2 such that G is isomorphic
to a subgraph of CB(B). We may clearly assume that |A| = |B| and we let φ : A → B be a
bijection which is also a graph homomorphism when considered as a map CA(A) → CB(B).
The points

⋃
θ∈Θ(Hk + tθ) induce a lattice unique contact graph of A. Thus, we may write⋃

θ∈Θ(Hk + tθ) = {p1, . . . , pn} such that p1, p2 and p3 induce a triangle of G and such that
for i > 3 there exist distinct j, k, l < i such that pj , pk and pl induce a triangle and such
that (pi, pk) and (pi, pl) are edges of G. By translating the point sets A and B we may
assume that φ(p1) = p1 = 0. Then applying an appropriate linear transformation T , thus
replacing B by T (B), we may assume that φ(p2) = p2 and φ(p3) = p3. Finally, the discussion
succeeding Definition 7 implies that in fact φ|⋃

θ∈Θ
(Hk+tθ) is the identity.

As noted in Construction 11, there exists θ ∈ Θ such that
∣∣∣ ρA(θ)

ρT (B)(θ) − 1
∣∣∣ ≥ ε. The outline

of the remaining argument is as follows: The Euclidean distance between the “endpoints”
of the beam Bθ(ℓ) is 2ℓρA(θ), but the rigidity of

⋃
θ∈Θ(Hk + tθ) means that it is also

2ℓρT (B)(θ) + O(1). When k (and hence ℓ) is large, this will contradict the inequality above.
We refer the reader to the full version of the paper for the technical details. ◀

▶ Remark 12. We claimed that the proof of the part of Theorem 1 concerning unit distance
graphs is identical to the proof above. In fact, if we replace C(X) by U(X) for X ∈ {A, B}
in the statement of Theorem 2, the result remains valid. To prove it we would construct A
in precisely the same manner. The important point is then that the comments immediately
prior to Theorem 1 concerning the rigidity of the realization of lattice unique graphs remains
valid. If in particular B ⊂ R2 satisfies that UA(A) ≃ UA(B) via the isomorphism φ : A → B,
we may assume that φ|⋃

θ∈Θ
(Hk+tθ) is the identity as in the proof above. The remaining part

of the argument comparing the lengths of the beams then carries through unchanged. In
conclusion, we are only left with the task of proving Theorem 1 for intersection graphs.

3 Intersection Graphs

In this section we prove Theorem 3. Consider two convex bodies A and B. We are going to
prove that if I(A) = I(B), then for every graph G ∈ C(A), there exists a graph Hk(G) ∈ I(A)
with properties as stated in the following lemma.

▶ Lemma 13. Assume that I(A) = I(B). For any G ∈ C(A) and k ≥ 7, there exists a graph
Hk(G) ∈ I(A) satisfying the following: Let X ∈ {A, B}. For any vertex w of G, there is a
corresponding vertex s0(w) of Hk(G) with the following properties. Consider an arbitrary
drawing of Hk(G) as in intersection graph of X and any two vertices w, w′ of G and let
s0 := s0(w) and s′

0 := s0(w′). Then ∥s0s′
0∥X ≥ 4k − 18. Furthermore, if ww′ is an edge of

G, then ∥s0s′
0∥X ≤ 4k + 2.

As is evident from the lemma, the vertices (s0(u))u∈V (G), of any drawing of Hk(G) as
an intersection graph of X, are placed approximately as the vertices of a drawing of G as
a contact graph of scaled convex body 2kX. To capture the uncertainty, we introduce the
concept of ε-overlap graphs.
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▶ Definition 14 (ε-overlap Graph). Let ε > 0 and A ⊂ R2 be a symmetric convex body, and
let v1, . . . , vn ∈ R2 be n points in the plane. Suppose that for any i, j ∈ [n], ∥vivj∥A ≥ 2 − ε.
A graph G with vertex set [n] and edge set satisfying E(G) ⊆

{
(i, j) ∈ [n]2

∣∣ ∥vivj∥A ≤ 2
}

is
called an ε-overlap graph of A. We say that {v1, . . . , vn} realize the graph G as an ε-overlap
graph of A. Further, we denote by Cε(A) the set of graphs that can be realized as ε-overlap
graphs of A.

We next show how Lemma 13 leads to a proof of Theorem 3. First, the following lemma
provides a reduction from ε-overlap graphs to contact graphs. The proof is a standard
compactness argument and can be found in the full version of the paper.

▶ Lemma 15. Let G1 = (V, E1) be a graph and A a convex body. If for every ε > 0, it holds
that G1 ∈ Cε(A), then there is a graph G2 = (V, E2) ∈ C(A) such that E1 ⊆ E2.

The following lemma uses Lemma 13 to show that if I(A) = I(B), then any G ∈ C(A) is
an ε-overlap graph of B for all ε > 0.

▶ Lemma 16. Assume that I(A) = I(B). For any G ∈ C(A), and any ε > 0, G ∈ Cε(B).

Proof. Write G = (V, E) and let k ≥ 7 be arbitrary. The assumption I(A) = I(B) in
particular implies that Hk(G) ∈ I(B). Consider a drawing of Hk(G) as an intersection graph
of B and define B :=

{
su

0
2k+1

∣∣∣ u ∈ V
}

. It follows from Lemma 13 that IB(B) is a drawing

of G as a
(

2 − 4k−18
2k+1

)
-overlap graph of B. Since 4k−18

2k+1 ≥ 2 − 10/k, it follows that G is an
10/k-overlap graph of B. As k ≥ 7 was arbitrary, the desired result follows. ◀

Theorem 3 is an easy consequence of Lemma 15 and Lemma 16:

Proof of Theorem 3. Let the graph G ∈ C(A) have the properties of the theorem, i.e., for
all H ∈ C(B), G is not isomorphic to a subgraph of H. Suppose that I(A) = I(B). By
Lemma 15 and 16, there is a graph H = (V, E) ∈ C(B) such that E′ ⊆ E, which is a
contradiction. ◀

It remains to prove Lemma 13. We will proceed to describe the construction of Hk(G)
and provide several lemmas needed in order to prove that it satisfies the desired properties.

The proofs of these lemmas and of Lemma 13 are deferred to the full version of the paper.
For each vertex u ∈ V (G), we make a copy of a graph Qk to be defined in the following.

The vertices of Hk(G) will in turn be the union of the vertices of these copies. We will
construct Qk to have a designated vertex s0 and a cycle αk with the property that for
every drawing of Qk as an intersection graph of X ∈ {A, B}, the cycle αk is contained in
(and winds all the way around) the annulus

{
x ∈ R2

∣∣ ∥s0x∥X ∈ (2k − 3, 2k]
}

. We may then
informally view αk as an upscaled copy of X up to a slight imprecision that, compared to the
size, decreases in k. In order to construct Qk, we first define another graph Pk (which will be
contained in Qk) with a vertex s0 such that in every drawing of Pk as an intersection graph,
s0 is contained in k nested disjoint cycles. A priori, it is not clear what it means for s0 to be
contained in a cycle of the graph in every drawing, since the drawing is not necessarily a
plane embedding of the graph. However, as the following lemma shows, it is well-defined if
Pk is triangle-free. We believe the result to be well-known but have been unable to find the
exact formulation that we require in the literature.

▶ Lemma 17. If G is a triangle-free graph then every drawing of G as an intersection graph
is a plane embedding.
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t0, s0
s1

a1

b1
t1s2

a2

b2
κ1κ2t2

σ1

σ2

Figure 8 The construction of P2.

Proof. See the full version of the paper. ◀

We are now ready to define Pk ∈ I(A) for any k > 0. Besides being triangle-free, our aim
is that Pk should have the following properties:
1. There is a vertex s0 such that in any drawing of Pk as an intersection graph of A and B,

s0 is contained in k nested disjoint, simple cycles σ1, . . . , σk.
2. There is a path κk from a vertex sk to a leaf tk such that in any drawing of Pk as an

intersection graph of A or B, the path κk is on the boundary of the outer face.

▶ Construction 18 (Pk). See Figure 8. We define Pk = IA(Ak), where Ak is a set of points
to be defined inductively. Let A0 = {0} and P0 = IA(A0) be the trivial graph consisting
of one vertex s0 = t0, which is also the path κ0. Suppose now that Pk−1 = IA(Ak−1) has
been defined. In order to define Pk, we first add vertices ak, bk, sk and edges such that
τk := (ak, tk−1, bk, sk) is a 4-cycle. We now add vertices and edges that together with the
path ak, sk, bk form a cycle σk. We make σk so long that there exists a drawing as an
intersection graph in which Pk−1 is contained in σk with respect to both A and B. We finish
the construction of Pk by adding vertices and edges that together with sk form a path κk

from sk to a vertex tk, where κk is so long that it cannot be contained in the cycle σk, neither
as an intersection graph of A nor B. (Note that a path of length n contains n/2 independent
vertices. A simple volume argument implies a bound on the number of independent vertices
contained in the region enclosed by a cycle of a plane intersection embedding.) Let Ak consist
of Ak−1 together with all the added points.

▶ Lemma 19. The graph Pk has properties 1–2.

Proof. See the full version of the paper. ◀

The most important property of Pk is that every vertex u ∈ σk has distance Ω(k) to s0
in any drawing of Pk as intersection graph of any X ∈ {A, B} in the norm ∥·∥X . This is
exactly what we will use when constructing Qk.

▶ Lemma 20. Let X ∈ {A, B}. Consider any drawing of Pk as an intersection graph of X.
For any vertex u ∈ σk, we have ∥s0u∥X > 2(k/9 − 1).

Proof. See the full version of the paper. ◀

Having defined Pk we are now ready for the construction of Qk.

▶ Construction 21 (Qk). We here define a graph Qk ∈ I(A) by specifying a drawing of Qk

as an intersection graph of A. Let k′ := 18(k + 1). We start with Pk′ and explain what to
add to obtain Qk. Let u0, . . . , un−1 be the vertices of σk′ in cyclic, counter-clockwise order.
Consider an arbitrary drawing of Pk′ as an intersection graph of A and a vertex ui. Note
that d :=

⌈
∥s0ui∥A−2

2

⌉
is the number of vertices needed to add in order to create a path from

s0 to ui. It follows from Lemma 20 that d ≥ 2k.
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s0
α1

α2

σk′

u0

un−1

u1

πn−1
π0
π1

Figure 9 A part of a graph Qk. The vertices vi(j) are only shown for j ∈ {1, 2}, and only edges
on paths πi and cycles α1, α2, σk′ are shown.

We want to minimize the vector of these values d with respect to each vertex ui ∈ σk′ .
To be precise, we define

(d0, . . . , dn−1) := min
(⌈

∥s0u0∥A − 2
2

⌉
, . . . ,

⌈
∥s0un−1∥A − 2

2

⌉)
,

where the minimum is with respect to the lexicographical order and taken over all drawings
of Pk′ as an intersection graph. Consider a drawing of Pk′ as an intersection graph realizing
the minimum and let P be the set of vertices in the drawing. For each vertex ui, we create
a path πi from s0 to ui as follows. Let vi be the unit-vector in direction ui − s0. We add
new vertices placed at the points vi(j) := s0 + 2jvi for j ∈ {1, . . . , di}. We now define the
vertices of Qk as Q := P ∪

⋃n−1
i=0 {vi(1), . . . , vi(di)} and define Qk = IA(Q). See Figure 9.

▶ Remark 22. By construction, there exists a drawing of Qk as an intersection graph of A.
If there does not exist one of B, we are done, since we then clearly have that I(A) ̸= I(B).
Now suppose that there exists a drawing of Pk′ as an intersection graph of B such that(⌈

∥s0u0∥B − 2
2

⌉
, . . . ,

⌈
∥s0un−1∥B − 2

2

⌉)
≺ (d0, . . . , dn−1), (3)

where ≺ denotes the lexicographical order. We can now define a graph QB
k ∈ I(B) from Pk′

in a similar way as we defined Qk by adding
⌈

∥s0ui∥B−2
2

⌉
vertices to form a path from s0 to

each ui. It then follows from (3) that QB
k /∈ I(A), so in this case we have likewise succeeded

in proving I(A) ̸= I(B). In the following, we therefore assume that Qk ∈ I(B) for any k and
that no drawing of Pk′ as an intersection graph of B satisfying (3) exists.

First we need to show that Qk contains a cycle αk as described earlier.

▶ Lemma 23. The set of edges of Qk contains the pairs vi(j)vi+1(j) for any i ∈ [n] and
j ∈ {1, . . . , k}, and for each j ∈ {1, . . . , k}, these edges thus form a cycle αj. In the specific
drawing of Qk as an intersection graph defined in Construction 21, the cycle αj is contained
in the annulus

{
x ∈ R2

∣∣ ∥s0x∥A ∈ [2j − 1, 2j]
}

.

Proof. See the full version of the paper. ◀

The above lemma shows that the cycle αk behaves nicely in one particular drawing of Qk

as an intersection graph. To see that something similar holds for every drawing, we refer the
reader to the full version.

We now provide the definition of the graph Hk(G), as mentioned in the beginning of this
section.
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s0 s′0A

αj

π′i′

s0 s′0A

αk−3 α′k−3

A′

Figure 10 From the proof of Lemma 13 (notation as in Lemma 25). There is either an intersection
between αj and π′

i′ (left) or between αk−3 and α′
k−3 (right) that violates Lemma 25.

▶ Construction 24 (Hk(G)). For any G ∈ C(A), consider a fixed drawing of G as a contact
graph of A. For each vertex w of G, we make a copy of the drawing of Qk as an intersection
graph as defined in Construction 21 which we translate so that s0 is placed at sw

0 := (2k−2)w.
We then add all edges induced by the vertices, and the result is denoted as Hk(G).

The following lemma characterizes some of the edges of Hk(G) and will be crucial in the
proof of Lemma 13.

▶ Lemma 25. Consider two vertices w, w′ of a drawing of a graph G as a contact graph.
Denote by Q and Q′ the copies of Qk in Hk(G) corresponding to w and w′, respectively,
such that s0, πi, αj , vi(j) denote objects in Q and s′

0, π′
i, α′

j , v′
i(j) denote objects in Q′. If

vi(j)v′
i′(j′) is an edge of Hk(G), then j + j′ ≥ 2k − 4.

If ww′ is an edge of G, then there is an edge vi(k)v′
i′(k) in Hk(G).

Proof. See the full version of the paper. ◀

As mentioned, the final proof of Lemma 13 is deferred to the full version, but we can now
provide the main ideas. We first need to prove that in any drawing of Qk as an intersection
graph with respect to X ∈ {A, B}, any cycle αj is contained in an annulus only slightly
wider than as stated in Lemma 23. Furthermore, αj winds around s0 in the sense that if we
trace the full curve αj , the change of argument with respect to s0 will be ±2π. To prove the
lower bound ∥s0s′

0∥X ≥ 4k − 18 in Lemma 13, we exclude that the distance is smaller by
dividing into two cases depending on the actual distance. Figure 10 depicts the two cases
for each of which we prove that there would be an edge in Hk(G) violating Lemma 25. The
upper bound ∥s0s′

0∥X ≤ 4k + 2 when ww′ is an edge of G is likewise an easy consequence of
Lemma 25, as otherwise, an edge vi(k)v′

i′(k) would be missing from Hk(G).

4 Concluding remarks

It is natural to investigate the special case of convex bodies with the URTC property. Here
our proof of Theorem 2 fails since the hexagons are not rigid structures. Together with
Konrad Swanepoel, we have promising progress in generalizing Theorem 1 to also handle
this case.

Another interesting direction is to consider convex bodies in three and higher dimensions.
Already in three dimensions, it appears to be very difficult to characterize when two bodies
induce the same graph classes.
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