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Abstract
Customizable contraction hierarchies are one of the most popular route planning frameworks in
practice, due to their simplicity and versatility. In this work, we present a novel algorithm for
finding k-nearest neighbors in customizable contraction hierarchies by systematically exploring
the associated separator decomposition tree. Compared to previous bucket-based approaches, our
algorithm requires much less target-dependent preprocessing effort. Moreover, we use our novel
approach in two concrete applications. The first application are online k-closest point-of-interest
queries, where the points of interest are only revealed at query time. We achieve query times of about
25 milliseconds on a continental road network, which is fast enough for interactive systems. The
second application is travel demand generation. We show how to accelerate a recently introduced
travel demand generator by a factor of more than 50 using our novel nearest-neighbor algorithm.
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1 Introduction

Motivated by route planning in road networks, the last two decades have seen intense
research on speedup techniques [4] for Dijkstra’s shortest-path algorithm [17], which rely
on a slow preprocessing phase to enable fast queries. Particularly relevant to real-world
production systems are customizable speedup techniques, which split preprocessing into
a metric-independent part, taking only the network structure into account, and a metric-
dependent part (the customization), incorporating edge weights (the metric). A fast and
lightweight customization is a key requirement for important features such as real-time
traffic updates and personalized metrics. The most prominent customizable techniques are
customizable route planning (CRP) [12] and customizable contraction hierarchies (CCHs) [16].
Both achieve similar performance but with different trade-offs, and both are in use in industry.

Modern map-based services must support not only point-to-point queries but also many
other types of queries. Over the years, both CRP and CCHs have been extended to numerous
types of queries and problems. Efentakis and Pfoser [18] propose one-to-all and one-to-many
algorithms within the CRP framework, and Efentakis et al. [19] extend CRP to nearest-
neighbor queries. Delling and Werneck [14] present alternative CRP-based algorithms for
the one-to-many and nearest-neighbor problem. Baum et al. [6] extend CRP so that it can
find energy-optimal paths for electric vehicles, and Kobitzsch et al. [30] so that it can find
multiple alternate routes from the source to the target.
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18:2 Nearest-Neighbor Queries in CCHs and Applications

Customizable contraction hierarchies and in particular contraction hierarchies (CHs) [23],
the predecessors of CCHs, have also received considerable attention; see [4] for a recent
overview. Since each CCH is a CH, all algorithms operating on CHs carry over to CCHs.
Delling et al. [11] introduce PHAST, a one-to-all algorithm on CHs. RPHAST [13] is an
extension to the one-to-many problem. Alternatively, one-to-many queries on CHs can be
solved using the bucket-based approach by Knopp et al. [29]. Geisberger [22] extends the
bucket-based approach to the nearest-neighbor problem.

In this work, we introduce a novel algorithm for finding k-nearest neighbors in CCHs.
The k-nearest neighbor problem takes as input a graph G = (V, E), a source s ∈ V , a
nonempty set T ⊆ V of targets, and an integer k with 1 ≤ k ≤ |V |. The goal is to find
the k targets ti ∈ T closest to s, i.e., those that minimize dist(s, ti), where dist(v, w) is the
shortest-path distance from v to w. Modern nearest-neighbor algorithms tailored to road
networks work in up to four phases [14, 13, 2]. Preprocessing takes as input only the network
structure, customization incorporates the metric into the preprocessed data, selection (or
target indexing) incorporates the set of targets into the data, and queries take a source and
find the k targets closest to the source. Our algorithm follows this standard four-phase setup.

Note that there is already a nearest-neighbor algorithm by Geisberger [22] which operates
on CHs. However, its relatively heavy selection phase makes it only suitable for offline
queries, where the set of targets is known in advance. This is the case for simple store locators
of franchises. However, more common in interactive map-based services are online queries,
where the set of targets is only revealed at query time. An example is the computation of
the closest businesses whose name contains a user-defined keyword. We are not aware of any
CH-based algorithm that can solve such queries.

There is indeed an algorithm [14] for online nearest-neighbor queries within the CRP
framework. As already mentioned, however, CRP and CCHs are on a par with each other
and both used in industry with good reasons. For a production system based on the CCH
framework, it is usually not desirable to simultaneously maintain a CRP setup to support
nearest-neighbor queries. All types of queries should be solvable within the CCH framework.

Related Work. We start by briefly reviewing the CH- and CRP-based nearest-neighbor
algorithms mentioned above. Contraction hierarchies (CHs) [23] are a point-to-point route
planning technique that is much faster than Dijkstra’s algorithm (four orders of magnitude
on continental networks). CHs replace systematic exploration of all vertices in the network
with two much smaller search spaces (forward and reverse) in directed acyclic graphs, in
which each edge leads to a “more important” vertex.

The basic idea behind the bucket-based nearest-neighbor algorithm [22] is to precompute
and store the reverse CH search spaces of the targets during the selection phase. More
precisely, if v appears in the reverse search space from a target t with distance y, then (t, y)
is stored in a bucket B(v) associated with v. The bucket entries are sorted by nondecreasing
distance. The query phase of the bucket-based nearest-neighbor algorithm computes the
forward CH search space from the source s. For each vertex v in the search space from s

with distance x, we scan the bucket B(v). For each entry (t, y) ∈ B(v), we obtain an s–t

path of length x + y. The algorithm maintains the k closest targets seen so far and stops
bucket scans when x + y reaches the distance to the k-th closest target found so far.

Customizable route planning (CRP) [12] is a point-to-point route planning technique that
splits preprocessing into a metric-independent part and a metric-dependent customization.
Metric-independent preprocessing partitions the network into roughly balanced cells and
creates shortcuts between each pair of boundary vertices in the same cell. Customization
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assigns costs to the shortcuts by computing shortest paths within each cell. Queries run a
modification of bidirectional search that uses the shortcuts to skip over cells that contain
neither the source nor the target. For better performance, we use multiple levels of overlays.

The CRP-based nearest-neighbor algorithm [14] marks all cells that contain one or more
targets during the selection phase. Queries run a modification of Dijkstra’s algorithm that
skips over unmarked cells and descends into marked cells. Since the search discovers targets
in increasing order of distance, we can stop when the k-th target is reached.

Of course, there are also nearest-neighbor algorithms tailored to road networks that
are based on neither CRP nor CHs. Arguably the simplest one is incremental network
expansion (INE) [33], which runs Dijkstra’s algorithm until the k-th target is reached.
Another straightforward approach is incremental Euclidean restriction (IER) [33]. The basic
idea behind IER is to repeatedly retrieve the next closest target based on the straight-line
distance (e.g., using an R-tree [26]) and compute the actual distance to it using any shortest-
path algorithm as a black box. IER stops when the geometric distance to the next closest
target exceeds the shortest-path distance to the k-th closest target so far encountered.

Since IER had only been evaluated using Dijkstra’s algorithm, its performance was
generally regarded as uncompetitive in practice. In particular, IER combined with Dijkstra
cannot possibly be faster than INE. More recently, IER was combined with pruned highway
labeling [3], yielding one of the fastest nearest-neighbor algorithms in many cases [2, 1].

More sophisticated nearest-neighbor algorithms are SILC [34, 35], ROAD [32, 31], and
G-tree [40, 39]. Since previously published results had disagreed on the relative performance
of these algorithms, Abeywickrama et al. [2] carefully reimplemented and reevaluated them
once more. While G-tree was faster than SILC and ROAD in most cases, the differences
were relatively small. Delling and Werneck [14] compare the CRP-based nearest-neighbor
algorithm to G-tree, claiming that CRP outperforms G-tree. To sum up, all algorithms have
comparable performance, with selection and query times of the same order of magnitude.
However, a big advantage of CRP (and also of our algorithm) compared to the other
approaches is a fast and lightweight customization phase, enabling important features such
as real-time traffic updates and personalized metrics.

Our Contribution. We introduce a novel algorithm for finding k-nearest neighbors that
operates on CCHs. Our algorithm systematically explores the associated separator decompo-
sition tree in a way similar to nearest-neighbor queries [21] in kd-trees [7]. Its selection phase
is orders of magnitude faster than the one of previous bucket-based approaches, which makes
it a natural fit for online k-closest point-of-interest (POI) queries. On the road network
of Western Europe, we achieve selection times of about 20 milliseconds and query times
of a few milliseconds or less. This enables interactive online queries, which need to run
both the selection and query phase for each client’s request. We are not aware of any other
nearest-neighbor algorithm operating on CCHs that enables interactive online queries.

In addition to closest-POI queries, we also look at a second concrete application. We
show how a slightly modified version of our nearest-neighbor algorithm can be used for
travel demand generation (or mobility flow prediction). Here, the problem we consider is
computing the number Tvw of trips between each pair (v, w) of vertices v, w in a road network.
Depending on the expected length of the generated trips, we accelerate a recently introduced
demand generator [8] by a factor of more than 50.

Outline. Section 2 reviews the CCH framework. Section 3 describes our novel nearest-
neighbor algorithm in detail. Section 4 continues with two concrete applications in which our
algorithm can be used. Section 5 presents an extensive experimental evaluation of various
closest-POI algorithms and travel demand generators. Section 6 concludes with final remarks.
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18:4 Nearest-Neighbor Queries in CCHs and Applications

2 Preliminaries

We treat a road network as a bidirected graph G = (V, E) where vertices represent intersec-
tions and edges represent road segments. Each edge (v, w) has a nonnegative length ℓ(v, w)
that represents the travel time from v to w. A one-way road segment from v to w can be
modeled by setting ℓ(w, v) =∞. The shortest-path distance (i.e., travel time) from v to w

in G is denoted by dist(v, w). For simplicity, we assume that G is strongly connected.

Separator Decompositions. A separator decomposition [5] of a strongly connected n-vertex
bidirected graph G = (V, E) is a rooted tree T = (X , E) whose nodes X ∈ X are disjoint
subsets of V and that is recursively defined as follows. If n = 1, then T consists of a single
node X = V . If n > 1, then T consists of a root X ⊆ V that separates G into multiple
strongly connected subgraphs G0, . . . , Gd−1. The children of X are the roots of separator
decompositions of G0, . . . , Gd−1. For clarity, an element v ∈ V is always called vertex and an
element X ∈ X is always called node. We denote by TX the subtree of T rooted at X and
we denote by GX the subgraph of G induced by the vertices contained in TX . The vertex set
of GX is represented by V (GX), and the edge set by E(GX).

In general, a separator X ∈ X should be small, and the resulting subgraphs G0, . . . , Gd

should be balanced. Therefore, separator decompositions are typically obtained by recursive
dissection (e.g., using Inertial Flow [36], FlowCutter [27], or InertialFlowCutter [25]).

Nested Dissection Orders. A separator decomposition T of G induces a (not necessarily
unique) nested dissection order π on the vertices in G [24]. To obtain one, we number the
vertices in the order in which they are visited by a postorder tree walk of T , where the vertices
in each node are visited in any order. Note that the resulting order π = ⟨π0, . . . , πd−1, πd⟩ is
split into d+1 contiguous subsequences πi, where d is the number of children Yj of the root X

of T . The subsequences π0, . . . , πd−1 are nested dissection orders on V (GY0), . . . , V (GYd−1),
and πd is an arbitrary order on X. (In the presence of turn costs, picking πd carefully
improves performance [10].) We denote by π−1(v) the rank of v in π.

Customizable Contraction Hierarchies. Customizable contraction hierarchies (CCH) [16]
are a three-phase speedup technique to accelerate point-to-point shortest-path computations.
The preprocessing phase computes a separator decomposition of G, determines an associated
nested dissection order on the vertices in G, and contracts them in this order. To contract a
vertex v, it is temporarily removed, and shortcut edges are added between its neighbors. The
output of preprocessing is the input graph plus the shortcuts added during contraction. We
call this graph H. We denote by N↑

H(v) the set of neighbors of v in H ranked higher than v.
The customization phase computes the lengths of the edges in H by processing them

in bottom-up fashion. To process an edge (u, w), it enumerates all triangles {v, u, w} in H

where v has lower rank than u and w, and checks whether the path ⟨u, v, w⟩ improves the
length of (u, w). Alternatively, Buchhold et al. [9] enumerate all triangles {u, w, v′} in H

where v′ has higher rank than u and w, and check whether the path ⟨v′, u, w⟩ improves the
length of (v′, w), which accelerates customization by a factor of 2.

There are two query algorithms. First, one can run a bidirectional Dijkstra search on H

that only relaxes edges leading to vertices of higher ranks. Let a forward CCH search be a
Dijkstra search that relaxes only outgoing upward edges, and a reverse CCH search one that
relaxes only incoming downward edges. A CCH query runs a forward CCH search from the
source and a reverse CCH search from the target until the search frontiers meet.
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Algorithm 1 Recursive formulation of our nearest-neighbor algorithm. At the first call,
the parameter X is the root of the separator decomposition tree.

1 Function searchSepDecomp(X)
2 if the recursion threshold is deceeded then
3 examine all targets t ∈ T ∩ V (GX) in the subgraph GX

4 return
5 examine all targets t ∈ T ∩X in the separator X

6 C ← ∅
7 foreach child Y of X do
8 if T ∩ V (GY ) ̸= ∅ then
9 if s ∈ V (GY ) then

10 C ← C ∪ {(Y, 0)}
11 else
12 compute the distance dist(s, Y ) from s to a closest vertex in GY

13 C ← C ∪ {(Y, dist(s, Y ))}

14 foreach (Y, dist(s, Y )) ∈ C in ascending order of dist(s, Y ) do
15 if dist(s, Y ) is less than the distance to the k-th closest target seen so far then
16 searchSepDecomp(Y )

In addition, there is a query algorithm based on the elimination tree of H. The parent
of a vertex v in the elimination tree is the lowest-ranked vertex in N↑

H(v). Bauer et al. [5]
prove that the ancestors of a vertex v in the elimination tree are exactly the set of vertices
scanned by a Dijkstra-based CCH search from v. An elimination tree search from v therefore
scans all vertices in the CCH search space of v in order of increasing rank by traversing the
path in the elimination tree from v to the root. Since elimination tree queries use no priority
queues, they are usually faster than Dijkstra-based CCH queries.

3 Our Nearest-Neighbor Algorithm

Our algorithm for finding nearest neighbors in CCHs is inspired by the algorithm of Friedman
et al. [21] for finding nearest neighbors in kd-trees [7]. (However, our description requires
no knowledge of that algorithm.) During the search, we maintain the k closest targets seen
so far in a max-heap T̂ using their distances from the source as keys. Initially, T̂ = {⊥}
with key(⊥) = ∞. The basic idea is as follows: We systematically explore the separator
decomposition tree, but visit only nodes X whose corresponding subgraph GX contains
vertices that are closer to the source than the k-th closest target found so far. For each
visited node X, we compute the shortest-path distance from the source to each target in the
separator X (if any), and update T̂ accordingly.

The precise algorithm is most easily formulated as a recursive procedure (see Algorithm 1).
It takes a node X in the separator decomposition tree as parameter. At the first call, X is
the root of the separator decomposition. The first step of the procedure is to examine all
targets t ∈ T ∩X in the separator X. To examine a target t, we compute the shortest-path
distance dist(s, t) from s to t with a standard elimination tree search. If dist(s, t) is less than
the maximum key in T̂ , we insert t into the heap. If T̂ now contains k + 1 elements, we
delete the maximum element from the heap and discard it.
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18:6 Nearest-Neighbor Queries in CCHs and Applications

Next, we loop over all children Y of X in the separator decomposition tree. If the
subgraph GY induced by the vertices in TY contains any targets, we add a pair (Y, dist(s, Y ))
to a set C. We denote by dist(s, Y ) the shortest-path distance from s to a closest vertex in
GY , i.e., dist(s, Y ) = minv∈V (GY ) dist(s, v). If GY contains the source, this distance is zero.
Otherwise, we have to compute it, which we will discuss in the next sections.

Finally, we loop over all pairs (Y, dist(s, Y )) ∈ C in ascending order of distance from the
source. If dist(s, Y ) is less than the distance to the k-th closest target seen so far, we recurse
on Y . Otherwise, TY cannot contain better solutions than those already known.

Note that when GX is large but contains only a few targets, it is less costly to loop
over all these targets than to explore TX until the leaves are reached. Therefore, when the
number of targets in GX drops below a certain threshold, we stop the recursion and examine
all targets t ∈ T ∩ V (GX) in GX (we use a recursion threshold of 8 in our experiments,
determined experimentally). The following sections work out the remaining details.

Accessing Vertices and Targets in Subgraphs. Given a node X in the separator decompo-
sition tree, our algorithm requires easy access to the set of vertices and the set of targets in
the subgraph GX and in the separator X. Accessing the set of vertices in GX and in X is
particularly easy. To improve cache efficiency, the vertices in a CCH are reordered according
to the order of contraction. That is, the vertices are numbered in the order in which they are
visited by a postorder tree walk of T , where the vertices in each node are visited in any order.
Hence, for each X ∈ X , the vertices in GX are numbered contiguously, with the vertices in
GX \X appearing before the vertices in X. To support easy access to the vertices in GX and
in X, we only need to store three indices with each X: the vertex in GX with the smallest
index, the vertex in GX with the largest index, and the vertex in X with the smallest index.

The set T of targets is represented by a sorted array. To make the targets in subgraphs
(or separators) easily accessible, we use an auxiliary array A of size |V |+ 1. The element A[i],
0 ≤ i ≤ |V |, stores the number of targets among the first i vertices. Note that A can be filled
by a single sweep through T and A. To access the targets in GX (or X), we first retrieve
the index l of the first vertex and the index r of the last vertex in GX (or X), as discussed
above. The number of targets in GX (or X) is then A[r + 1]−A[l], and the actual targets
are stored contiguously in T [A[l]], . . . , T [A[r + 1]− 1].

Computing Shortest Paths to Subgraphs. The most straightforward approach to compute
the distance dist(s, X) from s to a closest vertex in GX is a standard Dijkstra-based CCH
query, where the reverse search is initialized with all vertices in GX . Let dr and Qr be the
distance labels and the queue of the reverse search, respectively. To initialize the reverse
search, we set dr[v] = 0 for each vertex v ∈ V (GX), dr[w] =∞ for each vertex w ∈ V \V (GX),
and Qr = V (GX). This yields a correct but inefficient algorithm. However, we can do better.

We define the boundary B(X) of GX as the set of vertices in V \V (GX) that are adjacent
to a vertex in GX , i.e., B(X) = {w ∈ V \ V (GX) : (v, w) ∈ E, v ∈ V (GX)}. Note that the
boundary of any GX is easily accessible without any additional preprocessing.

▶ Lemma 1. Let u be any vertex in GX . Then, π−1(b) > π−1(u) for each b ∈ B(X).

Proof. Consider any vertex b ∈ B(X). Let b be contained in the node Y /∈ V (TX). We claim
that Y lies on the path in T from X to the root R. Assume otherwise, i.e., Y does not lie
on the X–R path. Let Z be the lowest common ancestor of X and Y . Since Z separates GX

and GY in GZ , there is no edge in G that connects GX and GY . This contradicts that b is
adjacent to a vertex in GX . Thus, Y lies on the X–R path. Since the vertices are numbered
in the order in which they are visited by a postorder tree walk of T , the vertices in Y are
assigned higher ranks than the ones in X. In particular, we have π−1(b) > π−1(u). ◀
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▶ Theorem 2. Let u be the highest-ranked vertex in GX . Then, B(X) = N↑
H(u).

Proof. Let b be a vertex in B(X). We claim that b ∈ N↑
H(u). Since GX is by definition

connected, there is a path ⟨u, v0, . . . , vk, b⟩ in G with vi ∈ GX . Since π−1(vi) < π−1(u) by
definition and π−1(u) < π−1(b) by Lemma 1, all vi are contracted before u and b. Therefore,
CCH preprocessing adds a shortcut (u, b), and thus b ∈ N↑

H(u).
Conversely, let w be a vertex in N↑

H(u), i.e., there is an edge (u, w) in H. Since u is the
highest-ranked vertex in GX and π−1(u) < π−1(w), we have w ∈ V (G) \ V (GX). We claim
that w ∈ B(X). Assume otherwise, i.e., w ∈ V \ (V (GX) ∪B(X)). Since B(X) separates u

and w in G, the shortcut (u, w) corresponds to a path ⟨u, . . . , b, . . . , w⟩ in G with b ∈ B(X).
By construction, b is contracted before u and w. This contradicts Lemma 1. ◀

If s ∈ V (GX), then dist(s, X) = 0. So, assume s /∈ V (GX). Since B(X) separates s

and GX , and all edge lengths are nonnegative, there is a closest vertex v∗ in GX such that
there is a shortest s–v∗ path ⟨s, . . . , b, v∗⟩, b ∈ B(X). Note that (b, v∗) is a shortest edge
among all edges (b, v) ∈ E, v ∈ V (GX); otherwise, v∗ would not be a closest vertex in
GX . Therefore, dist(s, X) = minb∈B(X)(dist(s, b) + min{(b,v)∈E:v∈V (GX )} ℓ(b, v)). That is,
it suffices to initialize the reverse search of the query with all boundary vertices. More
precisely, we set dr[b] = min{(b,v)∈E:v∈V (GX )} ℓ(b, v) for each vertex b ∈ B(X), dr[w] =∞ for
each vertex w ∈ V \ B(X), and Qr = B(X). This yields a reasonable algorithm, but we
can do even better by exploiting elimination tree queries, which are usually faster than the
Dijkstra-based CCH queries we have used so far.

Recall that the CCH search space S(b) of a vertex b corresponds to the path in the
elimination tree from b to the root r. An elimination tree search from b therefore scans all
vertices in S(b) in order of increasing rank by traversing the b–r path in the elimination tree.
Given a set B of vertices, it is not clear how to enumerate all vertices in the union of the
search spaces, since the union generally corresponds to a subtree rather than a path in the
elimination tree. However, we can exploit the fact that in our case B is the boundary of GX .

▶ Theorem 3. Let l be the lowest-ranked vertex in B(X). Then, S(l) =
⋃

b∈B(X) S(b).

Proof. Since l ∈ B(X), we trivially have S(l) ⊆
⋃

b∈B(X) S(b), so let b ̸= l be a vertex
in B(X). We claim that S(b) ⊆ S(l). By Theorem 2, the highest-ranked vertex u in GX

is adjacent to both l and b. Since π−1(u) < π−1(l) < π−1(b), CCH preprocessing adds a
shortcut (l, b) when u is contracted. Therefore, we have b ∈ S(l) and thus S(b) ⊆ S(l). ◀

By Theorem 3, we can compute dist(s, X) with a standard elimination tree query from s

to the lowest-ranked vertex in B(X), where we initially set dr[b] = min{(b,v)∈E:v∈V (GX )} ℓ(b, v)
for each vertex b ∈ B(X). Since a lower bound on dist(s, X) suffices to preserve the correctness
of our nearest-neighbor algorithm, we can also initialize the distance labels to zero. The
resulting lower bound is only slightly worse than the exact distance, but initialization is
somewhat faster. We observed the lowest running times when using lower bounds.

Accelerating Shortest-Path Searches. Note that the forward searches of all elimination
tree queries done during the same nearest-neighbor query start at the same source. Unless
we use special pruning criteria [9], the forward searches compute identical distance labels.
To further accelerate our nearest-neighbor algorithm, we run the forward search once before
the systematic exploration of the separator decomposition tree. Whenever we compute
the distance to a target or subgraph, we run only the reverse search, which accesses the
precomputed distance labels of the forward search.

SEA 2021



18:8 Nearest-Neighbor Queries in CCHs and Applications

After scanning a vertex v, a standard elimination tree search immediately initializes the
distance label of v to ∞, since it is not accessed anymore afterwards. We maintain this
initialization approach for the reverse searches. The forward search, of course, must not
immediately initialize the distance labels. Instead, after the exploration of the separator
decomposition tree, we traverse the path in the elimination tree from the source to the root
once again, and initialize the forward distance label of each visited vertex.

4 Applications

We continue with two substantially different applications in which our nearest-neighbor
algorithm can be used. An obvious application are k-closest POI queries in map-based
services. We can use our nearest-neighbor algorithm as is for this application, without further
modifications. Afterwards, we look at a more abstract application (travel demand generation)
where we make slight modifications to our algorithm.

4.1 Online Closest-POI Queries

Recall that modern closest-POI algorithms [14, 13, 2] work in up to four phases: preprocessing,
customization, selection, and queries. We now divide the work our nearest-neighbor algorithm
does into these standard phases. Note that our nearest-neighbor algorithm does nothing
else but the standard CCH preprocessing and customization during the first two phases.
To support easy access to the set of vertices in a subgraph or separator, we indeed need
to associate three indices with each node X ∈ X but an efficient representation of the
separator decomposition already stores this information. Therefore, we reuse the standard
CCH preprocessing and customization, without further modifications.

The selection phase runs POI-dependent preprocessing. The only preprocessed data that
depends on the set P of POIs is the auxiliary array A, which makes the POIs in a subgraph
or separator easily accessible. As already mentioned, A can be filled by a single sweep
through P and A. Finally, the query phase runs the systematic exploration of the separator
decomposition tree (including the forward search immediately before the exploration and the
initialization of the forward distance labels immediately after the exploration).

Note that our selection phase is lightweight and (as our experiments will show) orders
of magnitude faster than the one of previous bucket-based approaches. This makes our
nearest-neighbor algorithm a natural fit for online k-closest POI queries, where the POIs are
only revealed at query time. In this case, we need to run both the selection and query phase
for each client’s request. Except for simple store locators of franchises, online queries are
more common than offline queries in interactive map-based services. For example, whenever
the set of POIs is obtained from user-defined keywords, we face online queries.

4.2 Travel Demand Generation

A substantially different application in which our nearest-neighbor algorithm can be used is
travel demand generation. Here, the problem we consider is computing the number Tvw of
trips between each pair (v, w) of vertices v, w ∈ V . This problem arises when we want to
generate large-scale benchmark data for evaluating transportation algorithms, or when we
want to predict mobility flows. This section shows how our nearest-neighbor algorithm can
be used to accelerate a recently introduced travel demand generator [8].
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Radiation Model. The foundation for the aforementioned demand generator is the radiation
model [37]. This model assumes that each vertex v ∈ V has a nonnegative number mv

of inhabitants and a nonnegative amount nv of opportunities. We denote by M the total
population in G and by N the total number of opportunities in G. The mobility flow out of
each vertex is proportional to its population. Destination selection is based on the following
main idea: Each traveler assigns to all opportunities a fitness or attractiveness value, drawn
independently from a common distribution. Then, the traveler selects the closest opportunity
with a fitness higher than the traveler’s fitness threshold, drawn from the same distribution.
The radiation model with selection [38] decreases the probability of selecting an opportunity
by a factor of 1 − λ. Intuitively, increasing λ increases the expected trip length. In the
simplest version, the number of opportunities is approximated by the population, i.e., there
are M opportunities in a graph with a population of M .

Previous Implementations. There are two practical implementations [8] of the radiation
model. DRAD obtains high-quality solutions based on shortest-path distances and TRAD
obtains high performance but uses geometric distances. Both implementations generate one
trip after another. First, they draw the origin O from a discrete distribution determined
by the probability function Pr[O = v] = mv/M . Second, they choose the number Ofit of
opportunities with a fitness higher than the traveler’s fitness threshold uniformly at random
in 0..N . Third, they draw the number Osel of selectable opportunities from a binomial
distribution with Ofit trials and success probability 1− λ. It remains to find the selectable
opportunity closest to O, given the total number Osel of selectable opportunities in G. This
is realized differently by the two implementations.

DRAD draws the number Oint of opportunities that are closer to O than any selectable
opportunity from a negative hypergeometric distribution determined by Osel and N , and
runs Dijkstra’s algorithm from O, stopping as soon as Oint + 1 opportunities are visited. The
last vertex scanned by the search is the destination of the current trip.

The basic idea of TRAD is to find the selectable opportunity closest to O using a nearest-
neighbor query [21] in a kd-tree [7]. Each node in a kd-tree corresponds to a region of the
plane. The region of the root is the whole plane and the leaves correspond to small disjoint
blocks partitioning the plane. The query algorithm traverses the kd-tree, starting at the root,
and maintaining the number Osel(v) of selectable opportunities in the region corresponding
to the current node v. Let Otot(v) be the total number of opportunities in the region of v.

When the traversal reaches an interior node v in the kd-tree, the algorithm draws the
number Osel(l) of selectable opportunities in the region of the left child l from a hypergeometric
distribution with Osel(v) draws without replacement from a population of size Otot(v)
containing Otot(l) successes. The number Osel(r) of selectable opportunities in the region
corresponding to the right child r is set to Osel(v) − Osel(l). The algorithm then recurses
on the child whose region is closer to O, and when control returns, it recurses on the other
child. The search is pruned at any vertex v with Osel(v) = 0, and at any vertex whose region
is farther from O than the closest selectable opportunity seen so far.

When the traversal reaches a leaf node v, the algorithm samples Osel(v) selectable
opportunities in the region corresponding to v. For each of these opportunities, the algorithm
checks whether it improves the closest selectable opportunity seen so far.

Our Implementation. We introduce a new implementation of the radiation model, which
we call CRAD. Our implementation follows TRAD but uses nearest-neighbor queries in a
customizable contraction hierarchy rather than in a kd-tree. In this way, we combine the
efficient tree-based sampling approach from TRAD with shortest-path distances. As a result,
our implementation obtains high-quality solutions like DRAD, but at much lower cost.
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Algorithm 2 Recursive procedure for finding the closest selectable opportunity in the
subgraph GX , given the number Osel(GX) of selectable opportunities in GX .

1 Function findClosestSelectableOpportunity(X, Osel(GX))
2 if the recursion threshold is deceeded then
3 sample Osel(GX) selectable opportunities in the subgraph GX

4 return
5 ⟨Osel(GY0), . . . , Osel(GYd−1), Osel(X)⟩ ←

multiHypergeomVariate(Osel(GX), ⟨Otot(GY0), . . . , Otot(GYd−1), Otot(X)⟩)
6 sample Osel(X) selectable opportunities in the separator X

7 C ← ∅
8 foreach child Y of X do
9 if Osel(GY ) > 0 then

10 if O ∈ V (GY ) then
11 C ← C ∪ {(Y, 0)}
12 else
13 compute the distance dist(O, Y ) from O to a closest vertex in GY

14 C ← C ∪ {(Y, dist(O, Y ))}

15 foreach (Y, dist(O, Y )) ∈ C in ascending order of dist(O, Y ) do
16 if dist(O, Y ) is less than distance to currently closest select. opportunity then
17 findClosestSelectableOpportunity(Y, Osel(GY ))

To use our nearest-neighbor algorithm in CRAD, we only need to make slight modifications
to the procedure presented in Section 3 (see Algorithm 2 for the modified procedure). In
addition to a node X in the separator decomposition tree, it now takes the number Osel(GX)
of selectable opportunities in GX as second parameter. At the first call, X is the root of
the separator decomposition and Osel(GX) is the number Osel of selectable opportunities
in G, obtained as before in DRAD and TRAD. Let Y0, . . . , Yd−1 be the children of X.
As the first step, the procedure now distributes the Osel selectable opportunities in GX

over the subgraphs GY0 , . . . , GYd−1 and the separator X. In contrast to TRAD where the
opportunities are distributed among exactly two regions (left and right child), we now have
d + 1 regions (d children and the separator). Therefore, Osel(GY0), . . . , Osel(GYd−1), Osel(X)
obey a multivariate hypergeometric distribution.

We can think of this distribution as drawing Osel(GX) balls without replacement from an
urn containing Otot(GYi

) balls of type i for i = 0, . . . , d− 1 and Otot(X) balls of type d. We
obtain Osel(GYi) balls of type i for i = 0, . . . , d− 1 and Osel(X) balls of type d.

After obtaining Osel(GY0), . . . , Osel(GYd−1), Osel(X), we sample Osel(X) selectable oppor-
tunities in the separator X, and check whether any of them improves the closest selectable
opportunity seen so far. Next, we loop over all children Y of X in the separator de-
composition tree. If the subgraph GY contains any selectable opportunities, we add a
pair (Y, dist(O, Y )) to a set C (recall that O is the origin vertex of the current trip). The
shortest-path distance dist(O, Y ) is computed as discussed in Section 3. Finally, we loop
over all pairs (Y, dist(O, Y )) ∈ C in ascending order of distance from the origin. If dist(O, Y )
is less than the distance to the closest selectable opportunity seen so far, we recurse on Y .
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5 Experiments

This section presents a thorough experimental evaluation of both applications. First, we
describe our experimental setup, including our benchmark machine, the inputs, and imple-
mentation details. Next, we evaluate various closest-POI algorithms, with a focus on their
selection and query phases. Finally, we compare CRAD to DRAD and TRAD.

5.1 Experimental Setup
Our publicly available code1 is written in C++17 and compiled with the GNU compiler 9.3
using optimization level 3. We use 4-heaps [28] as priority queues. To ensure a correct
implementation, we make extensive use of assertions (disabled during measurements). Our
benchmark machine runs openSUSE Leap 15.2 (kernel 5.3.18), and has 192 GiB of DDR4-2666
RAM and two Intel Xeon Gold 6144 CPUs, each with eight cores clocked at 3.50 GHz and
8× 64 KiB of L1, 8× 1 MiB of L2, and 24.75 MiB of shared L3 cache.

Inputs. Our benchmark instance is the road network of Western Europe. The network has
a total of 18 017 748 vertices and 42 560 275 edges and was made available by PTV AG for
the 9th DIMACS Implementation Challenge [15]. For the evaluation of the travel demand
generators, we use the population grid2 made available by Eurostat, the statistical office of
the European Union. The grid has a resolution of one kilometer and covers all EU and EFTA
member states, as well as the United Kingdom. We follow the approach in [8] to assign
the grid to the graph. For each inhabitant, we pick a vertex lying in their cell uniformly at
random and assign the inhabitant to it. If there is no such vertex, we discard the inhabitant.

Implementation Details. We use the network dissection algorithm Inertial Flow [36] to
compute separator decompositions and associated nested dissection orders, with the balance
parameter b set to 3/10. CCH customization uses perfect witness searches [16].

For comparison, we carefully reimplemented the bucket-based nearest-neighbor algorithm
by Geisberger [22], which we call BCH. CH preprocessing is taken from the open-source
library RoutingKit3. Both the forward and reverse CH searches use stall-on-demand [23].

The bucket-based nearest-neighbor algorithm can be used as is on CCHs, without further
modifications. For better performance, however, we use a tailored version where we replace
the Dijkstra-based CH searches used during selection and queries by elimination tree searches.
Note that in contrast to CH searches, CCH searches are faster without the stall-on-demand
technique. On the other hand, stall-on-demand decreases the bucket sizes. Therefore, we use
stall-on-demand only for the reverse searches. We call this version BCCH.

To keep implementation complexity of the demand generators low, we use existing imple-
mentations of random variate generation algorithms. The Standard Template Library (STL)
offers the three distribution classes uniform_int_distribution, binomial_distribution,
and geometric_distribution. The STL provides neither a hypergeometric nor a negative
hypergeometric distribution. To generate hypergeometric variates, we use the stocc library4.
Following [8], we approximate negative hypergeometric variates by geometric variates.

1 https://github.com/vbuchhold/routing-framework
2 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

population-distribution-demography/geostat
3 https://github.com/RoutingKit/RoutingKit
4 https://www.agner.org/random/
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Table 1 Performance of different closest-POI algorithms for various POI distributions. For each
distribution, we report the time to index a set of POIs (selection time), the space consumed by the
index (selection space), and the time to find the k = 1, 4, 8 closest POIs (query time). For CRP, we
take the figures for the online version from the original publication [14].

|P | = 212, |B| = 220 |P | = 214, |B| = |V |

selection query time [µs] selection query time [µs]
space time POIs to be reported space time POIs to be reported

algo [MiB] [ms] k = 1 k = 4 k = 8 [MiB] [ms] k = 1 k = 4 k = 8
Dij – – 846 210 855 438 873 716 – – 113.4 439.3 883.7
BCH 72.4 134 20 20 21 83.6 481 5.0 8.5 10.7
BCCH 85.5 453 51 52 53 134.9 1 753 6.0 8.8 11.1
CCH 68.7 21 2 353 3 501 4 629 68.7 23 306.7 494.8 702.0
CRP – – – – – 0.0 8 – 640.0 –

5.2 Online Closest-POI Queries
We start by comparing our nearest-neighbor algorithm (simply called CCH in this section)
to Dijkstra’s algorithm, BCH, BCCH, and CRP. Note that the performance of closest-POI
algorithms is affected not only by the number of POIs but also by their distribution. For
example, the set of all restaurants may be distributed evenly over the whole network, whereas
a certain franchise may operate in a local region. To model this, we follow the methodology
used by Delling et al. [13] to evaluate one-to-many algorithms.

To obtain our problem instances, we first pick a center c uniformly at random. We then
use Dijkstra to grow a ball B of size |B| centered at c. Finally, we pick a POI set P of
size |P | from B. By varying the parameters |B| and |P |, we can model the aforementioned
situations. For each combination, we generate 100 POI sets. Each POI set is evaluated with
100 sources picked at random. That is, each data point is an average over 10 000 queries.

Main Results. Table 1 shows the performance of different closest-POI algorithms for two
POI distributions. We observe that Dijkstra’s algorithm has reasonable performance when
the POIs are evenly distributed over the whole graph (|B| = |V |). In this case, any potential
source is relatively close to some POI, and thus the Dijkstra search can always stop early.
However, Dijkstra’s algorithm is not robust to the POI distribution. When |B| = 220, many
potential sources are relatively far from any POI, and the average running times are around
one second, too slow for interactive map-based services.

BCH achieves the best (offline) query times for both POI distributions. Note, however, that
BCH is no competitor to BCCH, CCH, and CRP, since it operates on standard contraction
hierarchies, which cannot handle frequent metric updates. We only include BCH in our
experiments for comparison with BCCH, since the bucket-based nearest-neighbor algorithm
has not been tested on customizable contraction hierarchies so far.

Although we tailored the bucket-based algorithm to CCHs, BCCH is still somewhat
slower than BCH. This is expected, since CCHs contain more shortcuts and are thus denser
than CHs. The slowdown is a factor of about 3.5 for selection. When |B| = |V |, BCCH has
only slightly higher (offline) query times than BCH, since the queries relax only a few edges.
However, BCCH queries are roughly 2.5 times slower than BCH queries when |B| = 220.



V. Buchhold and D. Wagner 18:13

0.
01

0.
1

1
10

10
0

10
00

10
00

0

214 215 216 217 218 219 220 221 222 223 224

ball size

ru
nn

in
g

tim
e

[m
s]

BCH query
BCH select

BCCH query
BCCH select

CCH query
CCH select

Dijkstra

Figure 1 Selection and query times of various closest-POI algorithms with |P | = 214 POIs picked
at random from a ball of varying size |B|. Queries find the k = 4 closest POIs.

We observe that our nearest-neighbor algorithm (simply called CCH in this section) has
considerably higher offline query times than BCCH. On the other hand, CCH achieves much
faster selection times. For example, when |P | = 214, offline CCH queries are slower by a
factor of 51–63 but CCH selection is faster by a factor of 77. Note that although CCH queries
are significantly slower than BCCH queries, they are still slightly faster than CRP queries.

Online queries need to run both the selection and query phase for each client’s request.
Therefore, the time taken by an online query is the sum of the selection and query time. We
observe that BCCH is not suitable for online queries. When |P | = 212, BCCH takes half a
second to answer an online query, and it takes even 1.8 seconds when |P | = 214. In contrast,
CCH takes only about 25 milliseconds for an online query.

Table 1 includes various alternative closest-POI algorithms. In addition, it seems natural
to adapt existing one-to-many algorithms to the closest-POI problem. Promising candidates
that are not based on buckets are CTD [20, 13] and RPHAST [13]. However, since CTD
and RPHAST selection take more than 100 milliseconds when |B| = |V |, online closest-POI
queries based on CTD or RPHAST would be at least four times slower than ours.

Impact of the POI Distribution. Our next experiment considers the impact of the ball
size on the performance of the different closest-POI algorithms. Figure 1 plots selection and
(offline) query times for various ball sizes. We omit online query times for clarity. Since the
online query times are dominated by the selection times, online query times would closely
follow the selection curves. Except for Dijkstra’s algorithm, all selection and query times are
very robust to the ball size. While all query algorithms benefit from an even distribution of
the POIs (for the aforementioned reasons), this effect is most pronounced for Dijkstra.

Impact of the Number of POIs. Next, we evaluate the impact of the number of POIs on
the performance of Dijkstra’s algorithm, BCH, BCCH, and CCH. Figure 2 plots selection
and (offline) query times for various numbers of POIs. As before, online query times would
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Figure 2 Selection and query times of various closest-POI algorithms with a varying number |P |
of POIs picked at random from a ball of size |B| = |V |. Queries find the k = 4 closest POIs.

closely follow the selection curves. We observe that the CCH selection time is independent of
the number of POIs, whereas the BCCH selection time grows linearly. For |P | = 214, CCH
selection is 76 times faster than BCCH selection. The speedup increases to more than three
orders of magnitude for |P | = 218, the largest number of POIs tested in our experiment.

Once again, queries tend to become faster as |P | gets larger, since they can stop (in the
case of Dijkstra-based searches) or prune (in the case of elimination tree searches) earlier.
The exception are CCH queries, which become slower initially. The reason is that for very
small values of |P |, we do not explore the separator decomposition tree but trigger the base
case at the root (which simply finds |P | point-to-point shortest paths by running standard
elimination tree queries from the source to each POI).

5.3 Travel Demand Generation
Next, we evaluate CRAD, including a comparison to DRAD and TRAD. Since CRAD uses
shortest-path distances rather than geometric distances, it obtains high-quality solutions
like DRAD. We verified this experimentally by rerunning the experiments in the original
publication [8] for CRAD, using the same instances and methodology. We refer to the original
paper for a comparison of the solution quality with shortest-path and geometric distances.

In this work, we focus on the performance of the three implementations. Since DRAD
is at its heart a Dijkstra search from the trip’s origin to its destination, the performance
depends heavily on the expected length of the generated trip (which is controlled by the
parameter λ; see Section 4.2). In contrast, TRAD and CRAD are robust to the trip length.

Figure 3 plots the time to generate a single trip for various values of λ. Note that a value
of λ = 1− 10−4/1 = 0.9999 leads on our instance to an average trip length of 9 minutes, and
a value of λ = 1− 10−4/100 = 0.999999 to an average trip length of 72 minutes. Between
two data points, the average trip length increases by about 7 minutes. All data points are
averages over 100 000 trip generation executions.
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Figure 3 Time to generate a single trip with different demand generators for various values of λ.

We observe that CRAD outperforms DRAD for each value of λ tested. Since TRAD
resorts to geometric distances, it still is faster than CRAD by a factor of 28–74. As it obtains
worse solutions, however, TRAD is no competitor to CRAD. For an average trip length of
about 23 minutes, CRAD gains an order of magnitude over DRAD, and for the largest value
of λ tested in our experiment, we see a speedup of 59. Note that this increase in speed is
quite useful in practice. While travel demand generation does not need to run in real time,
its performance should remain reasonable. However, DRAD takes about 7 hours to generate
one million one-hour trips. In contrast, CRAD takes less than 10 minutes.

6 Conclusion

We presented a novel k-nearest neighbor algorithm that operates on CCHs. With selection
times of about 20 milliseconds and query times of a few milliseconds or less, it is the first
nearest-neighbor algorithm operating on CCHs that is fast enough for interactive online
queries. Interestingly, our algorithm achieves similar performance as the online nearest-
neighbor queries by Delling and Werneck [14] within the CRP framework. This confirms
that CCHs and CRP are on an equal level and solve many types of problems equally well.

Moreover, we used our nearest-neighbor algorithm to significantly accelerate a recent
travel demand generator. We proposed CRAD, a new implementation of the radiation
model that combines the advantages of the two previous implementations DRAD and TRAD.
CRAD obtains high-quality (shortest-path based) solutions like DRAD, but follows a more
efficient tree-based sampling approach like TRAD.

Future work includes accelerating our nearest-neighbor algorithm even further. Note that
we compute distances to subgraphs corresponding to the topmost nodes in the separator
decomposition more often than distances to subgraphs corresponding to leaves. It would be
interesting to see if it pays to precompute the reverse search spaces of the topmost subgraphs.
Another possible approach would be to keep frequently used reverse search spaces in an LRU
cache. Another interesting project is a parallel version of our algorithm that uses for example
task-based parallelism to explore the separator decomposition tree. Finally, it would be
interesting to port other point-of-interest algorithms to CCHs, for example best-via queries.
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